223
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Preclinical Evaluation of a Protein-Based Nanoscale Contrast Agent for MR Angiography at an Ultralow Dose

, , , , , , , , , , & ORCID Icon show all
Pages 4431-4444 | Received 03 May 2023, Accepted 19 Jul 2023, Published online: 02 Aug 2023

References

  • Walkey CD, Chan WC. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012;41(7):2780–2799. doi:10.1039/C1CS15233E
  • Liu Q, Zhu H, Qin J, Dong H, Du J. Theranostic vesicles based on bovine serum albumin and poly(ethylene glycol)-block-poly(L-lactic-co-glycolic acid) for magnetic resonance imaging and anticancer drug delivery. Biomacromolecules. 2014;15(5):1586–1592. doi:10.1021/bm500438x
  • Pasquini L, Napolitano A, Visconti E, et al. Gadolinium-based contrast agent-related toxicities. CNS Drugs. 2018;32(3):229–240. doi:10.1007/s40263-018-0500-1
  • Davies J, Siebenhandl-Wolff P, Tranquart F, Jones P, Evans P. Gadolinium: pharmacokinetics and toxicity in humans and laboratory animals following contrast agent administration. Arch Toxicol. 2022;96(2):403–429. doi:10.1007/s00204-021-03189-8
  • Zou Z, Ma L. Nephrogenic systemic fibrosis: review of 408 biopsy-confirmed cases. Indian J Dermatol. 2011;56(1):65–73. doi:10.4103/0019-5154.77556
  • Grobner T. Gadolinium-a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21(4):1104–1108. doi:10.1093/ndt/gfk062
  • Gulani V, Calamante F, Shellock FG, Kanal E, Reeder SB; International Society for Magnetic Resonance in M. Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol. 2017;16(7):564–570. doi:10.1016/S1474-4422(17)30158-8
  • Mendichovszky IA, Marks SD, Simcock CM, Olsen OE. Gadolinium and nephrogenic systemic fibrosis: time to tighten practice. Pediatr Radiol. 2008;38(5):489–496; quiz 602–483. doi:10.1007/s00247-007-0633-8
  • Runge VM. Critical questions regarding gadolinium deposition in the brain and body after injections of the gadolinium-based contrast agents, safety, and clinical recommendations in consideration of the EMA’s pharmacovigilance and risk assessment committee recommendation for suspension of the marketing authorizations for 4 linear agents. Invest Radiol. 2017;52(6):317–323. doi:10.1097/RLI.0000000000000374
  • Shao YZ, Liu LZ, Song SQ, et al. A novel one-step synthesis of Gd3+-incorporated mesoporous SiO2 nanoparticles for use as an efficient MRI contrast agent. Contrast Media Mol Imaging. 2011;6(2):110–118. doi:10.1002/cmmi.412
  • Liu S, Yue H, Ho SL, et al. Enhanced tumor imaging using glucosamine-conjugated polyacrylic acid-coated ultrasmall gadolinium oxide nanoparticles in magnetic resonance imaging. Int J Mol Sci. 2022;23(3):1792.
