708
Views
8
CrossRef citations to date
0
Altmetric
REVIEW

Application of Nanoparticles in the Diagnosis of Gastrointestinal Diseases: A Complete Future Perspective

, , , ORCID Icon, , , , , ORCID Icon, ORCID Icon & show all
Pages 4143-4170 | Received 31 Mar 2023, Accepted 02 Jul 2023, Published online: 26 Jul 2023

References

  • Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet Lond Engl. 2017;390(10114):2769–2778. doi:10.1016/S0140-6736(17)32448-0
  • Tian CM, Zhang Y, Yang MF, et al. Stem cell therapy in inflammatory bowel disease: a review of achievements and challenges. J Inflamm Res. 2023;16:2089–2119. doi:10.2147/JIR.S400447
  • Tian CM, Yang MF, Xu HM, et al. Mesenchymal stem cell-derived exosomes: novel therapeutic approach for inflammatory bowel diseases. Stem Cells Int. 2023;2023:4245704. doi:10.1155/2023/4245704
  • Mezoff EA, Williams KC, Erdman SH. Gastrointestinal endoscopy in the neonate. Clin Perinatol. 2020;47(2):413–422. doi:10.1016/j.clp.2020.02.012
  • Dassen AE, Lips DJ, Hoekstra CJ, Pruijt JFM, Bosscha K. FDG-PET has no definite role in preoperative imaging in gastric cancer. Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2009;35(5):449–455. doi:10.1016/j.ejso.2008.11.010
  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. doi:10.1038/s41573-020-0090-8
  • Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem Rev. 2016;116(5):2826–2885. doi:10.1021/acs.chemrev.5b00148
  • Li DF, Yang MF, Xu HM, et al. Nanoparticles for oral delivery: targeted therapy for inflammatory bowel disease. J Mater Chem B. 2022;10(31):5853–5872. doi:10.1039/d2tb01190e
  • Khan FA, Albalawi R, Pottoo FH. Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment. Med Res Rev. 2022;42(1):227–258. doi:10.1002/med.21809
  • Wu Y, Briley K, Tao X. Nanoparticle‐based imaging of inflammatory bowel disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(2):300–315. doi:10.1002/wnan.1357
  • Zhou J, Chen L, Chen L, Zhang Y, Yuan Y. Emerging role of nanoparticles in the diagnostic imaging of gastrointestinal cancer. Semin Cancer Biol. 2022. doi:10.1016/j.semcancer.2022.04.009
  • Xing X, Zhang B, Wang X, Liu F, Shi D, Cheng Y. An “imaging-biopsy” strategy for colorectal tumor reconfirmation by multipurpose paramagnetic quantum dots. Biomaterials. 2015;48:16–25. doi:10.1016/j.biomaterials.2015.01.011
  • Tanimoto A, Kuribayashi S. Application of superparamagnetic iron oxide to imaging of hepatocellular carcinoma. Eur J Radiol. 2006;58(2):200–216. doi:10.1016/j.ejrad.2005.11.040
  • Wang P, Qu Y, Li C, et al. Bio-functionalized dense-silica nanoparticles for MR/NIRF imaging of CD146 in gastric cancer. Int J Nanomedicine. 2015;10:749–763. doi:10.2147/IJN.S62837
  • Wu Y, Briley-Saebo K, Xie J, et al. Inflammatory bowel disease: MR- and SPECT/CT-based macrophage imaging for monitoring and evaluating disease activity in experimental mouse model--pilot study. Radiology. 2014;271(2):400–407. doi:10.1148/radiol.13122254
  • Shi H, Sun Y, Yan R, et al. Magnetic Semiconductor Gd-Doping CuS Nanoparticles as Activatable Nanoprobes for Bimodal Imaging and Targeted Photothermal Therapy of Gastric Tumors. Nano Lett. 2019;19(2):937–947. doi:10.1021/acs.nanolett.8b04179
  • Lee W, Il An G, Park H, et al. Imaging Strategy that Achieves Ultrahigh Contrast by Utilizing Differential Esterase Activity in Organs: application in Early Detection of Pancreatic Cancer. ACS Nano. 2021;15(11):17348–17360. doi:10.1021/acsnano.1c05165
  • Girgis MD, Federman N, Rochefort MM, et al. An engineered anti-CA19-9 cys-diabody for positron emission tomography imaging of pancreatic cancer and targeting of polymerized liposomal nanoparticles. J Surg Res. 2013;185(1):45–55. doi:10.1016/j.jss.2013.05.095
  • Zhang X, Detering L, Sultan D, et al. Chemokine Receptor 2-Targeting Copper Nanoparticles for Positron Emission Tomography-Guided Delivery of Gemcitabine for Pancreatic Ductal Adenocarcinoma. ACS Nano. 2021;15(1):1186–1198. doi:10.1021/acsnano.0c08185
  • Paiva I, Mattingly S, Wuest M, et al. Synthesis and Analysis of 64Cu-Labeled GE11-Modified Polymeric Micellar Nanoparticles for EGFR-Targeted Molecular Imaging in a Colorectal Cancer Model. Mol Pharm. 2020;17(5):1470–1481. doi:10.1021/acs.molpharmaceut.9b01043
  • Wang S, Li W, Yuan D, Song J, Fang J. Quantitative detection of the tumor-associated antigen large external antigen in colorectal cancer tissues and cells using quantum dot probe. Int J Nanomedicine. 2016;11:235–247. doi:10.2147/IJN.S97509
  • Wang YW, Kang S, Khan A, Bao PQ, Liu JTC. In vivo multiplexed molecular imaging of esophageal cancer via spectral endoscopy of topically applied SERS nanoparticles. Biomed Opt Express. 2015;6(10):3714–3723. doi:10.1364/BOE.6.003714
  • Dassie E, Arcidiacono D, Wasiak I, et al. Detection of fluorescent organic nanoparticles by confocal laser endomicroscopy in a rat model of Barrett’s esophageal adenocarcinoma. Int J Nanomedicine. 2015;10:6811–6823. doi:10.2147/IJN.S86640
  • Cheng CC, Huang CF, Ho AS, et al. Novel targeted nuclear imaging agent for gastric cancer diagnosis: glucose-regulated protein 78 binding peptide-guided 111In-labeled polymeric micelles. Int J Nanomedicine. 2013;8:1385–1391. doi:10.2147/IJN.S42003
  • Wang K, Ruan J, Qian Q, et al. BRCAA1 monoclonal antibody conjugated fluorescent magnetic nanoparticles for in vivo targeted magnetofluorescent imaging of gastric cancer. J Nanobiotechnology. 2011;9:23. doi:10.1186/1477-3155-9-23
  • Chee HL, Gan CRR, Ng M, et al. Biocompatible Peptide-Coated Ultrasmall Superparamagnetic Iron Oxide Nanoparticles for In Vivo Contrast-Enhanced Magnetic Resonance Imaging. ACS Nano. 2018;12(7):6480–6491. doi:10.1021/acsnano.7b07572
  • Li X, Liu L, Fu Y, et al. Peptide-enhanced tumor accumulation of upconversion nanoparticles for sensitive upconversion luminescence/magnetic resonance dual-mode bioimaging of colorectal tumors. Acta Biomater. 2020;104:167–175. doi:10.1016/j.actbio.2020.01.003
  • Lambidis E, Chen CC, Lumen D, et al. Biological evaluation of integrin α3β1-targeted 68Ga-labeled HEVNPs in HCT 116 colorectal tumor-bearing mice. Eur J Pharm Sci off J Eur Fed Pharm Sci. 2023;180:106336. doi:10.1016/j.ejps.2022.106336
  • Xiang Y, Yang H, Guo X, et al. Surface enhanced Raman detection of the colon cancer biomarker cytidine by using magnetized nanoparticles of the type Fe3O4/Au/Ag. Mikrochim Acta. 2018;185(3):195. doi:10.1007/s00604-017-2666-5
  • Du Y, Fan K, Zhang H, et al. Endoscopic molecular imaging of early gastric cancer using fluorescently labeled human H-ferritin nanoparticle. Nanomed Nanotechnol Biol Med. 2018;14(7):2259–2270. doi:10.1016/j.nano.2018.07.007
  • Qiao R, Liu C, Liu M, et al. Ultrasensitive in vivo detection of primary gastric tumor and lymphatic metastasis using upconversion nanoparticles. ACS Nano. 2015;9(2):2120–2129. doi:10.1021/nn507433p
  • Li Y, Hu X, Ding D, et al. In situ targeted MRI detection of Helicobacter pylori with stable magnetic graphitic nanocapsules. Nat Commun. 2017;8:15653. doi:10.1038/ncomms15653
  • Bartoş A, Bartoş D, Szabo B, et al. Recent achievements in colorectal cancer diagnostic and therapy by the use of nanoparticles. Drug Metab Rev. 2016;48(1):27–46. doi:10.3109/03602532.2015.1130052
  • Doucey MA, Carrara S. Nanowire Sensors in Cancer. Trends Biotechnol. 2019;37(1):86–99. doi:10.1016/j.tibtech.2018.07.014
