262
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

A SERS Biosensor Based on Functionalized Au-SiNCA Integrated with a Dual Signal Amplification Strategy for Sensitive Detection of Telomerase Activity During EMT in Laryngeal Carcinoma

, , , , , & ORCID Icon show all
Pages 2553-2565 | Received 08 Mar 2023, Accepted 09 May 2023, Published online: 15 May 2023

References

  • Azam MA, Sampieri C, Ioppi A, et al. Deep learning applied to white light and narrow band imaging videolaryngoscopy: toward real-time laryngeal cancer detection. Laryngoscope. 2022;132(9):1798–1806. doi:10.1002/lary.29960
  • Sahoo PK, Mishra S, Panigrahi R, Bhoi AK, Barsocchi P. An improvised deep-learning-based mask R-CNN model for laryngeal cancer detection using CT images. Sensors. 2022;22(22):8834. doi:10.3390/s22228834
  • Ohkubo J-I, Wakasugi T, Takeuchi S, Takahashi A, Nguyen TN, Suzuki H. Biophysical properties of the neck skin indicating potential complications of salvage surgery for laryngeal/hypopharyngeal cancer. Acta Otolaryngol. 2022;142(7–8):634–637. doi:10.1080/00016489.2022.2117411
  • Zhao N, Liu H, Zhang A, Wang M. Expression levels and clinical significance of miR-203 and miR-133b in laryngeal carcinoma. Oncol Lett. 2020;20(5):1. doi:10.3892/ol.2020.12076
  • Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, Zaravinos A. EMT factors and metabolic pathways in cancer. Front Oncol. 2020;10(499). doi:10.3389/fonc.2020.00499
  • Huang R, Zong X. Aberrant cancer metabolism in epithelial-mesenchymal transition and cancer metastasis: mechanisms in cancer progression. Crit Rev Oncol Hemat. 2017;115:13–22. doi:10.1016/j.critrevonc.2017.04.005
  • Cornean CI, Maniu AA. Analysis of TERT Rs2736100 genotype distribution in laryngeal squamous cell carcinoma patients. J Med Life. 2022;15(9):1191–1197. doi:10.25122/jml-2022-0114
  • Wei X, Liu F, Jiang X, Xu X, Zhou T, Kang C. YY1 promotes telomerase activity and laryngeal squamous cell carcinoma progression through impairment of GAS5-mediated p53 stability. Front Oncol. 2021;11:145.
  • Brousset P, Al Saati T, Chaouche N, Zenou RC, Mazerolles C, Delsol G. Techniques for detection of telomerase activity in tissue samples. Diagnostic and prognosis importance. Ann Pathol. 1997;17(5):364–368.
  • Liu D, La M. Electrochemical, electrochemiluminescent and photoelectrochemical methods for detection of telomerase activity: a review. Int J Electrochem Sci. 2020;15(11):11371–11386. doi:10.20964/2020.11.28
  • Wang R, Li J, Jin R, Ye Q, Cheng L, Liu R. Nonradioactive direct telomerase activity detection using biotin-labeled primers. J Clin Lab Anal. 2021;35(6):123.
  • Chen X, Deng Y, Cao G, et al. An ultrasensitive and point-of-care sensor for the telomerase activity detection. Anal Chim Acta. 2021;1146:61–69. doi:10.1016/j.aca.2020.11.037
  • Ma Y, Mao G, Wu G, Fan J, He Z, Huang W. A novel nano-beacon based on DNA functionalized QDs for intracellular telomerase activity monitoring. Sens Actuators B Chem. 2020;304:127385. doi:10.1016/j.snb.2019.127385
  • Li N, Hao Z, Cao H, et al. Acupressure mat-like nanostructure with improved SERS performance. Opt Laser Technol. 2022;148:107765. doi:10.1016/j.optlastec.2021.107765
  • Liu H, Gao X, Xu C, Liu D. SERS tags for biomedical detection and bioimaging. Theranostics. 2022;12(4):1870–1903. doi:10.7150/thno.66859
  • Fu Q, Liu HL, Wu Z, et al. Rough surface Au@Ag core-shell nanoparticles to fabricating high sensitivity SERS immunochromatographic sensors. J Nanobiotechnology. 2015;13. doi:10.1186/s12951-015-0142-0
  • Sun Y, Fang L, Yi Y, Feng A, Zhang K, Xu -J-J. Multistage nucleic acid amplification induced nano-aggregation for 3D hotspots-improved SERS detection of circulating miRNAs. J Nanobiotechnology. 2022;20(1). doi:10.1186/s12951-022-01500-y
  • Chen R, Sun Y, Huo B, et al. Development of Fe3O4@Au nanoparticles coupled to Au@Ag core-shell nanoparticles for the sensitive detection of zearalenone. Anal Chim Acta. 2021;1180:338888. doi:10.1016/j.aca.2021.338888
  • Ryu H-J, Lee WK, Kim YH, Lee J-S. Interfacial interactions of SERS-active noble metal nanostructures with functional ligands for diagnostic analysis of protein cancer markers. Microchim Acta. 2021;188(5). doi:10.1007/s00604-021-04807-z
