504
Views
7
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function

, , , , , , , ORCID Icon & show all
Pages 5815-5830 | Received 06 Apr 2023, Accepted 04 Oct 2023, Published online: 17 Oct 2023

References

  • Mohammadi M, Mousavi Shaegh SA, Alibolandi M, et al. Micro and nanotechnologies for bone regeneration: recent advances and emerging designs. J Control Release. 2018;274:35–55. doi:10.1016/j.jconrel.2018.01.032
  • Zhang Z, Liu P, Wang W, et al. Epidemiology and Drug Resistance of Fracture-Related Infection of the Long Bones of the Extremities: a Retrospective Study at the Largest Trauma Center in Southwest China. Front Microbiol. 2022;13:923735. doi:10.3389/fmicb.2022.923735
  • Archunan MW, Petronis S. Bone Grafts in Trauma and Orthopaedics. Cureus. 2021;13(9):e17705. doi:10.7759/cureus.17705
  • Schmidt AH. Autologous bone graft: is it still the gold standard? Injury. 2021;52 Suppl 2:S18–S22. doi:10.1016/j.injury.2021.01.043
  • Leng Y, Ren G, Cui Y, et al. Platelet-rich plasma-enhanced osseointegration of decellularized bone matrix in critical-size radial defects in rabbits. Ann Transl Med. 2020;8(5):198. doi:10.21037/atm.2020.01.53
  • Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66. doi:10.1186/1741-7015-9-66
  • Feng X, Ma L, Liang H, et al. Osteointegration of 3D-Printed Fully Porous Polyetheretherketone Scaffolds with Different Pore Sizes. ACS Omega. 2020;5(41):26655–26666. doi:10.1021/acsomega.0c03489
  • Maghsoudlou MA, Nassireslami E, Saber-Samandari S, Khandan A. Bone Regeneration Using Bio-Nanocomposite Tissue Reinforced with Bioactive Nanoparticles for Femoral Defect Applications in Medicine. Avicenna J Med Biotechnol. 2020;12(2):68–76.
  • Kim Y, Park EJ, Kim TW. Recent Progress in Drug Release Testing Methods of Biopolymeric Particulate System. Pharmaceutics. 2021;13(8). doi:10.3390/pharmaceutics13081313
  • Vlachopoulos A, Karlioti G, Balla E, et al. Poly(Lactic Acid)-Based Microparticles for Drug Delivery Applications: an Overview of Recent Advances. Pharmaceutics. 2022;14(2). doi:10.3390/pharmaceutics14020359
  • Perez Davila S, Gonzalez Rodriguez L, Chiussi S, Serra J, Gonzalez P. How to Sterilize Polylactic Acid Based Medical Devices? Polymers. 2021;13(13). doi:10.3390/polym13132115
  • Jia L, Zhang P, Ci Z, et al. Immune-Inflammatory Responses of an Acellular Cartilage Matrix Biomimetic Scaffold in a Xenotransplantation Goat Model for Cartilage Tissue Engineering. Front Bioeng Biotechnol. 2021;9:667161. doi:10.3389/fbioe.2021.667161
  • Han SH, Cha M, Jin YZ, Lee KM, Lee JH. BMP-2 and hMSC dual delivery onto 3D printed PLA-Biogel scaffold for critical-size bone defect regeneration in rabbit tibia. Biomed Mater. 2020;16(1):015019. doi:10.1088/1748-605X/aba879
  • Eliaz N, Metoki N. Calcium Phosphate Bioceramics: a Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. Materials. 2017;10(4). doi:10.3390/ma10040334
  • Hou X, Zhang L, Zhou Z, et al. Calcium Phosphate-Based Biomaterials for Bone Repair. J Funct Biomater. 2022;13(4). doi:10.3390/jfb13040187
  • Kang HJ, Makkar P, Padalhin AR, Lee GH, Im SB, Lee BT. Comparative study on biodegradation and biocompatibility of multichannel calcium phosphate based bone substitutes. Mater Sci Eng C Mater Biol Appl. 2020;110:110694. doi:10.1016/j.msec.2020.110694
  • Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res. 2019;23:4. doi:10.1186/s40824-018-0149-3
