259
Views
4
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Simple and Ultrasensitive Detection of Glioma-Related ctDNAs in Mice Serum by SERS-Based Catalytic Hairpin Assembly Signal Amplification Coupled with Magnetic Aggregation

, , , , , & show all
Pages 3211-3230 | Received 14 Mar 2023, Accepted 05 Jun 2023, Published online: 14 Jun 2023

References

  • Lang F, Liu Y, Chou FJ, Yang C. Genotoxic therapy and resistance mechanism in gliomas. Pharmacol Ther. 2021;228:107922. doi:10.1016/j.pharmthera.2021.107922
  • Dono A, Vu J, Anapolsky M, et al. Additional genetic alterations in BRAF-mutant gliomas correlate with histologic diagnoses. J Neurooncol. 2020;149:463–472. doi:10.1007/s11060-020-03634-1
  • Finch A, Solomou G, Wykes V, Pohl U, Bardella C, Watts C. Advances in research of adult gliomas. Int J Mol Sci. 2021;22:924. doi:10.3390/ijms22020924
  • Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–773. doi:10.1056/NEJMoa0808710
  • Sukswai N, Khoury JD. Immunohistochemistry innovations for diagnosis and tissue-based biomarker detection. Curr Hematol Malig Rep. 2019;14:368–375. doi:10.1007/s11899-019-00533-9
  • Han S, Liu Y, Cai SJ, et al. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br J Cancer. 2020;122:1580–1589. doi:10.1038/s41416-020-0814-x
  • Wan PT, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116:855–867. doi:10.1016/S0092-8674(04)00215-6
  • Gessi M, Pietsch T. The diagnostic role and clinical relevance of determination of BRAF status in brain tumors. Per Med. 2013;10:405–412. doi:10.2217/pme.13.27
  • Davis EJ, Johnson DB, Sosman JA, Chandra S. Melanoma: what do all the mutations mean? Cancer. 2018;124:3490–3499. doi:10.1002/cncr.31345
  • Nobusawa S, Watanabe T, Kleihues P, Ohgaki H. IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res. 2009;15:6002–6007. doi:10.1158/1078-0432.CCR-09-0715
  • Kaminska B, Czapski B, Guzik R, Król SK, Gielniewski B. Consequences of IDH1/2 mutations in gliomas and an assessment of inhibitors targeting mutated IDH proteins. Molecules. 2019;24:968. doi:10.3390/molecules24050968
  • Silantyev AS, Falzone L, Libra M, et al. Current and future trends on diagnosis and prognosis of glioblastoma: from molecular biology to proteomics. Cells. 2019;8:863. doi:10.3390/cells8080863
  • Gao X, Boryczka J, Zheng P, et al. A “hot Spot”-Enhanced paper lateral flow assay for ultrasensitive detection of traumatic brain injury biomarker S-100β in blood plasma. Biosens Bioelectron. 2021;177:112967. doi:10.1016/j.bios.2021.112967
  • Dubois LG, Campanati L, Righy C, D’Andrea-Meira I, Spohr TC, Porto-Carreiro I. Gliomas and the vascular fragility of the blood brain barrier. Front Cell Neurosci. 2014;8:418. doi:10.3389/fncel.2014.00418
  • Jalali M, Isaac Hosseini I, AbdelFatah T, et al. Plasmonic nanobowtiefluidic device for sensitive detection of glioma extracellular vesicles by Raman spectrometry. Lab Chip. 2021;21:855–866. doi:10.1039/D0LC00957A
  • Müller Bark J, Kulasinghe A, Chua B, Day BW, Punyadeera C. Circulating biomarkers in patients with glioblastoma. Br J Cancer. 2020;122:295–305. doi:10.1038/s41416-019-0603-6
  • Birkó Z, Nagy B, Klekner Á, Virga J. Novel molecular markers in glioblastoma-benefits of liquid biopsy. Int J Mol Sci. 2020;21:7522. doi:10.3390/ijms21207522