  • Araki T, Uemura T, Yoshimoto S, et al. Wireless Monitoring Using a Stretchable and Transparent Sensor Sheet Containing Metal Nanowires. Adv Mater Deerfield Beach Fla. 2020;32(15):e1902684. doi:10.1002/adma.201902684
  • Bu C, Mu L, Cao X, Chen M, She G, Shi W. Silver Nanowire-Based Fluorescence Thermometer for a Single Cell. ACS Appl Mater Interfaces. 2018;10(39):33416–33422. doi:10.1021/acsami.8b09696
  • Zhang A, Lieber CM. Nano-Bioelectronics. Chem Rev. 2016;116(1):215–257. doi:10.1021/acs.chemrev.5b00608
  • Dasgupta NP, Sun J, Liu C, et al. 25th anniversary article: semiconductor nanowires--synthesis, characterization, and applications. Adv Mater Deerfield Beach Fla. 2014;26(14):2137–2184. doi:10.1002/adma.201305929
  • Milano G, D’Ortenzi L, Bejtka K, et al. Metal-insulator transition in single crystalline ZnO nanowires. Nanotechnology. 2021;32(18):185202. doi:10.1088/1361-6528/abe072
  • Bayrak T, Jagtap NS, Erbe A. Review of the Electrical Characterization of Metallic Nanowires on DNA Templates. Int J Mol Sci. 2018;19(10):E3019. doi:10.3390/ijms19103019
  • Geng H, Chen X, Sun L, et al. ZnCuInSe/Au/TiO2 sandwich nanowires-based photoelectrochemical biosensor for ultrasensitive detection of kanamycin. Anal Chim Acta. 2021;1146:166–173. doi:10.1016/j.aca.2020.11.017
  • Li KC, Chu HC, Lin Y, Tuan HY, Hu YC. PEGylated Copper Nanowires as a Novel Photothermal Therapy Agent. ACS Appl Mater Interfaces. 2016;8(19):12082–12090. doi:10.1021/acsami.6b04579
  • Jo HS, Kwon HJ, Kim TG, et al. Wearable transparent thermal sensors and heaters based on metal-plated fibers and nanowires. Nanoscale. 2018;10(42):19825–19834. doi:10.1039/c8nr04810j
  • Gu L, Cao X, Mukhtar A, Wu K. Fe/Mn multilayer nanowires as dual mode T 1– t 2 magnetic resonance imaging contrast agents. J Biomed Mater Res B Appl Biomater. 2021;109(4):477–485. doi:10.1002/jbm.b.34715
  • Abbaspour M, Namayandeh jorabchi M, Akbarzadeh H, Salemi S, Ebrahimi R. Molecular dynamics simulation of anticancer drug delivery from carbon nanotube using metal nanowires. J Comput Chem. 2019;40(25):2179–2190. doi:10.1002/jcc.25867
  • Das B, Dadhich P, Pal P, Thakur S, Neogi S, Dhara S. Carbon nano dot decorated copper nanowires for SERS-Fluorescence dual-mode imaging/anti-microbial activity and enhanced angiogenic activity. Spectrochim Acta A Mol Biomol Spectrosc. 2020;227:117669. doi:10.1016/j.saa.2019.117669
  • Martínez-Banderas AI, Aires A, Plaza-García S, et al. Magnetic core-shell nanowires as MRI contrast agents for cell tracking. J Nanobiotechnology. 2020;18(1):42. doi:10.1186/s12951-020-00597-3
  • Ivanov YD, Romanova TS, Malsagova KA, Pleshakova TO, Archakov AI. Use of silicon nanowire sensors for early cancer diagnosis. Mol Basel Switz. 2021;26(12):3734. doi:10.3390/molecules26123734
  • Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol. 2005;23(10):1294–1301. doi:10.1038/nbt1138
  • Nami M, Han P, Hanlon D, et al. Rapid Screen for Antiviral T-Cell Immunity with Nanowire Electrochemical Biosensors. Adv Mater Deerfield Beach Fla. 2022;34(29):e2109661. doi:10.1002/adma.202109661
  • Avasthi A, Caro C, Pozo-Torres E, Leal MP, García-Martín ML. Magnetic Nanoparticles as MRI Contrast Agents. Top Curr Chem Cham. 2020;378(3):40. doi:10.1007/s41061-020-00302-w
  • Zhou Z, Lu ZR. Gadolinium-based contrast agents for magnetic resonance cancer imaging: gadolinium-based CA for MR cancer imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(1):1–18. doi:10.1002/wnan.1198
  • Ding N, Sano K, Kanazaki K, et al. In Vivo HER2-Targeted Magnetic Resonance Tumor Imaging Using Iron Oxide Nanoparticles Conjugated with Anti-HER2 Fragment Antibody. Mol Imaging Biol. 2016;18(6):870–876. doi:10.1007/s11307-016-0977-2
  • Chen L, Xie J, Wu H, et al. Improving sensitivity of magnetic resonance imaging by using a dual-targeted magnetic iron oxide nanoprobe. Colloids Surf B Biointerfaces. 2018;161:339–346. doi:10.1016/j.colsurfb.2017.10.059
  • Wang G, Qian K, Mei X. A theranostic nanoplatform: magneto-gold@fluorescence polymer nanoparticles for tumor targeting T 1 & T 2 -MRI/CT/NIR fluorescence imaging and induction of genuine autophagy mediated chemotherapy. Nanoscale. 2018;10(22):10467–10478. doi:10.1039/C8NR02429D
  • Zhang J, Ning Y, Zhu H, et al. Fast detection of liver fibrosis with collagen-binding single-nanometer iron oxide nanoparticles via T1-weighted MRI. Proc Natl Acad Sci U S A. 2023;120(18):e2220036120. doi:10.1073/pnas.2220036120
  • Bull E, Madani SY, Sheth R, Seifalian A, Green M, Seifalian AM. Stem cell tracking using iron oxide nanoparticles. Int J Nanomedicine. 2014;9:1641–1653. doi:10.2147/IJN.S48979
  • Yang L, Fu S, Liu L, et al. Tetraphenylethylene-conjugated polycation covered iron oxide nanoparticles for magnetic resonance/optical dual-mode imaging. Regen Biomater. 2021;8(3):rbab023. doi:10.1093/rb/rbab023
  • Adumeau P, Carnazza KE, Brand C, et al. A Pretargeted Approach for the Multimodal PET/NIRF Imaging of Colorectal Cancer. Theranostics. 2016;6(12):2267–2277. doi:10.7150/thno.16744
  • Deng S, Gu J, Jiang Z, et al. Application of nanotechnology in the early diagnosis and comprehensive treatment of gastrointestinal cancer. J Nanobiotechnology. 2022;20:415. doi:10.1186/s12951-022-01613-4
  • Mattoussi H, Palui G, Na HB. Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Adv Drug Deliv Rev. 2012;64(2):138–166. doi:10.1016/j.addr.2011.09.011
  • Sarwat S, Stapleton F, Willcox M, Roy M. Quantum Dots in Ophthalmology: a Literature Review. Curr Eye Res. 2019;44(10):1037–1046. doi:10.1080/02713683.2019.1660793
  • Kargozar S, Hoseini SJ, Milan PB, Hooshmand S, Kim HW, Mozafari M. Quantum Dots: a Review from Concept to Clinic. Biotechnol J. 2020;15(12):e2000117. doi:10.1002/biot.202000117
  • Wagner AM, Knipe JM, Orive G, Peppas NA. Quantum dots in biomedical applications. Acta Biomater. 2019;94:44–63. doi:10.1016/j.actbio.2019.05.022
  • Borovaya M, Horiunova I, Plokhovska S, Pushkarova N, Blume Y, Yemets A. Synthesis, Properties and Bioimaging Applications of Silver-Based Quantum Dots. Int J Mol Sci. 2021;22(22):12202. doi:10.3390/ijms222212202
  • Savla R, Taratula O, Garbuzenko O, Minko T. Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J Control Release off J Control Release Soc. 2011;153(1):16–22. doi:10.1016/j.jconrel.2011.02.015
  • Yukawa H, Baba Y. In vivo fluorescence imaging and the diagnosis of stem cells using quantum dots for regenerative medicine. Anal Chem. 2017;89(5):2671–2681. doi:10.1021/acs.analchem.6b04763
  • Zhang M, Wang Q, Xu Y, Guo L, Lai Z, Li Z. Graphitic carbon nitride quantum dots as analytical probe for viewing sialic acid on the surface of cells and tissues. Anal Chim Acta. 2020;1095:204–211. doi:10.1016/j.aca.2019.10.031
  • Zhang WH, Ma W, Long YT. Redox-mediated indirect fluorescence immunoassay for the detection of disease biomarkers using dopamine-functionalized quantum dots. Anal Chem. 2016;88(10):5131–5136. doi:10.1021/acs.analchem.6b00048
  • Deng H, Konopka CJ, Prabhu S, et al. Dextran-mimetic quantum dots for multimodal macrophage imaging in vivo, ex vivo, and in situ. ACS Nano. 2022;16(2):1999–2012. doi:10.1021/acsnano.1c07010
  • Dong L, Li W, Yu L, Sun L, Chen Y, Hong G. Ultrasmall Ag2Te Quantum Dots with Rapid Clearance for Amplified Computed Tomography Imaging and Augmented Photonic Tumor Hyperthermia. ACS Appl Mater Interfaces. 2020;12(38):42558–42566. doi:10.1021/acsami.0c12948
  • Lee YW, Kim M, Kim ZH, Han SW. One-step synthesis of Au@Pd core-shell nanooctahedron. J Am Chem Soc. 2009;131(47):17036–17037. doi:10.1021/ja905603p
