532
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Combining Olaparib and Ascorbic Acid on Nanoparticles to Enhance the Drug Toxic Effects in Pancreatic Cancer

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon & show all
Pages 5075-5093 | Received 24 Apr 2023, Accepted 29 Jun 2023, Published online: 06 Sep 2023

References

  • Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet. 2020;395(10242):2008–2020. doi:10.1016/S0140-6736(20)30974-0
  • Mohammed S, Van Buren G, Fisher WE. Pancreatic cancer: advances in treatment. World J Gastroenterol. 2014;20(28):9354–9360. doi:10.3748/wjg.v20.i28.9354
  • Park W, Chawla A, O’Reilly EM. Pancreatic Cancer: a Review. J Am Med Assoc. 2021;326(9):851–862. doi:10.1001/jama.2021.13027
  • Faraoni I, Graziani G. Role of BRCA mutations in cancer treatment with poly(ADP-ribose) polymerase (PARP) inhibitors. Cancers. 2018;10(12):487. doi:10.3390/cancers10120487
  • Zhu H, Wei M, Xu J, et al. PARP inhibitors in pancreatic cancer: molecular mechanisms and clinical applications. Mol Cancer. 2020;34(9):987–1011. doi:10.1186/s12943-020-01167-9
  • Golan T, Hammel P, Reni M, et al. Maintenance Olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381(4):317–327. doi:10.1056/NEJMOA1903387
  • Mensah LB, Morton SW, Li J, et al. Layer-by-layer nanoparticles for novel delivery of cisplatin and PARP inhibitors for platinum-based drug resistance therapy in ovarian cancer. Bioeng Transl Med. 2019;4(2):e10131. doi:10.1002/BTM2.10131
  • Du C, Qi Y, Zhang Y, et al. Epidermal growth factor receptor-targeting peptide nanoparticles simultaneously deliver gemcitabine and olaparib to treat pancreatic cancer with breast cancer 2 (BRCA2) mutation. ACS Nano. 2018;12(11):10785–10796. doi:10.1021/acsnano.8b01573
  • Carvalho BG, Vit FF, Carvalho HF, Han SW, de la Torre LG. Recent advances in co-delivery nanosystems for synergistic action in cancer treatment. J Mater Chem B. 2021;9(5):1208–1237. doi:10.1039/D0TB02168G
  • Demiray M. Combinatorial therapy of high dose vitamin C and PARP inhibitors in DNA repair deficiency: a series of 8 patients. Integr Cancer Ther. 2020;19:1534735420969812. doi:10.1177/1534735420969812
  • Schoenfeld JD, Sibenaller ZA, Mapuskar KA, et al. O2⋅- and H2O2-mediated disruption of fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer Cell. 2017;31(4):487–500. doi:10.1016/j.ccell.2017.02.018
  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2020;20(2):101–124. doi:10.1038/s41573-020-0090-8
  • Wang W, Xiong Y, Hu X, et al. Codelivery of adavosertib and olaparib by tumor-targeting nanoparticles for augmented efficacy and reduced toxicity. Acta Biomater. 2023;157:428–441. doi:10.1016/j.actbio.2022.12.021
  • Gómez-Morales J, Iafisco M, Delgado-López JM, Sarda S, Drouet C. Progress on the preparation of nanocrystalline apatites and surface characterization: overview of fundamental and applied aspects. Prog Cryst Growth Charact Mater. 2013;59(1):1–46. doi:10.1016/j.pcrysgrow.2012.11.001
  • Oltolina F, Gregoletto L, Colangelo D, Gómez-Morales J, Delgado-López JM, Prat M. Monoclonal antibody-targeted fluorescein-5-isothiocyanate-labeled biomimetic nanoapatites: a promising fluorescent probe for imaging applications. Langmuir. 2015;31(5):1766–1775. doi:10.1021/la503747s
  • Khalifehzadeh R, Arami H. Biodegradable calcium phosphate nanoparticles for cancer therapy. Adv Colloid Interface Sci. 2020;279:102157. doi:10.1016/J.CIS.2020.102157
  • Guan Q, Zhou Le L, Lv FH, Li WY, Li YA, Dong Bin Y. A glycosylated covalent organic framework equipped with BODIPY and CaCO3 for synergistic tumor therapy. Angew Chemie Int Ed. 2020;59(41):18042–18047. doi:10.1002/anie.202008055
  • Chen J, Qiu M, Zhang S, et al. A calcium phosphate drug carrier loading with 5-fluorouracil achieving a synergistic effect for pancreatic cancer therapy. J Colloid Interface Sci. 2022;605:263–273. doi:10.1016/j.jcis.2021.07.080
