1,842
Views
34
CrossRef citations to date
0
Altmetric
REVIEW

Revisiting the Green Synthesis of Nanoparticles: Uncovering Influences of Plant Extracts as Reducing Agents for Enhanced Synthesis Efficiency and Its Biomedical Applications

, , ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 4727-4750 | Received 02 May 2023, Accepted 03 Aug 2023, Published online: 18 Aug 2023

References

  • El-Shafai N, El-Khouly ME, El-Kemary M, Ramadan M, Eldesoukey I, Masoud M. Graphene oxide decorated with zinc oxide nanoflower, silver and titanium dioxide nanoparticles: fabrication, characterization, DNA interaction, and antibacterial activity. RSC Adv. 2019;9(7):3704–3714. doi:10.1039/c8ra09788g
  • EL-Sheshtawy HS, El-Hosainy HM, Shoueir KR, El-Mehasseb IM, El-Kemary M. Facile immobilization of Ag nanoparticles on g-C3N4/V2O5 surface for enhancement of post-illumination, catalytic, and photocatalytic activity removal of organic and inorganic pollutants. Appl Surf Sci. 2019;467:268–276. doi:10.1016/j.apsusc.2018.10.109
  • Kaviya S. Synthesis, self-assembly, sensing methods and mechanism of bio-source facilitated nanomaterials: a review with future outlook. Nano Struct Nano Objects. 2020;23:100498. doi:10.1016/j.nanoso.2020.100498
  • Al-Anssari S, Ali M, Alajmi M, et al. Synergistic Effect of Nanoparticles and Polymers on the Rheological Properties of Injection Fluids: Implications for Enhanced Oil Recovery. Energy Fuels. 2021;35(7):6125–6135. doi:10.1021/acs.energyfuels.1c00105/asset/images/medium/ef1c00105_0011.gif
  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908–931. doi:10.1016/j.arabjc.2017.05.011
  • Yokoyama T, Masuda H, Suzuki M, et al. Basic properties and measuring methods of nanoparticles. Nanoparticle Technol Handb. 2008:3–48. doi:10.1016/B978-044453122-3.50004-0
  • Dessie Y, Tadesse S, Eswaramoorthy R, Abdisa E. Bimetallic Mn–Ni oxide nanoparticles: green synthesis, optimization and its low-cost anode modifier catalyst in microbial fuel cell. Nano Struct Nano Objects. 2021;25:100663. doi:10.1016/j.nanoso.2020.100663
  • Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009;145(1–2):83–96. doi:10.1016/J.CIS.2008.09.002
  • Wagner AM, Knipe JM, Orive G, Peppas NA. Quantum dots in biomedical applications. Acta Biomater. 2019;94:44–63. doi:10.1016/j.actbio.2019.05.022
  • Lenders V, Koutsoumpou X, Sargsian A, Manshian BB. Biomedical nanomaterials for immunological applications: ongoing research and clinical trials. Nanoscale Adv. 2020;2(11):5046–5089. doi:10.1039/d0na00478b
  • Mitarotonda R, Giorgi E, Eufrasio-da-Silva T, et al. Immunotherapeutic nanoparticles: from autoimmune disease control to the development of vaccines. Biomater Adv. 2022;135:212726. doi:10.1016/j.bioadv.2022.212726
  • Kessler R. Engineered Nanoparticles in Consumer Products: understanding a New Ingredient. Environ Health Perspect. 2011;119(3):a120–5. doi:10.1289/ehp.119-a120
  • Mody V, Siwale R, Singh A, Mody H. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2(4):282. doi:10.4103/0975-7406.72127
  • Trickler WJ, Lantz SM, Murdock RC, et al. Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol Sci. 2010;118(1):160–170. doi:10.1093/TOXSCI/KFQ244
  • Weissig V, Pettinger TK, Murdock N. Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine. 2014;9:4357–4373. doi:10.2147/IJN.S46900