  • Brito-Silva AM, Sobral-Filho RG, Barbosa-Silva R, de Araújo CB, Galembeck A, Brolo AG. Improved synthesis of gold and silver nanoshells. Langmuir ACS J Surf Colloids. 2013;29(13):4366–4372. doi:10.1021/la3050626
  • Liberman A, Wu Z, Barback CV, et al. Color Doppler ultrasound and gamma imaging of intratumorally injected 500 nm iron-silica nanoshells. ACS Nano. 2013;7(7):6367–6377. doi:10.1021/nn402507d
  • Song J, Yang X, Yang Z, et al. Rational Design of Branched Nanoporous Gold Nanoshells with Enhanced Physico-Optical Properties for Optical Imaging and Cancer Therapy. ACS Nano. 2017;11(6):6102–6113. doi:10.1021/acsnano.7b02048
  • He J, Qiao Y, Zhang H, et al. Gold-silver nanoshells promote wound healing from drug-resistant bacteria infection and enable monitoring via surface-enhanced Raman scattering imaging. Biomaterials. 2020;234:119763. doi:10.1016/j.biomaterials.2020.119763
  • He J, Wei Q, Wang S, Hua S, Zhou M. Bioinspired protein Corona strategy enhanced biocompatibility of Ag-Hybrid hollow Au nanoshells for surface-enhanced Raman scattering imaging and on-demand activation tumor-phototherapy. Biomaterials. 2021;271:120734. doi:10.1016/j.biomaterials.2021.120734
  • Coughlin AJ, Ananta JS, Deng N, Larina IV, Decuzzi P, West JL. Gadolinium-conjugated gold nanoshells for multimodal diagnostic imaging and photothermal cancer therapy. Small Weinh Bergstr Ger. 2014;10(3):556–565. doi:10.1002/smll.201302217
  • Tuersun P, Han X. Optimal dimensions of gold nanoshells for light backscattering and absorption based applications. J Quant Spectrosc Radiat Transf. 2014;146:468–474. doi:10.1016/j.jqsrt.2013.12.018
  • Ahmadi A, Arami S. Potential applications of nanoshells in biomedical sciences. J Drug Target. 2014;22(3):175–190. doi:10.3109/1061186X.2013.839684
  • Ye Y, Chen X. Integrin targeting for tumor optical imaging. Theranostics. 2011;1:102–126. doi:10.7150/thno/v01p0102
  • Cha MG, Kang H, Choi YS, et al. Effect of Alkylamines on Morphology Control of Silver Nanoshells for Highly Enhanced Raman Scattering. ACS Appl Mater Interfaces. 2019;11(8):8374–8381. doi:10.1021/acsami.8b15674
  • Li L, Jiang R, Shan B, Lu Y, Zheng C, Li M. Near-infrared II plasmonic porous cubic nanoshells for in vivo noninvasive SERS visualization of sub-millimeter microtumors. Nat Commun. 2022;13(1):5249. doi:10.1038/s41467-022-32975-w
  • Yasun E, Gandhi S, Choudhury S, et al. Hollow micro and nanostructures for therapeutic and imaging applications. J Drug Deliv Sci Technol. 2020;60:102094. doi:10.1016/j.jddst.2020.102094
  • Caminade AM, Yan D, Smith DK. Dendrimers and hyperbranched polymers. Chem Soc Rev. 2015;44(12):3870–3873. doi:10.1039/C5CS90049B
  • Lee DE, Koo H, Sun IC, Ryu JH, Kim K, Kwon IC. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev. 2012;41(7):2656–2672. doi:10.1039/C2CS15261D
  • Carvalho MR, Reis RL, Oliveira JM. Dendrimer nanoparticles for colorectal cancer applications. J Mater Chem B. 2020;8(6):1128–1138. doi:10.1039/C9TB02289A
  • Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today. 2010;15(5–6):171–185. doi:10.1016/j.drudis.2010.01.009
  • Markowicz-Piasecka M, Sikora J, Szymański P, Kozak O, Studniarek M, Mikiciuk-Olasik E. PAMAM dendrimers as potential carriers of gadolinium complexes of iminodiacetic acid derivatives for magnetic resonance imaging. J Nanomater. 2015;16(1):26. doi:10.1155/2015/394827
  • Ali ES, Sharker S, Islam MT, et al. Targeting cancer cells with nanotherapeutics and nanodiagnostics: current status and future perspectives. Semin Cancer Biol. 2021;69:52–68. doi:10.1016/j.semcancer.2020.01.011
  • Li H, Wang P, Gong W, et al. Dendron-Grafted Polylysine-Based Dual-Modal Nanoprobe for Ultra-Early Diagnosis of Pancreatic Precancerosis via Targeting a Urokinase-Type Plasminogen Activator Receptor. Adv Healthc Mater. 2018;7(5). doi:10.1002/adhm.201700912
  • Mekuria SL, Debele TA, Tsai HC. PAMAM dendrimer based targeted nano-carrier for bio-imaging and therapeutic agents. Rsc Adv. 2016;6(68):63761–63772. doi:10.1039/C6RA12895E
  • Palmerston Mendes L, Pan J, Torchilin VP. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules. 2017;22(9):1401. doi:10.3390/molecules22091401
  • Xing Y, Zhu J, Zhao L, et al. SPECT/CT imaging of chemotherapy-induced tumor apoptosis using 99mTc-labeled dendrimer-entrapped gold nanoparticles. Drug Deliv. 2018;25(1):1384–1393. doi:10.1080/10717544.2018.1474968
  • Hernández-Rivera M, Zaibaq NG, Wilson LJ. Toward carbon nanotube-based imaging agents for the clinic. Biomaterials. 2016;101:229–240. doi:10.1016/j.biomaterials.2016.05.045
  • Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature. 1996;381(6584):678–680. doi:10.1038/381678a0
  • Carlson LJ, Krauss TD. Photophysics of individual single-walled carbon nanotubes. Acc Chem Res. 2008;41(2):235–243. doi:10.1021/ar700136v
  • Salem DP, Gong X, Liu AT, Koman VB, Dong J, Strano MS. Ionic Strength-Mediated Phase Transitions of Surface-Adsorbed DNA on Single-Walled Carbon Nanotubes. J Am Chem Soc. 2017;139(46):16791–16802. doi:10.1021/jacs.7b09258
  • Bartelmess J, Quinn SJ, Giordani S. Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. Chem Soc Rev. 2015;44(14):4672–4698. doi:10.1039/c4cs00306c
  • Welsher K, Sherlock SP, Dai H. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc Natl Acad Sci U S A. 2011;108(22):8943–8948. doi:10.1073/pnas.1014501108
  • Rivera EJ, Tran LA, Hernández-Rivera M, et al. Bismuth@US-tubes as a Potential Contrast Agent for X-ray Imaging Applications. J Mater Chem B Mater Biol Med. 2013;1(37). doi:10.1039/C3TB20742K
  • Kukreja A, Kang B, Kim HO, et al. Preparation of gold core-mesoporous iron-oxide shell nanoparticles and their application as dual MR/CT contrast agent in human gastric cancer cells. J Ind Eng Chem. 2017;48:56–65. doi:10.1016/j.jiec.2016.12.020
  • Alkilany AM, Lohse SE, Murphy CJ. The Gold Standard: gold Nanoparticle Libraries To Understand the Nano–Bio Interface. Acc Chem Res. 2013;46(3):650–661. doi:10.1021/ar300015b
  • Khan AK, Rashid R, Murtaza G, Zahra A. Gold nanoparticles: synthesis and applications in drug delivery. Trop J Pharm Res. 2014;13(7):1169–1177. doi:10.4314/tjpr.v13i7.23
  • Black KCL, Yi J, Rivera JG, Zelasko-Leon DC, Messersmith PB. Polydopamine-enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and photothermal therapy. Nanomed. 2013;8(1):17–28. doi:10.2217/nnm.12.82
  • Puvanakrishnan P, Park J, Diagaradjane P, et al. Near-infrared narrow-band imaging of gold/silica nanoshells in tumors. J Biomed Opt. 2009;14(2):024044. doi:10.1117/1.3120494
  • Wu Y, Ali MRK, Chen K, Fang N, El-Sayed MA. Gold nanoparticles in biological optical imaging. Nano Today. 2019;24:120–140. doi:10.1016/j.nantod.2018.12.006
  • Panahi Y, Mohammadhosseini M, Nejati-Koshki K, et al. Preparation, Surface Properties, and Therapeutic Applications of Gold Nanoparticles in Biomedicine. Drug Res. 2017;67(2):77–87. doi:10.1055/s-0042-115171
  • Alagaratnam S, Yang SY, Loizidou M, Fuller B, Ramesh B. Mechano-growth Factor Expression in Colorectal Cancer Investigated With Fluorescent Gold Nanoparticles. Anticancer Res. 2019;39(4):1705–1710. doi:10.21873/anticanres.13276
  • Muhammad M, sheng SC, Huang Q. Aptamer-functionalized Au nanoparticles array as the effective SERS biosensor for label-free detection of interleukin-6 in serum. Sens Actuators B Chem. 2021;334:129607. doi:10.1016/j.snb.2021.129607