  • Jiao X, Sun X, Li W, et al. 3D-Printed beta-Tricalcium Phosphate Scaffolds Promote Osteogenic Differentiation of Bone Marrow-Deprived Mesenchymal Stem Cells in an N6-methyladenosine-Dependent Manner. Int J Bioprint. 2022;8(2):544. doi:10.18063/ijb.v8i2.544
  • Liang L, Rulis P, Ching WY. Mechanical properties, electronic structure and bonding of alpha- and beta-tricalcium phosphates with surface characterization. Acta Biomater. 2010;6(9):3763–3771. doi:10.1016/j.actbio.2010.03.033
  • Montelongo SA, Chiou G, Ong JL, Bizios R, Guda T. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds. J Mater Sci Mater Med. 2021;32(8):94. doi:10.1007/s10856-021-06569-9
  • Joshi MK, Lee S, Tiwari AP, et al. Integrated design and fabrication strategies for biomechanically and biologically functional PLA/beta-TCP nanofiber reinforced GelMA scaffold for tissue engineering applications. Int J Biol Macromol. 2020;164:976–985. doi:10.1016/j.ijbiomac.2020.07.179
  • Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT. Tissue engineering of bone: material and matrix considerations. J Bone Joint Surg Am. 2008;90(Suppl 1):36–42. doi:10.2106/JBJS.G.01260
  • Qiao K, Xu L, Tang J, et al. The advances in nanomedicine for bone and cartilage repair. J Nanobiotechnology. 2022;20(1):141. doi:10.1186/s12951-022-01342-8
  • Sahmani S, Saber-Samandari S, Khandan A, Aghdam MM. Nonlinear resonance investigation of nanoclay based bio-nanocomposite scaffolds with enhanced properties for bone substitute applications. J Alloys Compd. 2019;773:636–653. doi:10.1016/j.jallcom.2018.09.211
  • Chen C, Huang B, Liu Y, Liu F, Lee IS. Functional engineering strategies of 3D printed implants for hard tissue replacement. Regen Biomater. 2023;10:rbac094. doi:10.1093/rb/rbac094
  • Zhang L, Forgham H, Shen A, et al. Nanomaterial integrated 3D printing for biomedical applications. J Mater Chem B. 2022;10(37):7473–7490. doi:10.1039/d2tb00931e
  • Raisi A, Asefnejad A, Shahali M, et al. A soft tissue fabricated using a freeze-drying technique with carboxymethyl chitosan and nanoparticles for promoting effects on wound healing. J Nanoanalysis. 2020;7(4):262–274. doi:10.22034/jna.2022.680836
  • Bardot M, Schulz MD. Biodegradable Poly(Lactic Acid) Nanocomposites for Fused Deposition Modeling 3D Printing. Nanomaterials. 2020;10(12). doi:10.3390/nano10122567
  • Bandari S, Nyavanandi D, Dumpa N, Repka MA. Coupling hot melt extrusion and fused deposition modeling: critical properties for successful performance. Adv Drug Deliv Rev. 2021;172:52–63. doi:10.1016/j.addr.2021.02.006
  • Huang S, Wei H, Li D. Additive manufacturing technologies in the oral implant clinic: a review of current applications and progress. Front Bioeng Biotechnol. 2023;11:1100155. doi:10.3389/fbioe.2023.1100155
  • Wang W, Zhang B, Zhao L, et al. Fabrication and properties of PLA/nano-HA composite scaffolds with balanced mechanical properties and biological functions for bone tissue engineering application. Nanotechnol Rev. 2021;10(1):1359–1373.
  • Wang W, Zhang B, Li M, et al. 3D printing of PLA/n-HA composite scaffolds with customized mechanical properties and biological functions for bone tissue engineering. Composites Part B: Eng. 2021;224:109192.
  • Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27(7):964–973. doi:10.1016/j.biomaterials.2005.07.017
  • Zhang B, Wang L, Song P, et al. 3D printed bone tissue regenerative PLA/HA scaffolds with comprehensive performance optimizations. Mater Des. 2021;201:109490.