  • Otsubo K, Kishimoto J, Ando M, et al. Nintedanib plus chemotherapy for nonsmall cell lung cancer with idiopathic pulmonary fibrosis: a randomised Phase 3 trial. Eur Respir J. 2022;60(6). doi:10.1183/13993003.00380-2022
  • Gianni L, Mansutti M, Anton A, et al. Comparing neoadjuvant nab-paclitaxel vs paclitaxel both followed by anthracycline regimens in women with ERBB2/HER2-negative breast cancer-the Evaluating Treatment With Neoadjuvant Abraxane (ETNA) trial: a randomized phase 3 clinical trial. JAMA Oncol. 2018;4(3):302–308. doi:10.1001/jamaoncol.2017.4612
  • Ghaghada KB, Ravoori M, Sabapathy D, Bankson J, Kundra V, Annapragada A. New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging. PLoS One. 2009;4(10):e7628. doi:10.1371/journal.pone.0007628
  • Yousuf I, Bashir M, Arjmand F, Tabassum S. Multispectroscopic insight, morphological analysis and molecular docking studies of Cu-II-based chemotherapeutic drug entity with human serum albumin (HSA) and bovine serum albumin (BSA). J Biomol Struct Dyn. 2019;37(12):3290–3304. doi:10.1080/07391102.2018.1512899
  • Azevedo C, Nilsen J, Grevys A, Nunes R, Andersen JT, Sarmento B. Engineered albumin-functionalized nanoparticles for improved FcRn binding enhance oral delivery of insulin. J Control Release. 2020;327:161–173. doi:10.1016/j.jconrel.2020.08.005
  • Sun ZC, Zheng WS, Zhu GS, et al. Albumin broadens the antibacterial capabilities of nonantibiotic small molecule-capped gold nanoparticles. Acs Appl Mater Inter. 2019;11(49):45381–45389. doi:10.1021/acsami.9b15107
  • Paul M, Itoo AM, Ghosh B, Biswas S. Current trends in the use of human serum albumin for drug delivery in cancer. Expert Opin Drug Deliv. 2022;19(11):1449–1470. doi:10.1080/17425247.2022.2134341
  • Wei HQ, Zhang B, Lei M, et al. Visible-light-mediated nano-biomineralization of customizable tough hydrogels for biomimetic tissue engineering. Acs Nano. 2022;16(3):4734–4745. doi:10.1021/acsnano.1c11589
  • Abou Neel EA, Aljabo A, Strange A, et al. Demineralization-remineralization dynamics in teeth and bone. Int J Nanomed. 2016;11:4743–4763. doi:10.2147/IJN.S107624
  • Chu CC, Su M, Zhu J, et al. Metal-organic framework nanoparticle-based biomineralization: a new strategy toward cancer treatment. Theranostics. 2019;9(11):3134–3149. doi:10.7150/thno.33539
  • Zhang BB, Jin HT, Li Y, Chen BD, Liu SY, Shi DL. Bioinspired synthesis of gadolinium-based hybrid nanoparticles as MRI blood pool contrast agents with high relaxivity. J Mater Chem. 2012;22(29):14494–14501. doi:10.1039/c2jm30629h
  • Zhang H, Wang T, Zheng Y, Yan C, Gu W, Ye L. Comparative toxicity and contrast enhancing assessments of Gd(2)O(3)@BSA and MnO(2)@BSA nanoparticles for MR imaging of brain glioma. Biochem Biophys Res Commun. 2018;499(3):488–492. doi:10.1016/j.bbrc.2018.03.175
  • Chen L, Zhou XJ, Nie W, et al. Marriage of albumin-gadolinium complexes and MoS2 nanoflakes as cancer theranostics for dual-modality magnetic resonance/photoacoustic imaging and photothermal therapy. Acs Appl Mater Inter. 2017;9(21):17786–17798. doi:10.1021/acsami.7b04488
  • Ma N, Liu J, He W, et al. Folic acid-grafted bovine serum albumin decorated graphene oxide: an efficient drug carrier for targeted cancer therapy. J Colloid Interface Sci. 2017;490:598–607. doi:10.1016/j.jcis.2016.11.097
  • Wang J, Zhang BB. Bovine serum albumin as a versatile platform for cancer imaging and therapy. Curr Med Chem. 2018;25(25):2938–2953. doi:10.2174/0929867324666170314143335