  • Meir R, Shamalov K, Betzer O, et al. Nanomedicine for Cancer Immunotherapy: tracking Cancer-Specific T-Cells in Vivo with Gold Nanoparticles and CT Imaging. ACS Nano. 2015;9(6):6363–6372. doi:10.1021/acsnano.5b01939
  • Ding P, Chen L, Wei C, et al. Efficient Synthesis of Stable Polyelectrolyte Complex Nanoparticles by Electrostatic Assembly Directed Polymerization. Macromol Rapid Commun. 2021;42(4):2000635. doi:10.1002/marc.202000635
  • Sing E. Recent progress in the science of complex coacervation. Soft Matter. 2020;16(12):2885–2914. doi:10.1039/D0SM00001A
  • Sing CE. Development of the modern theory of polymeric complex coacervation. Adv Colloid Interface Sci. 2017;239:2–16. doi:10.1016/j.cis.2016.04.004
  • Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60(15):1650–1662. doi:10.1016/j.addr.2008.09.001
  • Müller M, Keßler B, Fröhlich J, Poeschla S, Torger B. Polyelectrolyte Complex Nanoparticles of Poly(ethyleneimine) and Poly(acrylic acid): preparation and Applications. Polymers. 2011;3(2):762–778. doi:10.3390/polym3020762
  • Schatz C, Lucas JM, Viton C, Domard A, Pichot C, Delair T. Formation and Properties of Positively Charged Colloids Based on Polyelectrolyte Complexes of Biopolymers. Langmuir. 2004;20(18):7766–7778. doi:10.1021/la049460m
  • Meka VS, Sing MKG, Pichika MR, Nali SR, Kolapalli VRM, Kesharwani P. A comprehensive review on polyelectrolyte complexes. Drug Discov Today. 2017;22(11):1697–1706. doi:10.1016/j.drudis.2017.06.008
  • Deng L, Dong H, Dong A, Zhang J. A strategy for oral chemotherapy via dual pH-sensitive polyelectrolyte complex nanoparticles to achieve gastric survivability, intestinal permeability, hemodynamic stability and intracellular activity. Eur J Pharm Biopharm. 2015;97:107–117. doi:10.1016/j.ejpb.2015.10.010
  • Mohanta BC, Javed MN, Hasnain MS, Nayak AK. Chapter 12 - Polyelectrolyte complexes of alginate for controlling drug release. In: Nayak AK, Hasnain MS editors. Alginates in Drug Delivery. Academic Press; 2020:297–321. doi:10.1016/B978-0-12-817640-5.00012-1.
  • De R, Han Song Y. pH-responsive polyelectrolyte complexation on upconversion nanoparticles: a multifunctional nanocarrier for protection, delivery, and 3D-imaging of therapeutic protein. J Mater Chem B. 2022;10(18):3420–3433. doi:10.1039/D2TB00246A
  • Ai H. Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Adv Drug Deliv Rev. 2011;63(9):772–788. doi:10.1016/j.addr.2011.03.013
  • Huang M, Huang ZL, Bilgen M, Berkland C. Magnetic resonance imaging of contrast-enhanced polyelectrolyte complexes. Nanomed Nanotechnol Biol Med. 2008;4(1):30–40. doi:10.1016/j.nano.2007.10.085
  • Berret JF, Schonbeck N, Gazeau F, et al. Controlled clustering of superparamagnetic nanoparticles using block copolymers: design of new contrast agents for magnetic resonance imaging. J Am Chem Soc. 2006;128(5):1755–1761. doi:10.1021/ja0562999
  • Barth BM, Sharma R, Altinoğlu EI, et al. Bioconjugation of calcium phosphosilicate composite nanoparticles for selective targeting of human breast and pancreatic cancers in vivo. ACS Nano. 2010;4(3):1279–1287. doi:10.1021/nn901297q
  • Iafisco M, Degli Esposti L, Ramírez-Rodríguez GB, et al. Fluoride-doped amorphous calcium phosphate nanoparticles as a promising biomimetic material for dental remineralization. Sci Rep. 2018;8(1):17016. doi:10.1038/s41598-018-35258-x
  • Khalifehzadeh R, Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interface Sci. 2020;279:102157. doi:10.1016/j.cis.2020.102157
  • Huang D, He B, Mi P. Calcium phosphate nanocarriers for drug delivery to tumors: imaging, therapy and theranostics. Biomater Sci. 2019;7(10):3942–3960. doi:10.1039/C9BM00831D
  • Qi C, Lin J, Fu LH, Huang P. Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem Soc Rev. 2018;47(2):357–403. doi:10.1039/c6cs00746e
  • Huang KW, Hsu FF, Qiu JT, et al. Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer. Sci Adv. 2020;6(3):eaax5032. doi:10.1126/sciadv.aax5032
  • Khalifehzadeh R, Arami H. The CpG molecular structure controls the mineralization of calcium phosphate nanoparticles and their immunostimulation efficacy as vaccine adjuvants. Nanoscale. 2020;12(17):9603–9615. doi:10.1039/c9nr09782a
  • Zhang NN, Lu CY, Shu GF, et al. Gadolinium-loaded calcium phosphate nanoparticles for magnetic resonance imaging of orthotopic hepatocarcinoma and primary hepatocellular carcinoma. Biomater Sci. 2020;8(7):1961–1972. doi:10.1039/c9bm01544b
  • Mi P, Kokuryo D, Cabral H, et al. A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat Nanotechnol. 2016;11(8):724–730. doi:10.1038/nnano.2016.72
  • Wu L, Liu F, Liu S, Xu X, Liu Z. Perfluorocarbons-Based 19F Magnetic Resonance Imaging in Biomedicine. Int J Nanomedicine. 2020;15:7377–7395. doi:10.2147/IJN.S255084
  • Yang Q, Li P, Ran H, et al. Polypyrrole-coated phase-change liquid perfluorocarbon nanoparticles for the visualized photothermal-chemotherapy of breast cancer. Acta Biomater. 2019;90:337–349. doi:10.1016/j.actbio.2019.03.056
  • Koshkina O, Lajoinie G, Bombelli FB, et al. Multicore Liquid Perfluorocarbon-Loaded Multimodal Nanoparticles for Stable Ultrasound and 19F MRI Applied to In Vivo Cell Tracking. Adv Funct Mater. 2019;29(19):1806485. doi:10.1002/adfm.201806485
  • Shin SH, Kadayakkara DK, Bulte JWM. In Vivo 19F MR Imaging Cell Tracking of Inflammatory Macrophages and Site-specific Development of Colitis-associated Dysplasia. Radiology. 2017;282(1):194–201. doi:10.1148/radiol.2016152387
  • Mulder WJM, Strijkers GJ, van Tilborg GAF, Cormode DP, Fayad ZA, Nicolay K. Nanoparticulate Assemblies of Amphiphiles and Diagnostically Active Materials for Multimodality Imaging. Acc Chem Res. 2009;42(7):904–914. doi:10.1021/ar800223c
  • Shah S, Dhawan V, Holm R, Nagarsenker MS, Perrie Y. Liposomes: advancements and innovation in the manufacturing process. Adv Drug Deliv Rev. 2020;154-155:102–122. doi:10.1016/j.addr.2020.07.002
  • Younis NK, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: attractive tools to treat colorectal cancer. Semin Cancer Biol. 2022;86(Pt 2):1–13. doi:10.1016/j.semcancer.2022.08.006
  • Tan C, Wang J, Sun B. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: recent advances. Biotechnol Adv. 2021;48:107727. doi:10.1016/j.biotechadv.2021.107727
  • Li T, Cipolla D, Rades T, Boyd BJ. Drug nanocrystallisation within liposomes. J Control Release off J Control Release Soc. 2018;288:96–110. doi:10.1016/j.jconrel.2018.09.001
  • Large DE, Abdelmessih RG, Fink EA, Auguste DT. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev. 2021;176:113851. doi:10.1016/j.addr.2021.113851
  • Thébault CJ, Ramniceanu G, Michel A, et al. In Vivo Evaluation of Magnetic Targeting in Mice Colon Tumors with Ultra-Magnetic Liposomes Monitored by MRI. Mol Imaging Biol. 2019;21(2):269–278. doi:10.1007/s11307-018-1238-3
  • Awad NS, Haider M, Paul V, et al. Ultrasound-Triggered Liposomes Encapsulating Quantum Dots as Safe Fluorescent Markers for Colorectal Cancer. Pharmaceutics. 2021;13(12):2073. doi:10.3390/pharmaceutics13122073
  • Petersen AL, Hansen AE, Gabizon A, Andresen TL. Liposome imaging agents in personalized medicine. Adv Drug Deliv Rev. 2012;64(13):1417–1435. doi:10.1016/j.addr.2012.09.003
  • Dams ET, Oyen WJ, Boerman OC, et al. Technetium-99m-labeled liposomes to image experimental colitis in rabbits: comparison with technetium-99m-HMPAO-granulocytes and technetium-99m-HYNIC-IgG. J Nucl Med off Publ Soc Nucl Med. 1998;39(12):2172–2178.