  • Wu T, Yu S, Chen D, Wang Y. Bionic Design, Materials and Performance of Bone Tissue Scaffolds. Materials. 2017;10(10). doi:10.3390/ma10101187
  • Zhou C, Wang K, Sun Y, et al. Biofabrication (3D bioprinting) laboratory at Sichuan University. Bio-Design and Manufacturing. 2021;4:432–439.
  • Song P, Li M, Zhang B, et al. DLP fabricating of precision GelMA/HAp porous composite scaffold for bone tissue engineering application. Composites Part B: Eng. 2022;244:110163.
  • Ozada KA. Novel Microstructure Mechanical Activated Nano Composites for Tissue Engineering Applications. J Bioengineering Biomed Sci. 2015;05(01). doi:10.4172/2155-9538.1000143
  • Bohner M, Santoni BLG, Dobelin N. beta-tricalcium phosphate for bone substitution: synthesis and properties. Acta Biomater. 2020;113:23–41. doi:10.1016/j.actbio.2020.06.022
  • Cao L, Duan PG, Wang HR, et al. Degradation and osteogenic potential of a novel poly(lactic acid)/nano-sized beta-tricalcium phosphate scaffold. Int J Nanomedicine. 2012;7:5881–5888. doi:10.2147/IJN.S38127
  • Wu L, Zhou C, Zhang B, et al. Construction of biomimetic natural wood hierarchical porous-structure bioceramic with micro/nanowhisker coating to modulate cellular behavior and osteoinductive activity. ACS Appl Mater Interfaces. 2020;12(43):48395–48407.
  • Majhy B, Priyadarshini P, Sen AK. Effect of surface energy and roughness on cell adhesion and growth - facile surface modification for enhanced cell culture. RSC Adv. 2021;11(25):15467–15476. doi:10.1039/d1ra02402g
  • Wang W, Wei J, Lei D, et al. 3D printing of lithium osteogenic bioactive composite scaffold for enhanced bone regeneration. Composites Part B: Eng. 2023;110641.
  • Lin KF, He S, Song Y, et al. Low-Temperature Additive Manufacturing of Biomimic Three-Dimensional Hydroxyapatite/Collagen Scaffolds for Bone Regeneration. ACS Appl Mater Interfaces. 2016;8(11):6905–6916. doi:10.1021/acsami.6b00815
  • Moarrefzadeh A, Morovvati MR, Angili SN, Smaisim GF, Khandan A, Toghraie D. Fabrication and finite element simulation of 3D printed poly L-lactic acid scaffolds coated with alginate/carbon nanotubes for bone engineering applications. Int J Biol Macromol. 2023;224:1496–1508. doi:10.1016/j.ijbiomac.2022.10.238
  • Wubneh A, Tsekoura EK, Ayranci C, Uludag H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater. 2018;80:1–30. doi:10.1016/j.actbio.2018.09.031
  • Fan HS, Wen XT, Tan YF, Wang R, Cao H, Zhang XD. Compare of electrospinning PLA and PLA/β-TCP scaffold in vitro. Trans Tech Publ. 2005;2379–2382.
