722
Views
8
CrossRef citations to date
0
Altmetric
REVIEW

Research Progress of Polydopamine Hydrogel in the Prevention and Treatment of Oral Diseases

ORCID Icon, , , , &
Pages 2623-2645 | Received 18 Feb 2023, Accepted 12 Apr 2023, Published online: 16 May 2023

References

  • Peres MA, Macpherson LMD, Weyant RJ, et al. Oral diseases: a global public health challenge. Lancet. 2019;394:249–260. doi:10.1016/S0140-6736(19)31146-8
  • Zhang W, Bao B, Jiang F, et al. Promoting oral mucosal wound healing with a hydrogel adhesive based on a phototriggered S-nitrosylation coupling reaction. Adv Mater. 2021;33:e2105667. doi:10.1002/adma.202105667
  • Lei L, Liu Z, Yuan P, et al. Injectable colloidal hydrogel with mesoporous silica nanoparticles for sustained co-release of microRNA-222 and aspirin to achieve innervated bone regeneration in rat mandibular defects. J Mater Chem B. 2019;7:2722–2735. doi:10.1039/C9TB00025A
  • Tabatabaei F, Moharamzadeh K, Tayebi L. Fibroblast encapsulation in gelatin methacryloyl (GelMA) versus collagen hydrogel as substrates for oral mucosa tissue engineering. J Oral Biol Craniofac Res. 2020;10:573–577. doi:10.1016/j.jobcr.2020.08.015
  • Vila A, Torras N, Castaño AG, et al. Hydrogel co-networks of gelatine methacrylate and poly(ethylene glycol) diacrylate sustain 3D functional in vitro models of intestinal mucosa. Biofabrication. 2020;12:025008. doi:10.1088/1758-5090/ab5f50
  • Chen X, Liu Y, Miao L, et al. Controlled release of recombinant human cementum protein 1 from electrospun multiphasic scaffold for cementum regeneration. Int J Nanomedicine. 2016;11:3145–3158. doi:10.2147/IJN.S104324
  • Shi L, Ding P, Wang Y, et al. Self-healing polymeric hydrogel formed by metal-ligand coordination assembly: design, fabrication, and biomedical applications. Macromol Rapid Commun. 2019;40:e1800837. doi:10.1002/marc.201800837
  • Sharma S, Tiwari S. A review on biomacromolecular hydrogel classification and its applications. Int J Biol Macromol. 2020;162:737–747. doi:10.1016/j.ijbiomac.2020.06.110
  • Bovone G, Dudaryeva OY, Marco-Dufort B, et al. Engineering hydrogel adhesion for biomedical applications via chemical design of the junction. ACS Biomater Sci Eng. 2021;7:4048–4076. doi:10.1021/acsbiomaterials.0c01677
  • Li Z, Li G, Xu J, et al. Hydrogel transformed from nanoparticles for prevention of tissue injury and treatment of inflammatory diseases. Adv Mater. 2022;34:e2109178. doi:10.1002/adma.202109178
  • Pacelli S, Rampetsreiter K, Modaresi S, et al. Fabrication of a double-cross-linked interpenetrating polymeric network (IPN) hydrogel surface modified with polydopamine to modulate the osteogenic differentiation of adipose-derived stem cells. ACS Appl Mater Interfaces. 2018;10:24955–24962. doi:10.1021/acsami.8b05200
  • Neves SC, Moroni L, Barrias CC, et al. Leveling up hydrogels: hybrid systems in tissue engineering. Trends Biotechnol. 2020;38:292–315. doi:10.1016/j.tibtech.2019.09.004
  • Tayler IM, Stowers RS. Engineering hydrogels for personalized disease modeling and regenerative medicine. Acta Biomater. 2021;132:4–22. doi:10.1016/j.actbio.2021.04.020
  • Wang X, Yang Y, Shi Y, et al. Editorial: smart hydrogels in tissue engineering and regenerative medicine. Front Chem. 2020;8:245. doi:10.3389/fchem.2020.00245
  • Correa S, Grosskopf AK, Lopez Hernandez H, et al. Translational applications of hydrogels. Chem Rev. 2021;121:11385–11457. doi:10.1021/acs.chemrev.0c01177
  • Guo Q, Chen J, Wang J, et al. Recent progress in synthesis and application of mussel-inspired adhesives. Nanoscale. 2020;12:1307–1324. doi:10.1039/C9NR09780E