  • Gulson B, Mccall M, Korsch M, et al. Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol Sci. 2010;118(1):140–149. doi:10.1093/TOXSCI/KFQ243
  • Krestinin AV, Dremova NN, Knerel’Man EI, Blinova LN, Zhigalina VG, Kiselev NA. Characterization of SWCNT products manufactured in Russia and the prospects for their industrial application. Nanotechnol Russ. 2015;10(7–8):537–548. doi:10.1134/S1995078015040096
  • Ravichandran R. Nanotechnology Applications in Food and Food Processing: Innovative Green Approaches, Opportunities and Uncertainties for Global Market. Int J Green Nanotechnol. 2010;1(2):P72–P96. doi:10.1080/19430871003684440
  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Hull DR. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 2015;6(1):1769–1780. doi:10.3762/BJNANO.6.181
  • Santo-Orihuela PL, Desimone MF, Catalano PN. Green Synthesis: A Land of Complex Nanostructures. Curr Pharm Biotechnol. 2022;24(1):3–22. doi:10.2174/1389201023666220512094533
  • Makarov VV, Мв В, Love AJ, et al. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae. 2014;6(1):35–44. doi:10.32607/20758251-2014-6-1-35-44
  • Velusamy P, Kumar GV, Jeyanthi V, Das J, Pachaiappan R. Bio-Inspired Green Nanoparticles: Synthesis, Mechanism, and Antibacterial Application. Toxicol Res. 2016;32(2):95. doi:10.5487/TR.2016.32.2.095
  • Galdopórpora JM, Ibar A, Tuttolomondo MV, Desimone MF. Dual-effect core–shell polyphenol coated silver nanoparticles for tissue engineering. Nano Struct Nano Objects. 2021;26:100716. doi:10.1016/J.NANOSO.2021.100716
  • Bandeira M, Possan AL, Pavin SS, et al. Mechanism of formation, characterization and cytotoxicity of green synthesized zinc oxide nanoparticles obtained from Ilex paraguariensis leaves extract. Nano Struct Nano Objects. 2020;24:100532. doi:10.1016/J.NANOSO.2020.100532
  • Safat S, Buazar F, Albukhaty S, Matroodi S. Enhanced sunlight photocatalytic activity and biosafety of marine-driven synthesized cerium oxide nanoparticles. Sci Rep. 2021;11(1):1–11. doi:10.1038/s41598-021-94327-w
  • Alhujaily M, Albukhaty S, Yusuf M, et al. Recent Advances in Plant-Mediated Zinc Oxide Nanoparticles with Their Significant Biomedical Properties. Bioengineering. 2022;9(10):541. doi:10.3390/bioengineering9100541
  • Khane Y, Benouis K, Albukhaty S, et al. Green synthesis of silver nanoparticles using aqueous citrus limon zest extract: characterization and evaluation of their antioxidant and antimicrobial properties. Nanomaterials. 2022;12(12):2013. doi:10.3390/nano12122013
  • Alzubaidi AK, Al-Kaabi WJ, Al AA, et al. Green synthesis and characterization of silver nanoparticles using flaxseed extract and evaluation of their antibacterial and antioxidant activities. Appl Sci. 2023;13(4):2182. doi:10.3390/app13042182
  • Mahmood RI, Kadhim AA, Ibraheem S, et al. Biosynthesis of copper oxide nanoparticles mediated Annona muricata as cytotoxic and apoptosis inducer factor in breast cancer cell lines. Sci Rep. 2022;12(1):1–10. doi:10.1038/s41598-022-20360-y
  • Potbhare AK, Chaudhary RG, Chouke PB, et al. Phytosynthesis of nearly monodisperse CuO nanospheres using Phyllanthus reticulatus/Conyza bonariensis and its antioxidant/antibacterial assays. Mater Sci Eng C Mater Biol Appl. 2019;99:783–793. doi:10.1016/J.MSEC.2019.02.010
  • Zikalala N, Matshetshe K, Parani S, Oluwafemi OS. Biosynthesis protocols for colloidal metal oxide nanoparticles. Nano Struct Nano Objects. 2018;16:288–299. doi:10.1016/J.NANOSO.2018.07.010