  • Blocker SJ, Douglas KA, Polin LA, et al. Liposomal 64Cu-PET Imaging of Anti-VEGF Drug Effects on Liposomal Delivery to Colon Cancer Xenografts. Theranostics. 2017;7(17):4229–4239. doi:10.7150/thno.21688
  • Torchilin VP. Micellar Nanocarriers: pharmaceutical Perspectives. Pharm Res. 2007;24(1):1–16. doi:10.1007/s11095-006-9132-0
  • Biswas S, Kumari P, Lakhani PM, Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci. 2016;83:184–202. doi:10.1016/j.ejps.2015.12.031
  • Takashima H, Koga Y, Tsumura R, et al. Reinforcement of antitumor effect of micelles containing anticancer drugs by binding of an anti-tissue factor antibody without direct cytocidal effects. J Control Release off J Control Release Soc. 2020;323:138–150. doi:10.1016/j.jconrel.2020.03.048
  • Lin M, Dai Y, Xia F, Zhang X. Advances in non-covalent crosslinked polymer micelles for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2021;119:111626. doi:10.1016/j.msec.2020.111626
  • Movassaghian S, Merkel OM, Torchilin VP. Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(5):691–707. doi:10.1002/wnan.1332
  • Torchilin VP. Polymeric contrast agents for medical imaging. Curr Pharm Biotechnol. 2000;1(2):183–215. doi:10.2174/1389201003378960
  • Zhang Y, Wang D, Goel S, et al. Surfactant-Stripped Frozen Pheophytin Micelles for Multimodal Gut Imaging. Adv Mater Deerfield Beach Fla. 2016;28(38):8524–8530. doi:10.1002/adma.201602373
  • Jiang Z, Sun B, Wang Y, et al. Surfactant-Stripped Micelles with Aggregation-Induced Enhanced Emission for Bimodal Gut Imaging In Vivo and Microbiota Tagging Ex Vivo. Adv Healthc Mater. 2021;10(24):e2100356. doi:10.1002/adhm.202100356
  • Haase M, Schäfer H. Upconverting nanoparticles. Angew Chem Int Ed Engl. 2011;50(26):5808–5829. doi:10.1002/anie.201005159
  • Chen G, Qiu H, Prasad PN, Chen X. Upconversion Nanoparticles: design, Nanochemistry, and Applications in Theranostics. Chem Rev. 2014;114(10):5161–5214. doi:10.1021/cr400425h
  • Jalani G, Tam V, Vetrone F, Cerruti M. Seeing, Targeting and Delivering with Upconverting Nanoparticles. J Am Chem Soc. 2018;140(35):10923–10931. doi:10.1021/jacs.8b03977
  • Wu S, Butt HJ. Near-Infrared-Sensitive Materials Based on Upconverting Nanoparticles. Adv Mater Deerfield Beach Fla. 2016;28(6):1208–1226. doi:10.1002/adma.201502843
  • Auzel F. Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev. 2004;104(1):139–173. doi:10.1021/cr020357g
  • Wu S, Han G, Milliron DJ, et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc Natl Acad Sci U S A. 2009;106(27):10917–10921. doi:10.1073/pnas.0904792106
  • Hou Z, Zhang Y, Deng K, et al. UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. ACS Nano. 2015;9(3):2584–2599. doi:10.1021/nn506107c
  • Dong H, Du SR, Zheng XY, et al. Lanthanide Nanoparticles: from Design toward Bioimaging and Therapy. Chem Rev. 2015;115(19):10725–10815. doi:10.1021/acs.chemrev.5b00091
  • Wang Z, Liu C, Zhao Y, et al. Photomagnetic nanoparticles in dual-modality imaging and photo-sonodynamic activity against bacteria. Chem Eng J. 2019;356:811–818. doi:10.1016/j.cej.2018.09.077
  • Li Z, Lv S, Wang Y, Chen S, Liu Z. Construction of LRET-Based Nanoprobe Using Upconversion Nanoparticles with Confined Emitters and Bared Surface as Luminophore. J Am Chem Soc. 2015;137(9):3421–3427. doi:10.1021/jacs.5b01504
  • Berezin MY, Achilefu S. Fluorescence lifetime measurements and biological imaging. Chem Rev. 2010;110(5):2641–2684. doi:10.1021/cr900343z
  • Tian R, Zhao S, Liu G, et al. Construction of lanthanide-doped upconversion nanoparticle-Uelx Europaeus Agglutinin-I bioconjugates with brightness red emission for ultrasensitive in vivo imaging of colorectal tumor. Biomaterials. 2019;212:64–72. doi:10.1016/j.biomaterials.2019.05.010
  • Chu Z, Guo J, Guo J. Up-Conversion Luminescence System for Quantitative Detection of IL-6. IEEE Trans Nanobioscience. 2023;22(2):203–211. doi:10.1109/TNB.2022.3178754
  • Rogalla S, Flisikowski K, Gorpas D, et al. Biodegradable fluorescent nanoparticles for endoscopic detection of colorectal carcinogenesis. Adv Funct Mater. 2019;29(51):1904992. doi:10.1002/adfm.201904992
  • da Paz MC, Santos M, Santos CMB, et al. Anti-CEA loaded maghemite nanoparticles as a theragnostic device for colorectal cancer. Int J Nanomedicine. 2012;7:5271–5282. doi:10.2147/IJN.S32139
  • Wang Q, Chen E, Cai Y, et al. Preoperative endoscopic localization of colorectal cancer and tracing lymph nodes by using carbon nanoparticles in laparoscopy. World J Surg Oncol. 2016;14(1):231. doi:10.1186/s12957-016-0987-1
  • Lin D, Feng S, Pan J, et al. Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis. Opt Express. 2011;19(14):13565–13577. doi:10.1364/OE.19.013565
  • Sun J, Zhang S, Jiang S, et al. Gadolinium-Loaded Solid Lipid Nanoparticles as a Tumor-Absorbable Contrast Agent for Early Diagnosis of Colorectal Tumors Using Magnetic Resonance Colonography. J Biomed Nanotechnol. 2016;12(9):1709–1723. doi:10.1166/jbn.2016.2285
  • Park Y, Ryu YM, Jung Y, et al. Spraying quantum dot conjugates in the colon of live animals enabled rapid and multiplex cancer diagnosis using endoscopy. ACS Nano. 2014;8(9):8896–8910. doi:10.1021/nn5009269
  • Kolitz-Domb M, Corem-Salkmon E, Grinberg I, Margel S. Synthesis and characterization of bioactive conjugated near-infrared fluorescent proteinoid-poly(L-lactic acid) hollow nanoparticles for optical detection of colon cancer. Int J Nanomedicine. 2014;9:5041–5053. doi:10.2147/IJN.S68582
  • Harmsen S, Rogalla S, Huang R, et al. Detection of Premalignant Gastrointestinal Lesions Using Surface-Enhanced Resonance Raman Scattering-Nanoparticle Endoscopy. ACS Nano. 2019;13(2):1354–1364. doi:10.1021/acsnano.8b06808
  • Montet X, Pastor CM, Vallée JP, et al. Improved visualization of vessels and hepatic tumors by micro-computed tomography (CT) using iodinated liposomes. Invest Radiol. 2007;42(9):652–658. doi:10.1097/RLI.0b013e31805f445b
  • Liu H, Wang H, Xu Y, et al. Lactobionic acid-modified dendrimer-entrapped gold nanoparticles for targeted computed tomography imaging of human hepatocellular carcinoma. ACS Appl Mater Interfaces. 2014;6(9):6944–6953. doi:10.1021/am500761x
  • Zhou B, Xiong Z, Wang P, Peng C, Shen M, Shi X. Acetylated Polyethylenimine-Entrapped Gold Nanoparticles Enable Negative Computed Tomography Imaging of Orthotopic Hepatic Carcinoma. Langmuir ACS J Surf Colloids. 2018;34(29):8701–8707. doi:10.1021/acs.langmuir.8b01669
  • Li J, Cha R, Zhang Y, et al. Iron oxide nanoparticles for targeted imaging of liver tumors with ultralow hepatotoxicity. J Mater Chem B. 2018;6(40):6413–6423. doi:10.1039/C8TB01657G
  • Wu S, Meng X, Jiang X, et al. Harnessing X-Ray Energy-Dependent Attenuation of Bismuth-Based Nanoprobes for Accurate Diagnosis of Liver Fibrosis. Adv Sci Weinh Baden-Wurtt Ger. 2021;8(11):e2002548. doi:10.1002/advs.202002548
  • Wang X, Wang J, Pan J, et al. Rhenium Sulfide Nanoparticles as a Biosafe Spectral CT Contrast Agent for Gastrointestinal Tract Imaging and Tumor Theranostics in Vivo. ACS Appl Mater Interfaces. 2019;11(37):33650–33658. doi:10.1021/acsami.9b10479
  • Fan X, Wang L, Guo Y, et al. Experimental investigation of the penetration of ultrasound nanobubbles in a gastric cancer xenograft. Nanotechnology. 2013;24(32):325102. doi:10.1088/0957-4484/24/32/325102