  • Heidarian P, Kouzani AZ, Kaynak A, et al. Rational design of mussel-inspired hydrogels with dynamic catecholato-metal coordination bonds. Macromol Rapid Commun. 2020;41:e2000439. doi:10.1002/marc.202000439
  • Barros NR, Chen Y, Hosseini V, et al. Recent developments in mussel-inspired materials for biomedical applications. Biomater Sci. 2021;9:6653–6672. doi:10.1039/D1BM01126J
  • He H, Zhao K, Xiao L, et al. Detection and chiral recognition of α-hydroxyl acid through 1 H and CEST NMR spectroscopy using a ytterbium macrocyclic complex. Angew Chem Int Ed Engl. 2019;58:18286–18289. doi:10.1002/anie.201912072
  • Davidsen MB, Teixeira JFL, Dehli J, et al. Post-treatments of polydopamine coatings influence cellular response. Colloids Surf B Biointerfaces. 2021;207:111972. doi:10.1016/j.colsurfb.2021.111972
  • Qiu WZ, Yang HC, Xu ZK. Dopamine-assisted co-deposition: an emerging and promising strategy for surface modification. Adv Colloid Interface Sci. 2018;256:111–125. doi:10.1016/j.cis.2018.04.011
  • Hu J, Yang L, Yang P, et al. Polydopamine free radical scavengers. Biomater Sci. 2020;8:4940–4950. doi:10.1039/D0BM01070G
  • Xie X, Tang J, Xing Y, et al. Intervention of polydopamine assembly and adhesion on nanoscale interfaces: state-of-the-art designs and biomedical applications. Adv Healthc Mater. 2021;10:e2002138. doi:10.1002/adhm.202002138
  • Lee HA, Park E, Lee H. Polydopamine and its derivative surface chemistry in material science: a focused review for studies at KAIST. Adv Mater. 2020;32:e1907505. doi:10.1002/adma.201907505
  • Falcone N, Andoy NMO, Sullan RMA, Kraatz HB. Peptide-polydopamine nanocomposite hydrogel for a laser-controlled hydrophobic drug delivery. ACS Appl Bio Mater. 2021;4:6652–6657. doi:10.1021/acsabm.1c00699
  • Wu Y, Yu C, Xing M, Wang L, Guan G. Surface modification of polyvinyl alcohol (PVA)/polyacrylamide (PAAm) hydrogels with polydopamine and REDV for improved applicability. J Biomed Mater Res B Appl Biomater. 2020;108:117–127. doi:10.1002/jbm.b.34371
  • Chen L, Lin Z, Liu L, et al. Fe2+/Fe3+ ions chelated with ultrasmall polydopamine nanoparticles induce ferroptosis for cancer therapy. ACS Biomater Sci Eng. 2019;5:4861–4869. doi:10.1021/acsbiomaterials.9b00461
  • Park SE, Georgescu A, Oh JM, Kwon KW, Huh D. Polydopamine-based interfacial engineering of extracellular matrix hydrogels for the construction and long-term maintenance of living three-dimensional tissues. ACS Appl Mater Interfaces. 2019;11:23919–23925. doi:10.1021/acsami.9b07912
  • Huang L, Liu M, Huang H, et al. Recent advances and progress on melanin-like materials and their biomedical applications. Biomacromolecules. 2018;19:1858–1868. doi:10.1021/acs.biomac.8b00437
  • Priemel T, Palia G, Förste F, et al. Microfluidic-like fabrication of metal ion-cured bioadhesives by mussels. Science. 2021;374:206–211. doi:10.1126/science.abi9702
  • Rastogi P, Kandasubramanian B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication. 2019;11:042001. doi:10.1088/1758-5090/ab331e
  • Feng L, Shi W, Chen Q, et al. Smart asymmetric hydrogel with integrated multi-functions of NIR-triggered tunable adhesion, self-deformation, and bacterial eradication. Adv Healthc Mater. 2021;10:e2100784. doi:10.1002/adhm.202100784
  • Xu Q, Chang M, Zhang Y, et al. PDA/Cu bioactive hydrogel with “hot ions effect” for inhibition of drug-resistant bacteria and enhancement of infectious skin wound healing. ACS Appl Mater Interfaces. 2020;12:31255–31269. doi:10.1021/acsami.0c08890
  • Xiang Y, Mao C, Liu X, et al. Rapid and superior bacteria killing of carbon quantum Dots/ZnO decorated injectable folic acid-conjugated PDA hydrogel through dual-light triggered ROS and membrane permeability. Small. 2019;15:e1900322. doi:10.1002/smll.201900322