  • Perez-Davila S, Gonzalez-Rodriguez L, Lama R, et al. 3D-Printed PLA Medical Devices: physicochemical Changes and Biological Response after Sterilisation Treatments. Polymers. 2022;14(19). doi:10.3390/polym14194117
  • Lou CW, Yao CH, Chen YS, et al. PLA/ beta-TCP complex tubes: the mechanical properties and applications of artificial bone. J Biomater Sci Polym Ed. 2012;23(13):1701–1712. doi:10.1163/092050611X597762
  • Elhattab K, Bhaduri SB, Sikder P. Influence of Fused Deposition Modelling Nozzle Temperature on the Rheology and Mechanical Properties of 3D Printed beta-Tricalcium Phosphate (TCP)/Polylactic Acid (PLA) Composite. Polymers. 2022;14(6). doi:10.3390/polym14061222
  • Tang D, Tare RS, Yang LY, Williams DF, Ou KL, Oreffo RO. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials. 2016;83:363–382. doi:10.1016/j.biomaterials.2016.01.024
  • Chandorkar Y, Bhaskar N, Madras G, Basu B. Long-term sustained release of salicylic acid from cross-linked biodegradable polyester induces a reduced foreign body response in mice. Biomacromolecules. 2015;16(2):636–649. doi:10.1021/bm5017282
  • Kang Y, Yao Y, Yin G, et al. A study on the in vitro degradation properties of poly(L-lactic acid)/beta-tricalcuim phosphate (PLLA/beta-TCP) scaffold under dynamic loading. Med Eng Phys. 2009;31(5):589–594. doi:10.1016/j.medengphy.2008.11.014
  • Araque-Monros MC, Gamboa-Martinez TC, Santos LG, Bernabe SG, Pradas MM, Estelles JM. New concept for a regenerative and resorbable prosthesis for tendon and ligament: physicochemical and biological characterization of PLA-braided biomaterial. J Biomed Mater Res A. 2013;101(11):3228–3237. doi:10.1002/jbm.a.34633
  • Manolagas SC. Osteocalcin promotes bone mineralization but is not a hormone. PLoS Genet. 2020;16(6):e1008714. doi:10.1371/journal.pgen.1008714
  • Liu X, Zheng C, Luo X, Wang X, Jiang H. Recent advances of collagen-based biomaterials: multi-hierarchical structure, modification and biomedical applications. Mater Sci Eng C Mater Biol Appl. 2019;99:1509–1522. doi:10.1016/j.msec.2019.02.070
  • Chen Y, Yang S, Lovisa S, et al. Type-I collagen produced by distinct fibroblast lineages reveals specific function during embryogenesis and Osteogenesis Imperfecta. Nat Commun. 2021;12(1):7199. doi:10.1038/s41467-021-27563-3
  • Zhang H, Mao X, Du Z, et al. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. Sci Technol Adv Mater. 2016;17(1):136–148. doi:10.1080/14686996.2016.1145532
  • Haimi S, Suuriniemi N, Haaparanta AM, et al. Growth and osteogenic differentiation of adipose stem cells on PLA/bioactive glass and PLA/beta-TCP scaffolds. Tissue Eng Part A. 2009;15(7):1473–1480. doi:10.1089/ten.tea.2008.0241
  • Liu T, Li B, Chen G, Ye X, Zhang Y. Nano tantalum-coated 3D printed porous polylactic acid/beta-tricalcium phosphate scaffolds with enhanced biological properties for guided bone regeneration. Int J Biol Macromol. 2022;221:371–380. doi:10.1016/j.ijbiomac.2022.09.003
  • Cao L, Duan PG, Li XL, et al. Biomechanical stability of a bioabsorbable self-retaining polylactic acid/nano-sized beta-tricalcium phosphate cervical spine interbody fusion device in single-level anterior cervical discectomy and fusion sheep models. Int J Nanomedicine. 2012;7:5875–5880. doi:10.2147/IJN.S38288
  • Cao L, Chen Q, Jiang LB, et al. Bioabsorbable self-retaining PLA/nano-sized beta-TCP cervical spine interbody fusion cage in goat models: an in vivo study. Int J Nanomedicine. 2017;12:7197–7205. doi:10.2147/IJN.S132041
  • Iranmanesh P, Ehsani A, Khademi A, et al. Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture). Transport in Porous Media. 2022;142(1):265–293. doi:10.1007/s11242-021-01618-x
  • Zhang B, Wang W, Gui X, et al. 3D printing of customized key biomaterials genomics for bone regeneration. Applied Materials Today. 2022;26:101346.
  • Li M, Song P, Wang W, et al. Preparation and characterization of biomimetic gradient multi-layer cell-laden scaffolds for osteochondral integrated repair. J Materials Chem B. 2022;10(22):4172–4188.
  • Iranmanesh P, Gowdini M, Khademi A, et al. Bioprinting of three-dimensional scaffold based on alginate-gelatin as soft and hard tissue regeneration. J Materials Res Technol. 2021;14:2853–2864. doi:10.1016/j.jmrt.2021.08.069
  • Soleimani M, Asgharzadeh Salmasi A, Asghari S, et al. Optimization and fabrication of alginate scaffold for alveolar bone regeneration with sufficient drug release. International Nano Letters. 2021;11(3):295–305. doi:10.1007/s40089-021-00342-0