  • Shang W, Xia X, Lu N, et al. Colourful fluorescence-based carbon dots for tumour imaging-guided nanosurgery. Nanomed Nanotechnol Biol Med. 2022;45:102583. doi:10.1016/j.nano.2022.102583
  • Naha PC, Hsu JC, Kim J, et al. Dextran-Coated Cerium Oxide Nanoparticles: a Computed Tomography Contrast Agent for Imaging the Gastrointestinal Tract and Inflammatory Bowel Disease. ACS Nano. 2020;14(8):10187–10197. doi:10.1021/acsnano.0c03457
  • Mi C, Guan M, Zhang X, et al. High Spatial and Temporal Resolution NIR-IIb Gastrointestinal Imaging in Mice. Nano Lett. 2022;22(7):2793–2800. doi:10.1021/acs.nanolett.1c04909
  • Zhao S, Wang S, Pan P, et al. Magnitude, Risk Factors, and Factors Associated With Adenoma Miss Rate of Tandem Colonoscopy: a Systematic Review and Meta-analysis. Gastroenterology. 2019;156(6):1661–1674.e11. doi:10.1053/j.gastro.2019.01.260
  • Iacucci M, Furfaro F, Matsumoto T, et al. Advanced endoscopic techniques in the assessment of inflammatory bowel disease: new technology, new era. Gut. 2019;68(3):562–572. doi:10.1136/gutjnl-2017-315235
  • Chiu HM, Chang CY, Chen CC, et al. A prospective comparative study of narrow-band imaging, chromoendoscopy, and conventional colonoscopy in the diagnosis of colorectal neoplasia. Gut. 2007;56(3):373–379. doi:10.1136/gut.2006.099614
  • Hu Z, Chen WH, Tian J, Cheng Z. NIRF Nanoprobes for Cancer Molecular Imaging: approaching Clinic. Trends Mol Med. 2020;26(5):469–482. doi:10.1016/j.molmed.2020.02.003
  • Frangioni JV. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol. 2003;7(5):626–634. doi:10.1016/j.cbpa.2003.08.007
  • Yi X, Wang F, Qin W, Yang X, Yuan J. Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. Int J Nanomedicine. 2014;9:1347–1365. doi:10.2147/IJN.S60206
  • T H, L K, W W. Near-infrared fluorescent probes for imaging of amyloid plaques in Alzheimer׳s disease. Acta Pharm Sin B. 2015;5(1). doi:10.1016/j.apsb.2014.12.006
  • Miao Q, Pu K. Organic Semiconducting Agents for Deep-Tissue Molecular Imaging: second Near-Infrared Fluorescence, Self-Luminescence, and Photoacoustics. Adv Mater Deerfield Beach Fla. 2018;30(49):e1801778. doi:10.1002/adma.201801778
  • Levesque E, Martin E, Dudau D, Lim C, Dhonneur G, Azoulay D. Current use and perspective of indocyanine green clearance in liver diseases. Anaesth Crit Care Pain Med. 2016;35(1):49–57. doi:10.1016/j.accpm.2015.06.006
  • Wang H, Li X, Tse BWC, et al. Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics. 2018;8(5):1227–1242. doi:10.7150/thno.22872
  • Wang YW, Fu YY, Peng Q, et al. Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging. J Mater Chem B. 2013;1(42):5762–5767. doi:10.1039/c3tb20986e
  • Egloff-Juras C, Bezdetnaya L, Dolivet G, Lassalle HP. NIR fluorescence-guided tumor surgery: new strategies for the use of indocyanine green. Int J Nanomedicine. 2019;14:7823–7838. doi:10.2147/IJN.S207486
  • Jokerst JV, Gambhir SS. Molecular Imaging with Theranostic Nanoparticles. Acc Chem Res. 2011;44(10):1050–1060. doi:10.1021/ar200106e
  • Pellach M, Grinberg I, Margel S. Near IR fluorescent polystyrene/albumin core/shell nanoparticles for specific targeting of colonic neoplasms. Macromol Biosci. 2012;12(11):1472–1479. doi:10.1002/mabi.201200142
  • Tiernan JP, Ingram N, Marston G, et al. CEA-targeted nanoparticles allow specific in vivo fluorescent imaging of colorectal cancer models. Nanomed. 2015;10(8):1223–1231. doi:10.2217/nnm.14.202
  • Xu G, Yan Q, Lv X, et al. Imaging of Colorectal Cancers Using Activatable Nanoprobes with Second Near-Infrared Window Emission. Angew Chem Int Ed Engl. 2018;57(14):3626–3630. doi:10.1002/anie.201712528
  • Gournaris E, Park W, Cho S, Bentrem DJ, Larson AC, Kim DH. Near-Infrared Fluorescent Endoscopic Image-Guided Photothermal Ablation Therapy of Colorectal Cancer Using Dual-Modal Gold Nanorods Targeting Tumor-Infiltrating Innate Immune Cells in a Transgenic TS4 CRE/APCloxΔ468 Mouse Model. ACS Appl Mater Interfaces. 2019;11(24):21353–21359. doi:10.1021/acsami.9b04186
  • Liu Y, Ai K, Lu L. Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Acc Chem Res. 2012;45(10):1817–1827. doi:10.1021/ar300150c
  • Ahmed EA, Abdelatty K, Mahdy RE, Emara DM, Header DA. Computed tomography enterocolongraphy in assessment of degree of ulcerative colitis activity. Int J Clin Pract. 2021;75(10):e14626. doi:10.1111/ijcp.14626
  • Singh J, Daftary A. Iodinated contrast media and their adverse reactions. J Nucl Med Technol. 2008;36(2):69–74; quiz 76–77. doi:10.2967/jnmt.107.047621
  • Wang CL, Cohan RH, Ellis JH, Adusumilli S, Dunnick NR. Frequency, management, and outcome of extravasation of nonionic iodinated contrast medium in 69,657 intravenous injections. Radiology. 2007;243(1):80–87. doi:10.1148/radiol.2431060554
  • Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents. Adv Mater Deerfield Beach Fla. 2013;25(19):2641–2660. doi:10.1002/adma.201300081
  • Cheheltani R, Ezzibdeh RM, Chhour P, et al. Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials. 2016;102:87–97. doi:10.1016/j.biomaterials.2016.06.015
  • Hsu JC, Nieves LM, Betzer O, et al. Nanoparticle contrast agents for X-ray imaging applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(6):e1642. doi:10.1002/wnan.1642
  • Han X, Xu K, Taratula O, Farsad K. Applications of nanoparticles in biomedical imaging. Nanoscale. 2019;11(3):799–819. doi:10.1039/c8nr07769j
  • Li X, Anton N, Zuber G, et al. Iodinated α-tocopherol nano-emulsions as non-toxic contrast agents for preclinical X-ray imaging. Biomaterials. 2013;34(2):481–491. doi:10.1016/j.biomaterials.2012.09.026
  • Zou Y, Wei Y, Wang G, et al. Nanopolymersomes with an Ultrahigh Iodine Content for High-Performance X-Ray Computed Tomography Imaging In Vivo. Adv Mater Deerfield Beach Fla. 2017;29(10). doi:10.1002/adma.201603997
  • Meng X, Wu Y, Bu W. Functional CT Contrast Nanoagents for the Tumor Microenvironment. Adv Healthc Mater. 2021;10(5):e2000912. doi:10.1002/adhm.202000912
  • Zhang P, Ma X, Guo R, et al. Organic Nanoplatforms for Iodinated Contrast Media in CT Imaging. Mol Basel Switz. 2021;26(23):7063. doi:10.3390/molecules26237063
  • You S, Jung HY, Lee C, et al. High-performance dendritic contrast agents for X-ray computed tomography imaging using potent tetraiodobenzene derivatives. J Control Release off J Control Release Soc. 2016;226:258–267. doi:10.1016/j.jconrel.2016.01.036
  • Sun Y, Li B, Cao Q, Liu T, Li J. Targeting cancer stem cells with polymer nanoparticles for gastrointestinal cancer treatment. Stem Cell Res Ther. 2022;13(1):489. doi:10.1186/s13287-022-03180-9
  • Cole LE, Ross RD, Tilley JM, Vargo-Gogola T, Roeder RK. Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomed. 2015;10(2):321–341. doi:10.2217/nnm.14.171
  • Li Z, Liu J, Hu Y, et al. Biocompatible PEGylated bismuth nanocrystals: All-in-one theranostic agent with triple-modal imaging and efficient in vivo photothermal ablation of tumors. Biomaterials. 2017;141:284–295. doi:10.1016/j.biomaterials.2017.06.033
  • He F, Ji H, Feng L, et al. Construction of thiol-capped ultrasmall Au-Bi bimetallic nanoparticles for X-ray CT imaging and enhanced antitumor therapy efficiency. Biomaterials. 2021;264:120453. doi:10.1016/j.biomaterials.2020.120453
  • Zelepukin IV, Ivanov IN, Mirkasymov AB, et al. Polymer-coated BiOCl nanosheets for safe and regioselective gastrointestinal X-ray imaging. J Control Release off J Control Release Soc. 2022;349:475–485. doi:10.1016/j.jconrel.2022.07.007