  • Guo Y, Baschieri A, Mollica F, et al. Hydrogen atom transfer from HOO. to ortho-quinones explains the antioxidant activity of polydopamine. Angew Chem Int Ed Engl. 2021;60:15220–15224. doi:10.1002/anie.202101033
  • Dinh TN, Hou S, Park S, et al. Gelatin hydrogel combined with polydopamine coating to enhance tissue integration of medical implants. ACS Biomater Sci Eng. 2018;4:3471–3477. doi:10.1021/acsbiomaterials.8b00886
  • Su T, Zhang M, Zeng Q, et al. Mussel-inspired agarose hydrogel scaffolds for skin tissue engineering. Bioact Mater. 2020;6:579–588. doi:10.1016/j.bioactmat.2020.09.004
  • Michalicha A, Pałka K, Roguska A, et al. Polydopamine-coated curdlan hydrogel as a potential carrier of free amino group-containing molecules. Carbohydr Polym. 2021;256:117524. doi:10.1016/j.carbpol.2020.117524
  • Skopinska-Wisniewska J, Tuszynska M, Olewnik-Kruszkowska E. Comparative study of gelatin hydrogels modified by various cross-linking agents. Materials. 2021;14:396. doi:10.3390/ma14020396
  • Liang Y, Zhao X, Hu T, et al. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small. 2019;15:e1900046. doi:10.1002/smll.201900046
  • Liu CY, Huang CJ. Functionalization of polydopamine via the aza-michael reaction for antimicrobial interfaces. Langmuir. 2016;32:5019–5028. doi:10.1021/acs.langmuir.6b00990
  • Trinh KTL, Le NXT, Lee NY. Chitosan-polydopamine hydrogel complex: a novel green adhesion agent for reversibly bonding thermoplastic microdevice and its application for cell-friendly microfluidic 3D cell culture. Lab Chip. 2020;20:3524–3534. doi:10.1039/D0LC00621A
  • Zhang FX, Liu P, Ding W, et al. Injectable Mussel-Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration. Biomaterials. 2021;278:121169. doi:10.1016/j.biomaterials.2021.121169
  • Hwang C, Lee SY, Kim HJ, et al. Polypseudorotaxane and polydopamine linkage-based hyaluronic acid hydrogel network with a single syringe injection for sustained drug delivery. Carbohydr Polym. 2021;266:118104. doi:10.1016/j.carbpol.2021.118104
  • Chen T, Chen Y, Rehman HU, et al. Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing. ACS Appl Mater Interfaces. 2018;10:33523–33531. doi:10.1021/acsami.8b10064
  • Wolf MT, Daly KA, Brennan-Pierce EP, et al. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials. 2012;33:7028–7038. doi:10.1016/j.biomaterials.2012.06.051
  • Abdallah M, Martin M, El Tahchi MR, et al. Influence of hydrolyzed polyacrylamide hydrogel stiffness on podocyte morphology, phenotype, and mechanical properties. ACS Appl Mater Interfaces. 2019;11:32623–32632. doi:10.1021/acsami.9b09337
  • Xue G, Zhang Y, Xie T, et al. Cell adhesion-mediated piezoelectric self-stimulation on polydopamine-modified poly(vinylidene fluoride) membranes. ACS Appl Mater Interfaces. 2021;13:17361–17371. doi:10.1021/acsami.1c02457
  • Yan J, Wu R, Liao S, et al. Applications of polydopamine-modified scaffolds in the peripheral nerve tissue engineering. Front Bioeng Biotechnol. 2020;8:590998. doi:10.3389/fbioe.2020.590998
  • Yu QH, Zhang CM, Jiang ZW, et al. Mussel-inspired adhesive polydopamine-functionalized hyaluronic acid hydrogel with potential bacterial inhibition. Glob Chall. 2019;4:1900068. doi:10.1002/gch2.201900068
  • Zhao Z, Li L, Geleta GS, et al. Polyacrylamide-phytic acid-polydopamine conducting porous hydrogel for efficient removal of water-soluble dyes. Sci Rep. 2017;7:7878. doi:10.1038/s41598-017-08220-6
  • Gao G, Jiang YW, Jia HR, et al. Near-infrared light-controllable on-demand antibiotics release using thermo-sensitive hydrogel-based drug reservoir for combating bacterial infection. Biomaterials. 2019;188:83–95. doi:10.1016/j.biomaterials.2018.09.045