  • Delgado-López JM, Iafisco M, Rodríguez I, Tampieri A, Prat M, Gómez-Morales J. Crystallization of bioinspired citrate-functionalized nanoapatite with tailored carbonate content. Acta Biomater. 2012;8(9):3491–3499. doi:10.1016/j.actbio.2012.04.046
  • Gallarate M, Carlotti ME, Trotta M, Bovo S. On the stability of ascorbic acid in emulsified systems for topical and cosmetic use. Int J Pharm. 1999;188(2):233–241. doi:10.1016/S0378-5173(99)00228-8
  • Grada A, Otero-Vinas M, Prieto-Castrillo F, Obagi Z, Falanga V. Research techniques made simple: analysis of collective cell migration using the wound healing assay. J Invest Dermatol. 2017;137(2):e11–e16. doi:10.1016/j.jid.2016.11.020
  • Thorsell A-G, Ekblad T, Karlberg T, et al. Structural basis for potency and promiscuity in poly(ADP-ribose) polymerase (PARP) and tankyrase inhibitors. J Med Chem. 2017;60(4):1262–1271. doi:10.1021/acs.jmedchem.6b00990
  • Rodríguez-Ruiz I, Delgado-López JM, Durán-Olivencia MA, et al. PH-responsive delivery of doxorubicin from citrate-apatite nanocrystals with tailored carbonate content. Langmuir. 2013;29(26):8213–8221. doi:10.1021/la4008334
  • Iafisco M, Ramírez-Rodríguez GB, Sakhno Y, et al. The growth mechanism of apatite nanocrystals assisted by citrate: relevance to bone biomineralization. Cryst Eng Comm. 2015;17(3):507–511. doi:10.1039/c4ce01415d
  • Yohannan Panicker C, Tresa Varghese H, Philip D. FT-IR, FT-Raman and SERS spectra of Vitamin C. Spectrochim Acta. 2006;65(3–4):802–804. doi:10.1016/j.saa.2005.12.044
  • Novo B, Bonanomi J, De Fiore S, Calogero F. Crystalline and amorphous forms of olaparib; 2017.
  • Delgado-López JM, Frison R, Cervellino A, Gómez-Morales J, Guagliardi A, Masciocchi N. Crystal size, morphology, and growth mechanism in bio-inspired apatite nanocrystals. Adv Funct Mater. 2014;24:1090–1099. doi:10.1002/adfm.201302075
  • Bruschi M. Mathematical models of drug release. In: Strategies to Modify the Drug Release from Pharmaceutical Systems. Elsevier; 2015:63–86. doi:10.1016/b978-0-08-100092-2.00005-9
  • Hu H, Zhang Y, Ji W, et al. Hyaluronic acid-coated and Olaparib-loaded PEI − PLGA nanoparticles for the targeted therapy of triple negative breast cancer. J Microencapsul. 2021;39(1):25–36. doi:10.1080/02652048.2021.2014586
  • Novohradsky V, Zajac J, Vrana O, Kasparkova J, Brabec V. Simultaneous delivery of olaparib and carboplatin in PEGylated liposomes imparts this drug combination hypersensitivity and selectivity for breast tumor cells. Oncotarget. 2018;9(47):28456–28473. doi:10.18632/oncotarget.25466
  • Caster JM, Sethi M, Kowalczyk S, et al. Nanoparticle delivery of chemosensitizers improve chemotherapy efficacy without incurring additional toxicity. Nanoscale. 2015;7(6):2805–2811. doi:10.1039/c4nr07102f
  • Van De Ven AL, Tangutoori S, Baldwin P, et al. Nanoformulation of olaparib amplifies PARP inhibition and sensitizes PTEN/TP53-deficient prostate cancer to radiation. Mol Cancer Ther. 2017;16(7):1279–1289. doi:10.1158/1535-7163.MCT-16-0740
  • Ma Y, Chen P, Drisko J, Khabele D, Godwin A, Chen Q. Pharmacological ascorbate induces ‘BRCAness’ and enhances the effects of Poly(ADP‑Ribose) polymerase inhibitors against BRCA1/2 wild‑type ovarian cancer. Oncol Lett. 2020;19(4):2629–2638. doi:10.3892/ol.2020.11364
  • Mesas C, Garcés V, Martínez R, et al. Colon cancer therapy with calcium phosphate nanoparticles loading bioactive compounds from Euphorbia lathyris: in vitro and in vivo assay. Bio Pharmacr. 2022;155:113723. doi:10.1016/j.biopha.2022.113723
  • Iafisco M, Delgado-Lopez JM, Varoni EM, et al. Cell surface receptor targeted biomimetic apatite nanocrystals for cancer therapy. Small. 2013;9(22):3834–3844. doi:10.1002/smll.201202843