  • Luo XF, Xie XQ, Cheng S, et al. Dual-Energy CT for Patients Suspected of Having Liver Iron Overload: can Virtual Iron Content Imaging Accurately Quantify Liver Iron Content? Radiology. 2015;277(1):95–103. doi:10.1148/radiol.2015141856
  • Coupal TM, Mallinson PI, Gershony SL, et al. Getting the Most From Your Dual-Energy Scanner: recognizing, Reducing, and Eliminating Artifacts. AJR Am J Roentgenol. 2016;206(1):119–128. doi:10.2214/AJR.14.13901
  • Angelovski G. What We Can Really Do with Bioresponsive MRI Contrast Agents. Angew Chem Int Ed Engl. 2016;55(25):7038–7046. doi:10.1002/anie.201510956
  • Mao X, Xu J, Cui H. Functional Nanoparticles for Magnetic Resonance Imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(6):814–841. doi:10.1002/wnan.1400
  • Stephen ZR, Kievit FM, Zhang M. Magnetite Nanoparticles for Medical MR Imaging. Mater Today Kidlington Engl. 2011;14(7–8):330–338. doi:10.1016/S1369-7021(11)70163-8
  • Ni D, Bu W, Ehlerding EB, Cai W, Shi J. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev. 2017;46(23):7438–7468. doi:10.1039/c7cs00316a
  • Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals Int J Role Met Ions Biol Biochem Med. 2016;29(3):365–376. doi:10.1007/s10534-016-9931-7
  • Huang CH, Tsourkas A. Gd-based macromolecules and nanoparticles as magnetic resonance contrast agents for molecular imaging. Curr Top Med Chem. 2013;13(4):411–421. doi:10.2174/1568026611313040002
  • Thorek DLJ, Chen AK, Czupryna J, Tsourkas A. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng. 2006;34(1):23–38. doi:10.1007/s10439-005-9002-7
  • Arami H, Khandhar AP, Tomitaka A, et al. In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents. Biomaterials. 2015;52:251–261. doi:10.1016/j.biomaterials.2015.02.040
  • Han Y, Zhou X, Qian Y, et al. Hypoxia-targeting dendritic MRI contrast agent based on internally hydroxy dendrimer for tumor imaging. Biomaterials. 2019;213:119195. doi:10.1016/j.biomaterials.2019.05.006
  • Liu X, Madhankumar AB, Miller PA, et al. MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA. Neuro-Oncol. 2016;18(5):691–699. doi:10.1093/neuonc/nov263
  • Pagoto A, Stefania R, Garello F, et al. Paramagnetic Phospholipid-Based Micelles Targeting VCAM-1 Receptors for MRI Visualization of Inflammation. Bioconjug Chem. 2016;27(8):1921–1930. doi:10.1021/acs.bioconjchem.6b00308
  • Lin J, Chen X, Huang P. Graphene-based nanomaterials for bioimaging. Adv Drug Deliv Rev. 2016;105(Pt B):242–254. doi:10.1016/j.addr.2016.05.013
  • Vivero-Escoto JL, Huxford-Phillips RC, Lin W. Silica-based nanoprobes for biomedical imaging and theranostic applications. Chem Soc Rev. 2012;41(7):2673–2685. doi:10.1039/c2cs15229k
  • Loh KP, Ho D, Chiu GNC, Leong DT, Pastorin G, Chow EKH. Clinical Applications of Carbon Nanomaterials in Diagnostics and Therapy. Adv Mater Deerfield Beach Fla. 2018;30(47):e1802368. doi:10.1002/adma.201802368
  • Kobayashi H, Saga T, Kawamoto S, et al. Dynamic micro-magnetic resonance imaging of liver micrometastasis in mice with a novel liver macromolecular magnetic resonance contrast agent DAB-Am64-(1B4M-Gd)(64). Cancer Res. 2001;61(13):4966–4970.
  • Yan H, Gao X, Zhang Y, et al. Imaging Tiny Hepatic Tumor Xenografts via Endoglin-Targeted Paramagnetic/Optical Nanoprobe. ACS Appl Mater Interfaces. 2018;10(20):17047–17057. doi:10.1021/acsami.8b02648
  • Wang H, Ding W, Peng L, et al. Gadolinium-Loaded Solid Lipid Nanoparticles for Colorectal Tumor in MR Colonography. J Biomed Nanotechnol. 2020;16(5):594–602. doi:10.1166/jbn.2020.2922
  • Ding B, Zheng P, Ma P, Lin J. Manganese Oxide Nanomaterials: synthesis, Properties, and Theranostic Applications. Adv Mater. 2020;32(10):1905823. doi:10.1002/adma.201905823
  • Revia RA, Zhang M. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today Kidlington Engl. 2016;19(3):157–168. doi:10.1016/j.mattod.2015.08.022
  • An K, Kwon SG, Park M, et al. Synthesis of uniform hollow oxide nanoparticles through nanoscale acid etching. Nano Lett. 2008;8(12):4252–4258. doi:10.1021/nl8019467
  • Yang L, Wang L, Huang G, et al. Improving the sensitivity of T1 contrast-enhanced MRI and sensitive diagnosing tumors with ultralow doses of MnO octahedrons. Theranostics. 2021;11(14):6966–6982. doi:10.7150/thno.59096
  • Wei R, Gong X, Lin H, et al. Versatile Octapod-Shaped Hollow Porous Manganese(II) Oxide Nanoplatform for Real-Time Visualization of Cargo Delivery. Nano Lett. 2019;19(8):5394–5402. doi:10.1021/acs.nanolett.9b01900
  • Wang YXJ. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg. 2011;1(1):35–40. doi:10.3978/j.issn.2223-4292.2011.08.03
  • Huang J, Zhong X, Wang L, Yang L, Mao H. Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics. 2012;2(1):86–102. doi:10.7150/thno.4006
  • Nishimura H, Tanigawa N, Hiramatsu M, Tatsumi Y, Matsuki M, Narabayashi I. Preoperative Esophageal Cancer Staging: magnetic Resonance Imaging of Lymph Node with Ferumoxtran-10, an Ultrasmall Superparamagnetic Iron Oxide. J Am Coll Surg. 2006;202(4):604–611. doi:10.1016/j.jamcollsurg.2005.12.004
  • Kim T, Cho EJ, Chae Y, et al. Urchin-shaped manganese oxide nanoparticles as pH-responsive activatable T1 contrast agents for magnetic resonance imaging. Angew Chem Int Ed Engl. 2011;50(45):10589–10593. doi:10.1002/anie.201103108
  • Ye D, Shuhendler AJ, Pandit P, et al. Caspase-responsive smart gadolinium-based contrast agent for magnetic resonance imaging of drug-induced apoptosis. Chem Sci. 2014;4(10):3845–3852. doi:10.1039/C4SC01392A
  • Lee GY, Qian WP, Wang L, et al. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano. 2013;7(3):2078–2089. doi:10.1021/nn3043463
  • Bor R, Fábián A, Szepes Z. Role of ultrasound in colorectal diseases. World J Gastroenterol. 2016;22(43):9477–9487. doi:10.3748/wjg.v22.i43.9477
  • Shriki J. Ultrasound physics. Crit Care Clin. 2014;30(1):1–24, v. doi:10.1016/j.ccc.2013.08.004
  • Hu Y, Wang Y, Jiang J, et al. Preparation and Characterization of Novel Perfluorooctyl Bromide Nanoparticle as Ultrasound Contrast Agent via Layer-by-Layer Self-Assembly for Folate-Receptor-Mediated Tumor Imaging. BioMed Res Int. 2016;2016:6381464. doi:10.1155/2016/6381464
  • Theek B, Gremse F, Kunjachan S, et al. Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging. J Control Release off J Control Release Soc. 2014;182:83–89. doi:10.1016/j.jconrel.2014.03.007
  • Lutz AM, Bachawal SV, Drescher CW, Pysz MA, Willmann JK, Gambhir SS. Ultrasound molecular imaging in a human CD276 expression-modulated murine ovarian cancer model. Clin Cancer Res off J Am Assoc Cancer Res. 2014;20(5):1313–1322. doi:10.1158/1078-0432.CCR-13-1642
  • Reinemann C, Strehlitz B. Aptamer-modified nanoparticles and their use in cancer diagnostics and treatment. Swiss Med Wkly. 2014;144:w13908. doi:10.4414/smw.2014.13908
  • Yin T, Wang P, Zheng R, et al. Nanobubbles for enhanced ultrasound imaging of tumors. Int J Nanomedicine. 2012;7:895–904. doi:10.2147/IJN.S28830
  • Min HS, Son S, You DG, et al. Chemical gas-generating nanoparticles for tumor-targeted ultrasound imaging and ultrasound-triggered drug delivery. Biomaterials. 2016;108:57–70. doi:10.1016/j.biomaterials.2016.08.049
  • Yang F, Wang Q, Gu Z, Fang K, Marriott G, Gu N. Silver nanoparticle-embedded microbubble as a dual-mode ultrasound and optical imaging probe. ACS Appl Mater Interfaces. 2013;5(18):9217–9223. doi:10.1021/am4029747