  • Zhang L, Liang Y, Li S, et al. The interplay of circulating tumor DNA and chromatin modification, therapeutic resistance, and metastasis. Mol Cancer. 2019;18:36. doi:10.1186/s12943-019-0989-z
  • Wang J, Bettegowda C. Applications of DNA-based liquid biopsy for central nervous system neoplasms. J Mol Diagn. 2017;19:24–34. doi:10.1016/j.jmoldx.2016.08.007
  • Postel M, Roosen A, Laurent-Puig P, Taly V, Wang-Renault SF. Droplet-based digital PCR and next generation sequencing for monitoring circulating tumor DNA: a cancer diagnostic perspective. Expert Rev Mol Diagn. 2018;18:7–17. doi:10.1080/14737159.2018.1400384
  • Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24. doi:10.1126/scitranslmed.3007094
  • Piccioni DE, Achrol AS, Kiedrowski LA, et al. Analysis of cell-free circulating tumor DNA in 419 patients with glioblastoma and other primary brain tumors. CNS Oncol. 2019;8:Cns34. doi:10.2217/cns-2018-0015
  • Zhang J, Dong Y, Zhu W, et al. Ultrasensitive detection of circulating tumor DNA of lung cancer via an enzymatically amplified SERS-based frequency shift assay. ACS Appl Mater Interfaces. 2019;11:18145–18152. doi:10.1021/acsami.9b02953
  • Zhou Q, Zheng J, Qing Z, et al. Detection of circulating tumor DNA in human blood via DNA-mediated surface-enhanced Raman Spectroscopy of single-walled carbon nanotubes. Anal Chem. 2016;88:4759–4765. doi:10.1021/acs.analchem.6b00108
  • Wee EJ, Wang Y, Tsao SC, Trau M. Simple, sensitive and accurate multiplex detection of clinically important melanoma DNA mutations in circulating tumour DNA with SERS nanotags. Theranostics. 2016;6:1506–1513. doi:10.7150/thno.15871
  • Schlücker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed Engl. 2014;53:4756–4795. doi:10.1002/anie.201205748
  • Zhang Y, Mi X, Tan X, Xiang R. Recent progress on liquid biopsy analysis using surface-enhanced raman spectroscopy. Theranostics. 2019;9:491–525. doi:10.7150/thno.29875
  • Li M, Li JY, Zhang X, Yao MM, Li P, Xu WP. Simultaneous detection of tumor-related mRNA and miRNA in cancer cells with magnetic SERS nanotags. Talanta. 2021;232:122432. doi:10.1016/j.talanta.2021.122432
  • Medetalibeyoglu H, Kotan G, Atar N, Yola ML. A novel sandwich-type SERS immunosensor for selective and sensitive carcinoembryonic antigen (CEA) detection. Anal Chim Acta. 2020;1139:100–110. doi:10.1016/j.aca.2020.09.034
  • Cao XW, Sun Y, Mao Y, et al. Rapid and sensitive detection of dual lung cancer-associated miRNA biomarkers by a novel SERS-LFA strip coupling with catalytic hairpin assembly signal amplification. J Mater Chem C. 2021;9:3661–3671. doi:10.1039/D0TC05737A
  • Yoon J, Choi N, Ko J, Kim K, Lee S, Choo J. Highly sensitive detection of thrombin using SERS-based magnetic aptasensors. Biosens Bioelectron. 2013;47:62–67. doi:10.1016/j.bios.2013.03.003
  • Lu D, Ran M, Liu Y, Xia J, Bi L, Cao X. SERS spectroscopy using Au-Ag nanoshuttles and hydrophobic paper-based Au nanoflower substrate for simultaneous detection of dual cervical cancer-associated serum biomarkers. Anal Bioanal Chem. 2020;412:7099–7112. doi:10.1007/s00216-020-02843-x
  • Bai T, Sun J, Che R, et al. Controllable preparation of core-shell Au-Ag nanoshuttles with improved refractive index sensitivity and SERS activity. ACS Appl Mater Interfaces. 2014;6:3331–3340. doi:10.1021/am405357v