  • Buranasudja V, Doskey CM, Gibson AR, et al. Pharmacologic ascorbate primes pancreatic cancer cells for death by rewiring cellular energetics and inducing DNA damage. Mol Cancer Res. 2019;17(10):2102–2114. doi:10.1158/1541-7786.MCR-19-0381
  • Mao X, Du S, Yang Z, et al. Inhibitors of PARP-1 exert inhibitory effects on the biological characteristics of hepatocellular carcinoma cells in vitro. Mol Med Rep. 2017;16(1):208–214. doi:10.3892/MMR.2017.6568
  • Prasad CB, Prasad SB, Yadav SS, et al. Olaparib modulates DNA repair efficiency, sensitizes cervical cancer cells to cisplatin and exhibits anti-metastatic property. Sci Rep. 2017;7(1):1–15. doi:10.1038/s41598-017-13232-3
  • Quiñonero F, Mesas C, Muñoz-Gámez JA, et al. PARP1 inhibition by Olaparib reduces the lethality of pancreatic cancer cells and increases their sensitivity to Gemcitabine. Bio Pharmacr. 2022;155:113669. doi:10.1016/j.biopha.2022.113669
  • Roy I, McAllister DM, Gorse E, et al. Pancreatic cancer cell migration and metastasis is regulated by chemokine-biased agonism and bioenergetic signaling. Cancer Res. 2015;75(17):3529–3542. doi:10.1158/0008-5472.CAN-14-2645
  • Li D, Hu C, Yang J, et al. Enhanced anti-cancer effect of folate-conjugated olaparib nanoparticles combined with radiotherapy in cervical carcinoma. Int J Nanomedicine. 2020;15:10045–10058. doi:10.2147/IJN.S272730
  • Nakamura N, Fujihara H, Kawaguchi K, et al. Possible action of olaparib for preventing invasion of oral squamous cell carcinoma in vitro and in vivo. Int J Mol Sci. 2022;23(5):2527. doi:10.3390/ijms23052527
  • Wu M, Liu J, Hu C, et al. Olaparib nanoparticles potentiated radiosensitization effects on lung cancer. Int J Nanomedicine. 2018;13:8461–8472. doi:10.2147/IJN.S181546
  • Zhang Y, Hu H, Tang W, et al. A multifunctional magnetic nanosystem based on “two strikes” effect for synergistic anticancer therapy in triple-negative breast cancer. J Control Release. 2020;322:401–415. doi:10.1016/j.jconrel.2020.03.036
  • Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9(1):1410. doi:10.1038/s41467-018-03705-y
  • Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK. Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C. 2019;98:1252–1276. doi:10.1016/j.msec.2019.01.066
  • Min KH, Lee HJ, Kim K, Kwon IC, Jeong SY, Lee SC. The tumor accumulation and therapeutic efficacy of doxorubicin carried in calcium phosphate-reinforced polymer nanoparticles. Biomaterials. 2012;33(23):5788–5797. doi:10.1016/j.biomaterials.2012.04.057
  • Kang Y, Sun W, Li S, et al. Oligo hyaluronan‐coated silica/hydroxyapatite degradable nanoparticles for targeted cancer treatment. Adv Sci. 2019;6(13):1900716. doi:10.1002/advs.201900716
  • Corcoran RB, Contino G, Deshpande V, et al. STAT3 plays a critical role in KRAS-induced pancreatic tumorigenesis. Cancer Res. 2011;71(14):5020–5029. doi:10.1158/0008-5472.CAN-11-0908
  • Grapa CM, Mocan T, Gonciar D, et al. Epidermal growth factor receptor and its role in pancreatic cancer treatment mediated by nanoparticles. Int J Nanomedicine. 2019;14:9693–9706. doi:10.2147/IJN.S226628
  • Chen H, Bian A, Yang L, et al. Targeting STAT3 by a small molecule suppresses pancreatic cancer progression. Oncogene. 2021;40(8):1440–1457. doi:10.1038/s41388-020-01626-z
  • Sokolova V, Epple M. Biological and medical applications of calcium phosphate nanoparticles. Chem Eur J. 2021;27(27):7471–7488. doi:10.1002/chem.202005257
  • Epple M. Review of potential health risks associated with nanoscopic calcium phosphate. Acta Bio. 2018;77:1–14. doi:10.1016/j.actbio.2018.07.036
  • Sandhöfer B, Meckel M, Delgado-López JM, et al. Synthesis and preliminary in vivo evaluation of well-dispersed biomimetic nanocrystalline apatites labeled with positron emission tomographic imaging agents. ACS Appl Mater Interfaces. 2015;7(19):10623–10633. doi:10.1021/acsami.5b02624