  • Liu LS, Bi YK, Zhou MR, et al. Biomimetic human serum albumin nanoparticle for efficiently targeting therapy to metastatic breast cancers. Acs Appl Mater Inter. 2017;9(8):7424–7435. doi:10.1021/acsami.6b14390
  • Hou Z, Zhou M, Ma Y, et al. Size-changeable nanoprobes for the combined radiotherapy and photodynamic therapy of tumor. Eur J Nucl Med Mol Imaging. 2022;49(8):2655–2667. doi:10.1007/s00259-022-05830-9
  • Wen Y, Dong H, Li Y, Shen A, Li Y. Nano-assembly of bovine serum albumin driven by rare-earth-ion (Gd) biomineralization for highly efficient photodynamic therapy and tumor imaging. J Mater Chem B. 2016;4(4):743–751. doi:10.1039/C5TB01962A
  • Li M, Liu Z, Wu Y, et al. In vivo imaging of astrocytes in the whole brain with engineered AAVs and diffusion-weighted magnetic resonance imaging. Mol Psychiatr. 2022. doi:10.1038/s41380-022-01580-0
  • Boucher M, Geffroy F, Preveral S, et al. Genetically tailored magnetosomes used as MRI probe for molecular imaging of brain tumor. Biomaterials. 2017;121:167–178. doi:10.1016/j.biomaterials.2016.12.013
  • Brown PL, Kiyatkin EA. Brain temperature change and movement activation induced by intravenous cocaine delivered at various injection speeds in rats. Psychopharmacology. 2005;181(2):299–308. doi:10.1007/s00213-005-2244-0
  • Zhou L, Yang T, Wang J, et al. Size-tunable Gd(2)O(3)@Albumin nanoparticles conjugating chlorin e6 for magnetic resonance imaging-guided photo-induced therapy. Theranostics. 2017;7(3):764–774. doi:10.7150/thno.15757
  • Pan J, Wang J, Fang K, et al. RNA m(6)A alterations induced by biomineralization nanoparticles: a proof-of-concept study of epitranscriptomics for nanotoxicity evaluation. Nanoscale Res Lett. 2022;17(1):23. doi:10.1186/s11671-022-03663-x
  • Sun SK, Dong LX, Cao Y, Sun HR, Yan XP. Fabrication of multifunctional Gd2O3/Au hybrid nanoprobe via a one-step approach for near-infrared fluorescence and magnetic resonance multimodal imaging in vivo. Anal Chem. 2013;85(17):8436–8441. doi:10.1021/ac401879y
  • Wang Y, Yang CX, Yan XP. Hydrothermal and biomineralization synthesis of a dual-modal nanoprobe for targeted near-infrared persistent luminescence and magnetic resonance imaging. Nanoscale. 2017;9(26):9049–9055. doi:10.1039/C7NR02038D
  • Liu M, Zhao ZQ, Fang W, Liu S. Novel approach for (99m)Tc-labeling of red blood cells: evaluation of (99m)Tc-4SAboroxime as a blood pool imaging agent. Bioconjug Chem. 2017;28(12):2998–3006. doi:10.1021/acs.bioconjchem.7b00601
  • Rahmer J, Antonelli A, Sfara C, et al. Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection. Phys Med Biol. 2013;58(12):3965–3977. doi:10.1088/0031-9155/58/12/3965
  • Aryal S, Stigliano C, Key J, et al. Paramagnetic Gd(3+) labeled red blood cells for magnetic resonance angiography. Biomaterials. 2016;98:163–170. doi:10.1016/j.biomaterials.2016.05.002
  • Jayaprakash V, Costalonga M, Dhulipala S, Varanasi KK. Enhancing the injectability of high concentration drug formulations using core annular flows. Adv Healthc Mater. 2020;9(18):e2001022. doi:10.1002/adhm.202001022
  • Sun Y, Feng W, Yang P, Huang C, Li F. The biosafety of lanthanide upconversion nanomaterials. Chem Soc Rev. 2015;44(6):1509–1525. doi:10.1039/C4CS00175C
  • Lu C, Xu X, Zhang T, Wang Z, Chai Y. Facile synthesis of superparamagnetic nickel-doped iron oxide nanoparticles as high-performance T(1) contrast agents for magnetic resonance imaging. J Mater Chem B. 2022;10(10):1623–1633. doi:10.1039/D1TB02572D