  • Wen C, Wang L, Liu L, Shen X-C, Chen H. Surface-enhanced raman probes based on gold nanomaterials for in vivo diagnosis and imaging. Chem Asian J. 2022;17(7). doi:10.1002/asia.202200014
  • Bian X, Zhang G, Liu B, Yang J. One-pot synthesis of Au/Ag alloy@SiO2 core-shell nanoparticles and their metal-enhanced fluorescence and surface-enhanced Raman scattering spectroscopies. J Nanopart Res. 2022;24(2). doi:10.1007/s11051-022-05412-8
  • Huang HJ, Shiao M-H, Lin Y-W, et al. Au@Ag dendritic nanoforests for surface-enhanced raman scattering sensing. Nanomaterials. 2021;11(7):45.
  • Wei W, Yu D, Du Y, Ding Y, Huang Q. One-step fabrication of Au-Ag alloys and its application for catalysts and SERS sensors. Spectrochim Acta A Mol Biomol Spectrosc. 2022;267:120476. doi:10.1016/j.saa.2021.120476
  • Chen S-Y, Yang M, Liu X-Y, Zha L-S. Study on Au@Ag core-shell composite bimetallic nanorods loading filter paper as SERS substrate. Spectrosc Spect Anal. 2018;38(6):1747–1752.
  • Wei J, Kan C, Lou Y, Ni Y, Xu H, Wang C. Synthesis and stability of bimetallic Au@Ag nanorods. Superlattices Microstruct. 2016;100:315–323. doi:10.1016/j.spmi.2016.09.046
  • Zhang PP, Gao J, Sun XH. An ultrasensitive, uniform and large-area surface-enhanced Raman scattering substrate based on Ag or Ag/Au nanoparticles decorated Si nanocone arrays. Appl Phys Lett. 2015;106(4):1245.
  • Cao Y, Ma C, Zhu -J-J. DNA technology-assisted signal amplification strategies in electrochemiluminescence bioanalysis. J Anal Test. 2021;5(2):95–111. doi:10.1007/s41664-021-00175-y
  • Li T, Duan R, Duan Z, Huang F, Xia F. Fluorescence signal amplification strategies based on DNA nanotechnology for miRNA detection. Chem Res Chin Univs. 2020;36(2):194–202. doi:10.1007/s40242-019-0031-4
  • Zhou C, Zou H, Sun C, Ren D, Chen J, Li Y. Signal amplification strategies for DNA-based surface plasmon resonance biosensors. Biosens Bioelectron. 2018;117:678–689. doi:10.1016/j.bios.2018.06.062
  • Simmel FC, Yurke B, Singh HR. Principles and applications of nucleic acid strand displacement reactions. Chem Rev. 2019;119(10):6326–6369. doi:10.1021/acs.chemrev.8b00580
  • Zhou H, Zhang J, Li B, Liu J, Xu -J-J, Chen H-Y. Dual-mode SERS and electrochemical detection of miRNA based on popcorn-like gold nanofilms and toehold-mediated strand displacement amplification reaction. Anal Chem. 2021;93(15):6120–6127. doi:10.1021/acs.analchem.0c05221
  • Wang H, Wang H, Wu Q, Liang M, Liu X, Wang F. A DNAzyme-amplified DNA circuit for highly accurate microRNA detection and intracellular imaging. Chem Sci. 2019;10(41):9597–9604. doi:10.1039/C9SC03552D
  • Yang M, Li H, Li X, Huang K, Xu W, Zhu L. Catalytic hairpin self-assembly regulated chameleon silver nanoclusters for the ratiometric detection of CircRNA. Biosens Bioelectron. 2022;209:114258. doi:10.1016/j.bios.2022.114258
  • Wu Y, Li Y, Han H, Zhao C, Zhang X. Dual cycle amplification and dual signal enhancement assisted sensitive SERS assay of MicroRNA. Anal Biochem. 2019;564:16–20. doi:10.1016/j.ab.2018.10.004
  • Xiao F, Liu J, Guo Q, et al. Dual-signal amplification strategy for sensitive MicroRNA detection based on rolling circle amplification and enzymatic repairing amplification. ACS Omega. 2020;5(50):32738–32743. doi:10.1021/acsomega.0c05141
  • Zhao W, Liu X, Luo L, Li L, You T. A sensitive electrochemiluminescence aptasensor for Pb2+ detection in soil based on dual signal amplification strategy of aggregation-induced emission and resonance energy transfer. Electrochim Acta. 2022;421:140463. doi:10.1016/j.electacta.2022.140463
  • Sandhyarani N, Pradeep T. Ion/surface reactions at monolayers in solution: a combined surface enhanced Raman-X-ray photoelectron spectroscopic investigation of the chemical modification of a 2-mercaptobenzothiazole monolayer on polycrystalline Au films. J Colloid Interf Sci. 1999;218(1):176–183. doi:10.1006/jcis.1999.6402
  • Yang L, Xu L, Wu X, et al. Atomic force microscope guided SERS spectra observation for Au@Ag-4MBA@PVP plasmonic nanoparticles. Molecules. 2019;24(20):3789. doi:10.3390/molecules24203789