  • Zhang M, Huang Y, Pan W, et al. Polydopamine-incorporated dextran hydrogel drug carrier with tailorable structure for wound healing. Carbohydr Polym. 2021;253:117213. doi:10.1016/j.carbpol.2020.117213
  • Ding F, Gao X, Huang X, et al. Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy. Biomaterials. 2020;245:119976. doi:10.1016/j.biomaterials.2020.119976
  • Gan D, Wang Z, Xie C, et al. Mussel-inspired tough hydrogel with in situ nanohydroxyapatite mineralization for osteochondral defect repair. Adv Healthc Mater. 2019;8:e1901103. doi:10.1002/adhm.201901103
  • Xu Y, Zhao S, Weng Z, et al. Jelly-inspired injectable guided tissue regeneration strategy with shape auto-matched and dual-light-defined antibacterial/osteogenic pattern switch properties. ACS Appl Mater Interfaces. 2020;12:54497–54506. doi:10.1021/acsami.0c18070
  • Li H, Yin D, Li W, et al. Polydopamine-based nanomaterials and their potentials in advanced drug delivery and therapy. Colloids Surf B Biointerfaces. 2021;199:111502. doi:10.1016/j.colsurfb.2020.111502
  • Annamalai RT, Hong X, Schott NG, et al. Injectable osteogenic microtissues containing mesenchymal stromal cells conformally fill and repair critical-size defects. Biomaterials. 2019;208:32–44. doi:10.1016/j.biomaterials.2019.04.001
  • Aghali A. Craniofacial bone tissue engineering: current approaches and potential therapy. Cells. 2021;10:2993. doi:10.3390/cells10112993
  • Bhumiratana S, Bernhard JC, Alfi DM, et al. Tissue-engineered autologous grafts for facial bone reconstruction. Sci Transl Med. 2016;8:343ra83. doi:10.1126/scitranslmed.aad5904
  • Xie C, Ye J, Liang R, et al. Advanced strategies of biomimetic tissue-engineered grafts for bone regeneration. Adv Healthc Mater. 2021;10:e2100408. doi:10.1002/adhm.202100408
  • Liu C, Wu J, Gan D, et al. The characteristics of mussel-inspired nHA/OSA injectable hydrogel and repaired bone defect in rabbit. J Biomed Mater Res B Appl Biomater. 2020;108:1814–1825. doi:10.1002/jbm.b.34524
  • Pacelli S, Chakravarti AR, Modaresi S, et al. Investigation of human adipose-derived stem-cell behavior using a cell-instructive polydopamine-coated gelatin-alginate hydrogel. J Biomed Mater Res A. 2021;109:2597–2610. doi:10.1002/jbm.a.37253
  • Wei PF, Yuan ZY, Jing W, et al. Regenerating infected bone defects with osteocompatible microspheres possessing antibacterial activity. Biomater Sci. 2018;7:272–286. doi:10.1039/C8BM00903A
  • Adnan NNM, Sadrearhami Z, Bagheri A, et al. Exploiting the versatility of polydopamine-coated nanoparticles to deliver nitric oxide and combat bacterial biofilm. Macromol Rapid Commun. 2018;39:e1800159. doi:10.1002/marc.201800159
  • Fu Y, Zhang J, Wang Y, et al. Reduced polydopamine nanoparticles incorporated oxidized dextran/chitosan hybrid hydrogels with enhanced antioxidative and antibacterial properties for accelerated wound healing. Carbohydr Polym. 2021;257:117598. doi:10.1016/j.carbpol.2020.117598
  • Qi X, Pan W, Tong X, et al. ε-Polylysine-stabilized agarose/polydopamine hydrogel dressings with robust photothermal property for wound healing. Carbohydr Polym. 2021;264:118046. doi:10.1016/j.carbpol.2021.118046
  • Jin A, Wang Y, Lin K, et al. Nanoparticles modified by polydopamine: working as “drug” carriers. Bioact Mater. 2020;5:522–541. doi:10.1016/j.bioactmat.2020.04.003
  • Qi X, Huang Y, You S, et al. Engineering robust ag-decorated polydopamine nano-photothermal platforms to combat bacterial infection and prompt wound healing. Adv Sci. 2022;9:e2106015. doi:10.1002/advs.202106015
  • Liu Y, Fan Q, Huo Y, et al. Construction of a Mesoporous Polydopamine@GO/Cellulose Nanofibril Composite Hydrogel with an Encapsulation Structure for Controllable Drug Release and Toxicity Shielding. ACS Appl Mater Interfaces. 2020;12:57410–57420. doi:10.1021/acsami.0c15465