  • Cao X, Ge S, Zhou X, et al. A dual-signal amplification strategy based on pump-free SERS microfluidic chip for rapid and ultrasensitive detection of non-small cell lung cancer-related circulating tumour DNA in mice serum. Biosens Bioelectron. 2022;205:114110. doi:10.1016/j.bios.2022.114110
  • Sasikumar T, Ilanchelian M. A simple assay for direct visual and colorimetric sensing application of cysteamine using Au@Ag core-shell nanoparticles. Opt Mater (Amst). 2020;109:110237. doi:10.1016/j.optmat.2020.110237
  • Jun BH, Kim G, Baek J, et al. Magnetic field induced aggregation of nanoparticles for sensitive molecular detection. Phys Chem Chem Phys. 2011;13:7298–7303. doi:10.1039/c0cp02055a
  • Wu L, Xiao X, Chen K, et al. Ultrasensitive SERS detection of Bacillus thuringiensis special gene based on Au@Ag NRs and magnetic beads. Biosens Bioelectron. 2017;92:321–327. doi:10.1016/j.bios.2016.11.005
  • Geng P, Sun S, Wang X, et al. Rapid and sensitive detection of amphetamine by SERS-based competitive immunoassay coupled with magnetic separation. Anal Methods. 2022;14:2608–2615. doi:10.1039/D2AY00581F
  • Zong S, Wang Z, Zhang R, Wang C, Xu S, Cui Y. A multiplex and straightforward aqueous phase immunoassay protocol through the combination of SERS-fluorescence dual mode nanoprobes and magnetic nanobeads. Biosens Bioelectron. 2013;41:745–751. doi:10.1016/j.bios.2012.09.057
  • Yue S, Song X, Song W, Bi S. An enzyme-free molecular catalytic device: dynamically self-assembled DNA dendrimers for in situ imaging of microRNAs in live cells. Chem Sci. 2019;10:1651–1658. doi:10.1039/C8SC04756A
  • Wu Y, Fu C, Shi W, Chen J. Recent advances in catalytic hairpin assembly signal amplification-based sensing strategies for microRNA detection. Talanta. 2021;235:122735. doi:10.1016/j.talanta.2021.122735
  • Ye X, Zheng C, Chen J, Gao Y, Murray CB. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett. 2013;13:765–771. doi:10.1021/nl304478h
  • Zhang C, Chen S, Jiang Z, Shi Z, Wang J, Du L. Highly sensitive and reproducible SERS substrates based on ordered micropyramid array and silver nanoparticles. ACS Appl Mater Interfaces. 2021;13:29222–29229. doi:10.1021/acsami.1c08712
  • Fernand D, Bergé-Lefranc D, Pardanaud C, Phan TN, Merlen A, Hornebecq V. Detection of Rhodamine 6G at low concentrations using Raman Spectroscopy: a comparison between Ag and Au-based nanoporous substrates. Eur Phys J Spec Top. 2015;224:2001–2010. doi:10.1140/epjst/e2015-02517-5
  • Sun Y, Xia Y. Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano Lett. 2003;3:1569–1572. doi:10.1021/nl034765r
  • Chen Z, Xie Y, Huang W, Qin C, Yu A, Lai G. Exonuclease-assisted target recycling for ultrasensitive electrochemical detection of microRNA at vertically aligned carbon nanotubes. Nanoscale. 2019;11:11262–11269. doi:10.1039/C9NR02543J
  • Zhao Q, Piao J, Peng W, et al. Simple and sensitive quantification of microRNAs via PS@Au microspheres-based DNA probes and DSN-assisted signal amplification platform. ACS Appl Mater Interfaces. 2018;10:3324–3332. doi:10.1021/acsami.7b16733
  • Lv W, Zhao J, Situ B, et al. A target-triggered dual amplification strategy for sensitive detection of microRNA. Biosens Bioelectron. 2016;83:250–255. doi:10.1016/j.bios.2016.04.053