  • Ma M, Xu H, Chen H, et al. A drug-perfluorocarbon nanoemulsion with an ultrathin silica coating for the synergistic effect of chemotherapy and ablation by high-intensity focused ultrasound. Adv Mater Deerfield Beach Fla. 2014;26(43):7378–7385. doi:10.1002/adma.201402969
  • Wang CW, Yang SP, Hu H, Du J, Li FH. Synthesis, characterization and in vitro and in vivo investigation of C3F8-filled poly(lactic-co-glycolic acid) nanoparticles as an ultrasound contrast agent. Mol Med Rep. 2015;11(3):1885–1890. doi:10.3892/mmr.2014.2938
  • Park SH, Yoon YI, Moon H, et al. Development of a novel microbubble-liposome complex conjugated with peptide ligands targeting IL4R on brain tumor cells. Oncol Rep. 2016;36(1):131–136. doi:10.3892/or.2016.4836
  • Chen F, Ma M, Wang J, et al. Exosome-like silica nanoparticles: a novel ultrasound contrast agent for stem cell imaging. Nanoscale. 2017;9(1):402–411. doi:10.1039/c6nr08177k
  • Li H, Wang P, Wang X, et al. Perfluorooctyl bromide traces self-assembled with polymeric nanovesicles for blood pool ultrasound imaging. Biomater Sci. 2016;4(6):979–988. doi:10.1039/c6bm00080k
  • Caltagirone C, Bettoschi A, Garau A, Montis R. Silica-based nanoparticles: a versatile tool for the development of efficient imaging agents. Chem Soc Rev. 2015;44(14):4645–4671. doi:10.1039/c4cs00270a
  • Kitano M, Sakamoto H, Kudo M. Contrast-enhanced endoscopic ultrasound. Dig Endosc off J Jpn Gastroenterol Endosc Soc. 2014;26(Suppl 1):79–85. doi:10.1111/den.12179
  • Maghsoudinia F, Tavakoli MB, Samani RK, et al. Folic acid-functionalized gadolinium-loaded phase transition nanodroplets for dual-modal ultrasound/magnetic resonance imaging of hepatocellular carcinoma. Talanta. 2021;228:122245. doi:10.1016/j.talanta.2021.122245
  • VanOsdol J, Ektate K, Ramasamy S, et al. Sequential HIFU heating and nanobubble encapsulation provide efficient drug penetration from stealth and temperature sensitive liposomes in colon cancer. J Control Release off J Control Release Soc. 2017;247:55–63. doi:10.1016/j.jconrel.2016.12.033
  • Chen S, Xu XL, Zhou B, Tian J, Luo BM, Zhang LM. Acidic pH-Activated Gas-Generating Nanoparticles with Pullulan Decorating for Hepatoma-Targeted Ultrasound Imaging. ACS Appl Mater Interfaces. 2019;11(25):22194–22205. doi:10.1021/acsami.9b06745
  • Go Y, Lee H, Jeong L, et al. Acid-triggered echogenic nanoparticles for contrast-enhanced ultrasound imaging and therapy of acute liver failure. Biomaterials. 2018;186:22–30. doi:10.1016/j.biomaterials.2018.09.034
  • Mankoff DA, Bellon JR. Positron-emission tomographic imaging of cancer: glucose metabolism and beyond. Semin Radiat Oncol. 2001;11(1):16–27. doi:10.1053/srao.2001.18100
  • Li Z, Conti PS. Radiopharmaceutical chemistry for positron emission tomography. Adv Drug Deliv Rev. 2010;62(11):1031–1051. doi:10.1016/j.addr.2010.09.007
  • Miller PW, Long NJ, Vilar R, Gee AD. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew Chem Int Ed Engl. 2008;47(47):8998–9033. doi:10.1002/anie.200800222
  • Saleem A, Charnley N, Price P. Clinical molecular imaging with positron emission tomography. Eur J Cancer Oxf Engl. 2006;42(12):1720–1727. doi:10.1016/j.ejca.2006.02.021
  • Larson SM. Positron emission tomography-based molecular imaging in human cancer: exploring the link between hypoxia and accelerated glucose metabolism. Clin Cancer Res off J Am Assoc Cancer Res. 2004;10(7):2203–2204. doi:10.1158/1078-0432.ccr-0002-4
  • Maffione AM, Rubello D, Caroli P, Colletti PM, Matteucci F. Is It Time to Introduce PET/CT in Colon Cancer Guidelines? Clin Nucl Med. 2020;45(7):525–530. doi:10.1097/RLU.0000000000003076
  • Freise AC, Zettlitz KA, Salazar FB, et al. Immuno-PET in Inflammatory Bowel Disease: imaging CD4-Positive T Cells in a Murine Model of Colitis. J Nucl Med. 2018;59(6):980–985. doi:10.2967/jnumed.117.199075
  • Low HY, Yang CT, Xia B, He T, Lam WWC, Ng DCE. Radiolabeled Liposomes for Nuclear Imaging Probes. Molecules. 2023;28(9):3798. doi:10.3390/molecules28093798
  • Garrigue P, Tang J, Ding L, et al. Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors. Proc Natl Acad Sci U S A. 2018;115(45):11454–11459. doi:10.1073/pnas.1812938115
  • Jensen AI, Binderup T, Kjær A, Rasmussen PH, Andresen TL. Positron emission tomography based analysis of long-circulating cross-linked triblock polymeric micelles in a U87MG mouse xenograft model and comparison of DOTA and CB-TE2A as chelators of copper-64. Biomacromolecules. 2014;15(5):1625–1633. doi:10.1021/bm401871w
  • Huang G, Zhao T, Wang C, et al. PET imaging of occult tumours by temporal integration of tumour-acidosis signals from pH-sensitive 64Cu-labelled polymers. Nat Biomed Eng. 2020;4(3):314–324. doi:10.1038/s41551-019-0416-1
  • Dearling JLJ, Park EJ, Dunning P, et al. Detection of intestinal inflammation by MicroPET imaging using a (64)Cu-labeled anti-beta(7) integrin antibody. Inflamm Bowel Dis. 2010;16(9):1458–1466. doi:10.1002/ibd.21231
  • Kim S, Chae MK, Yim MS, et al. Hybrid PET/MR imaging of tumors using an oleanolic acid-conjugated nanoparticle. Biomaterials. 2013;34(33):8114–8121. doi:10.1016/j.biomaterials.2013.07.078
  • Li DF, Yang MF, Xu J, et al. Extracellular Vesicles: the Next Generation Theranostic Nanomedicine for Inflammatory Bowel Disease. Int J Nanomedicine. 2022;17:3893–3911. doi:10.2147/IJN.S370784
  • Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for targeted drug delivery. Theranostics. 2021;11(7):3183–3195. doi:10.7150/thno.52570
  • Liu Q, Huang J, Xia J, Liang Y, Li G. Tracking tools of extracellular vesicles for biomedical research. Front Bioeng Biotechnol. 2022;10:943712. doi:10.3389/fbioe.2022.943712
  • Liang Y, Iqbal Z, Lu J, et al. Cell-derived nanovesicle-mediated drug delivery to the brain: principles and strategies for vesicle engineering. Mol Ther J Am Soc Gene Ther. 2023;31(5):1207–1224. doi:10.1016/j.ymthe.2022.10.008
  • Jing B, Qian R, Jiang D, et al. Extracellular vesicles-based pre-targeting strategy enables multi-modal imaging of orthotopic colon cancer and image-guided surgery. J Nanobiotechnology. 2021;19(1):151. doi:10.1186/s12951-021-00888-3
  • Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev. 2009;61(6):457–466. doi:10.1016/j.addr.2009.03.010
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–951. doi:10.1038/nbt.3330
  • Zalba S, Ten Hagen TLM, Burgui C, Garrido MJ. Stealth nanoparticles in oncology: facing the PEG dilemma. J Control Release off J Control Release Soc. 2022;351:22–36. doi:10.1016/j.jconrel.2022.09.002
  • Song Q, Wang H, Yang J, et al. A “cluster bomb” oral drug delivery system to sequentially overcome the multiple absorption barriers. Chin Chem Lett. 2022;33(3):1577–1583. doi:10.1016/j.cclet.2021.08.113
  • Ayer M, Klok HA. Cell-mediated delivery of synthetic nano- and microparticles. J Control Release off J Control Release Soc. 2017;259:92–104. doi:10.1016/j.jconrel.2017.01.048
  • Ostadhossein F, Moitra P, Gunaseelan N, et al. Hitchhiking probiotic vectors to deliver ultra-small hafnia nanoparticles for “Color” gastrointestinal tract photon counting X-ray imaging. Nanoscale Horiz. 2022;7(5):533–542. doi:10.1039/d1nh00626f
  • Liu R, Luo C, Pang Z, et al. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin Chem Lett. 2023;34(2):107518. doi:10.1016/j.cclet.2022.05.032