  • Puthia M, Butrym M, Petrlova J, et al. A dual-action peptide-containing hydrogel targets wound infection and inflammation. Sci Transl Med. 2020;12:eaax6601. doi:10.1126/scitranslmed.aax6601
  • Tu C, Lu H, Zhou T, et al. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials. 2022;286:121597. doi:10.1016/j.biomaterials.2022.121597
  • Poinard B, Neo SZY, Yeo ELL, et al. Polydopamine nanoparticles enhance drug release for combined photodynamic and photothermal therapy. ACS Appl Mater Interfaces. 2018;10:21125–21136. doi:10.1021/acsami.8b04799
  • Wang Y, Ge W, Ma Z, et al. Use of mesoporous polydopamine nanoparticles as a stable drug-release system alleviates inflammation in knee osteoarthritis. APL Bioeng. 2022;6:026101. doi:10.1063/5.0088447
  • Tian Y, Lei M. Polydopamine-based composite nanoparticles with redox-labile polymer shells for controlled drug release and enhanced chemo-photothermal therapy. Nanoscale Res Lett. 2019;14:186. doi:10.1186/s11671-019-3027-6
  • Ou Q, Zhang S, Fu C, et al. More natural more better: triple natural anti-oxidant puerarin/ferulic acid/polydopamine incorporated hydrogel for wound healing. J Nanobiotechnology. 2021;19:237. doi:10.1186/s12951-021-00973-7
  • Yuan Z, Lin C, Dai L, et al. Near-infrared light-activatable dual-action nanoparticle combats the established biofilms of methicillin-resistant staphylococcus aureus and its accompanying inflammation. Small. 2021;17:e2007522. doi:10.1002/smll.202007522
  • Yang Z, Huang R, Zheng B, et al. Highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressings for wound healing. Adv Sci. 2021;8:2003627. doi:10.1002/advs.202003627
  • Liu P, Zhang Y, Ma Y, et al. Application of dental pulp stem cells in oral maxillofacial tissue engineering. Int J Med Sci. 2022;19:310–320. doi:10.7150/ijms.68494
  • Lin H, Sohn J, Shen H, et al. Bone marrow mesenchymal stem cells: aging and tissue engineering applications to enhance bone healing. Biomaterials. 2019;203:96–110. doi:10.1016/j.biomaterials.2018.06.026
  • Cui T, Luo W, Xu L, et al. Progress of antimicrobial discovery against the major cariogenic pathogen streptococcus mutans. Curr Issues Mol Biol. 2019;32:601–644. doi:10.21775/cimb.032.601
  • Iwai K, Azuma T, Yonenaga T, et al. Association between dental caries and Helicobacter pylori infection in Japanese adults: a cross-sectional study. PLoS One. 2022;17:e0271459. doi:10.1371/journal.pone.0271459
  • Sharma V, Srinivasan A, Nikolajeff F, et al. Biomineralization process in hard tissues: the interaction complexity within protein and inorganic counterparts. Acta Biomater. 2021;120:20–37. doi:10.1016/j.actbio.2020.04.049
  • Chen Z, Miao Z, Zhang P, et al. Bioinspired enamel-like oriented minerals on general surfaces: towards improved mechanical properties. J Mater Chem B. 2019;7:5237–5244. doi:10.1039/C9TB00676A
  • Ashwini A, Dineshkumar T, Rameshkumar A, et al. Dentin degradonomics - The potential role of salivary MMP-8 in dentin caries. J Clin Exp Dent. 2020;12:e108–e115. doi:10.4317/jced.56144
  • Boukpessi T, Menashi S, Camoin L, et al. The effect of stromelysin-1 (MMP-3) on non-collagenous extracellular matrix proteins of demineralized dentin and the adhesive properties of restorative resins. Biomaterials. 2008;29:4367–4373. doi:10.1016/j.biomaterials.2008.07.035
  • Qu Y, Gu T, Du Q, et al. Polydopamine promotes dentin remineralization via interfacial control. ACS Biomater Sci Eng. 2020;6:3327–3334. doi:10.1021/acsbiomaterials.0c00035
  • Lu Y, Zhang W, Wang J, et al. Recent advances in cell sheet technology for bone and cartilage regeneration: from preparation to application. Int J Oral Sci. 2019;11:17. doi:10.1038/s41368-019-0050-5
  • Yin S, Zhang W, Zhang Z, et al. Recent advances in scaffold design and material for vascularized tissue-engineered bone regeneration. Adv Healthc Mater. 2019;8:e1801433. doi:10.1002/adhm.201801433
  • Xu H, Zhang G, Xu K, et al. Mussel-inspired dual-functional PEG hydrogel inducing mineralization and inhibiting infection in maxillary bone reconstruction. Mater Sci Eng C Mater Biol Appl. 2018;90:379–386. doi:10.1016/j.msec.2018.04.066
  • Qian Y, Zhou X, Zhang F, et al. Triple PLGA/PCL scaffold modification including silver impregnation, collagen coating, and electrospinning significantly improve biocompatibility, antimicrobial, and osteogenic properties for orofacial tissue regeneration. ACS Appl Mater Interfaces. 2019;11:37381–37396. doi:10.1021/acsami.9b07053
  • Kitamura M, Mochizuki Y, Miyata Y, et al. Pathological characteristics of periodontal disease in patients with chronic kidney disease and kidney transplantation. Int J Mol Sci. 2019;20:3413. doi:10.3390/ijms20143413
  • Liu J, Ruan J, Weir MD, et al. Periodontal bone-ligament-cementum regeneration via scaffolds and stem cells. Cells. 2019;8(6):537. doi:10.3390/cells8060537
  • Gegout PY, Stutz C, Olson J, et al. Interests of exosomes in bone and periodontal regeneration: a systematic review. Adv Exp Med Biol. 2021;1341:67–87.
  • Li Q, Yang G, Li J, et al. Stem cell therapies for periodontal tissue regeneration: a network meta-analysis of preclinical studies. Stem Cell Res Ther. 2020;11:427. doi:10.1186/s13287-020-01938-7
  • Zhong W, Xiong Y, Wang X, et al. Synthesis and characterization of multifunctional organic-inorganic composite hydrogel formed with tissue-adhesive property and inhibiting infection. Mater Sci Eng C Mater Biol Appl. 2021;118:111532. doi:10.1016/j.msec.2020.111532
  • Liu X, Chen W, Shao B, et al. Mussel patterned with 4D biodegrading elastomer durably recruits regenerative macrophages to promote regeneration of craniofacial bone. Biomaterials. 2021;276:120998. doi:10.1016/j.biomaterials.2021.120998
  • Lin D, Yang L, Wen L, et al. Crosstalk between the oral microbiota, mucosal immunity, and the epithelial barrier regulates oral mucosal disease pathogenesis. Mucosal Immunol. 2021;14:1247–1258. doi:10.1038/s41385-021-00413-7
  • Surboyo MD, Ernawati DS, Budi HS. Oral mucosal lesions and oral symptoms of the SARS-CoV-2 infection. Minerva Dent Oral Sci. 2021;70:161–168. doi:10.23736/S2724-6329.21.04493-9
  • De Zoysa GH, Wang K, Lu J, et al. Covalently immobilized battacin lipopeptide gels with activity against bacterial biofilms. Molecules. 2020;25:5945. doi:10.3390/molecules25245945
  • Huang H, He D, Liao X, et al. An excellent antibacterial and high self-adhesive hydrogel can promote wound fully healing driven by its shrinkage under NIR. Mater Sci Eng C Mater Biol Appl. 2021;129:112395. doi:10.1016/j.msec.2021.112395
  • An H, Gu Z, Zhou L, et al. Janus mucosal dressing with a tough and adhesive hydrogel based on synergistic effects of gelatin, polydopamine, and nano-clay. Acta Biomater. 2022;149:126–138. doi:10.1016/j.actbio.2022.07.016
  • Raphel J, Holodniy M, Goodman SB, et al. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials. 2016;84:301–314. doi:10.1016/j.biomaterials.2016.01.016
  • Yin S, Sun N, Jiang F, et al. The translation from in vitro bioactive ion concentration screening to in vivo application for preventing peri-implantitis. ACS Appl Mater Interfaces. 2021;13:5782–5794. doi:10.1021/acsami.0c19698
  • Lopez MA, Andreasi Bassi M, Confalone L, et al. treatment of peri-implant diseases: a new approach using hybenx® as a decontaminant for implant surface and oral tissues. Oral Implantol. 2016;9:106–114.
  • Ren X, Gao R, van der Mei HC, et al. Eradicating infecting bacteria while maintaining tissue integration on photothermal nanoparticle-coated titanium surfaces. ACS Appl Mater Interfaces. 2020;12:34610–34619. doi:10.1021/acsami.0c08592
  • Yin W, Liu Y, Bian Z. MG53 inhibits the progression of tongue cancer cells through regulating PI3K-AKT signaling pathway: evidence from 3d cell culture and animal model. Small. 2019;15:e1805492. doi:10.1002/smll.201805492
  • Zhang SQ, Chen HB, Liu J, et al. Research status and prospects of acupuncture for prevention and treatment of chemo- and radiotherapy-induced salivary gland dysfunction in head and neck cancer. Anat Rec. 2021;304:2381–2396. doi:10.1002/ar.24784
  • Lai TY, Wang TH, Liu CJ, et al. Risk factors for osteonecrosis of the jaw in oral cancer patients after surgery and eventual adjuvant treatment: the potential role of chemotherapy. Radiother Oncol. 2017;123:406–411. doi:10.1016/j.radonc.2017.05.001
  • Jiang Y, Li J, Zhen X, et al. Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study. Adv Mater. 2018;30:e1705980. doi:10.1002/adma.201705980
  • Wang Y, Zhang W, Sun P, et al. A novel multimodal NIR-II nanoprobe for the detection of metastatic lymph nodes and targeting chemo-photothermal therapy in oral squamous cell carcinoma. Theranostics. 2019;9:391–404. doi:10.7150/thno.30268
  • Hu JJ, Cheng YJ, Zhang XZ. Recent advances in nanomaterials for enhanced photothermal therapy of tumors. Nanoscale. 2018;10:22657–22672. doi:10.1039/C8NR07627H
  • Lu J, Cai L, Dai Y, et al. Polydopamine-based nanoparticles for photothermal therapy/chemotherapy and their synergistic therapy with autophagy inhibitor to promote antitumor treatment. Chem Rec. 2021;21:781–796. doi:10.1002/tcr.202000170
  • Zhang P, Li X, Xu Q, et al. Polydopamine nanoparticles with different sizes for NIR-promoted gene delivery and synergistic photothermal therapy. Colloids Surf B Biointerfaces. 2021;208:112125. doi:10.1016/j.colsurfb.2021.112125
  • Gholami Derami H, Gupta P, Weng KC, et al. Reversible photothermal modulation of electrical activity of excitable cells using polydopamine nanoparticles. Adv Mater. 2021;33:e2008809. doi:10.1002/adma.202008809
  • Cao H, Yang Y, Liang M, et al. Pt@polydopamine nanoparticles as nanozymes for enhanced photodynamic and photothermal therapy. Chem Commun. 2021;57:255–258. doi:10.1039/D0CC07355E
  • Wang C, Zhao N, Yuan W. NIR/thermoresponsive injectable self-healing hydrogels containing polydopamine nanoparticles for efficient synergistic cancer thermochemotherapy. ACS Appl Mater Interfaces. 2020;12:9118–9131. doi:10.1021/acsami.9b23536
  • Gu M, Jiang L, Hao L, et al. A novel theranostic nanoplatform for imaging-guided chemo-photothermal therapy in oral squamous cell carcinoma. J Mater Chem B. 2021;9:6006–6016. doi:10.1039/D1TB01136G
  • Xu X, Fan M, Yu Z, et al. A removable photothermal antibacterial “warm paste” target for cariogenic bacteria. Chem Eng J. 2022;429:132491. doi:10.1016/j.cej.2021.132491
  • Li Y, Yang L, Hou Y, et al. Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes. Bioact Mater. 2022;18:213–227. doi:10.1016/j.bioactmat.2022.03.021
  • Hu S, Pei X, Duan L, et al. A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery. Nat Commun. 2021;12:1689. doi:10.1038/s41467-021-21989-5