  • Kagdi AR, Pullar RC, Meena SS, et al. Green synthesis based X-type Ba–Zn hexaferrites: their structural, hysteresis, mӧssbauer, dielectric and electrical properties. Mater Chem Phys. 2022:282. doi:10.1016/J.MATCHEMPHYS.2022.125914
  • Catalano PN, Chaudhary RG, Desimone MF, Santo-Orihuela PL. A survey on analytical methods for the characterization of green synthesized nanomaterials. Curr Pharm Biotechnol. 2021;22(6):823–847. doi:10.2174/1389201022666210104122349
  • Antezana PE, Municoy S, Desimone MF. Building nanomaterials with microbial factories. Biog Sustain Nanotechnol Trends Prog. 2022;1–39. doi:10.1016/B978-0-323-88535-5.00012-3
  • Das SK, Dickinson C, Lafir F, Brougham DF, Marsili E. Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chem. 2012;14(5):1322–1334. doi:10.1039/C2GC16676C
  • Gardea-Torresdey JL, Parsons JG, Gomez E, et al. Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants. NanoL. 2002;2(4):397–401. doi:10.1021/NL015673
  • Mondal A, Umekar MS, Bhusari GS, et al. Biogenic Synthesis of Metal/Metal Oxide Nanostructured Materials. Curr Pharm Biotechnol. 2021;22(13):1782–1793. doi:10.2174/1389201022666210111122911
  • Singh NB, Jain P, De A, Tomar R. Green synthesis and applications of nanomaterials. Curr Pharm Biotechnol. 2021;22(13):1705–1747. doi:10.2174/1389201022666210412142734
  • Rai M, Yadav A. Plants as potential synthesiser of precious metal nanoparticles: progress and prospects. IET Nanobiotechnol. 2013;7(3):117–124. doi:10.1049/IET-NBT.2012.0031
  • Nande A, Raut S, Michalska-Domanska M, Dhoble SJ. Green synthesis of nanomaterials using plant extract: a review. Curr Pharm Biotechnol. 2020;22(13):1794–1811. doi:10.2174/1389201021666201117121452
  • Masum MI, Siddiqa MM, Ali KA, et al. Biogenic synthesis of silver nanoparticles using Phyllanthus emblica fruit extract and its inhibitory action against the pathogen Acidovorax oryzae strain RS-2 of rice bacterial brown stripe. Front Microbiol. 2019;10(APR):820. doi:10.3389/FMICB.2019.00820/BIBTEX
  • Yasir M, Singh J, Tripathi MK, Singh P, Shrivastava R. Green synthesis of silver nanoparticles using leaf extract of common arrowhead houseplant and its anticandidal activity. Pharmacogn Mag. 2018;13(Suppl 4):S840–S844. doi:10.4103/PM.PM_226_17
  • Pilaquinga F, Morejón B, Ganchala D, et al. Green synthesis of silver nanoparticles using Solanum mammosum L. (Solanaceae) fruit extract and their larvicidal activity against Aedes aegypti L. (Diptera:Culicidae). PLoS One. 2019;14(10):e0224109. doi:10.1371/JOURNAL.PONE.0224109
  • Rautela A, Rani J, Debnath (Das) M. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J Anal Sci Technol. 2019;10(1):1–10. doi:10.1186/S40543-018-0163-Z/FIGURES/14
  • Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013;31(2):346–356. doi:10.1016/J.BIOTECHADV.2013.01.003
  • Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. Green synthesis of metallic nanoparticles via biological entities. Mater. 2015;8(11):7278–7308. doi:10.3390/MA8115377
  • Rajiv P, Rajeshwari S, Venckatesh R. Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta A Mol Biomol Spectrosc. 2013;112:384–387. doi:10.1016/J.SAA.2013.04.072
  • Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev. 2003;55(3):403–419. doi:10.1016/S0169-409X(02)00226-0
  • Prasad KS, Pathak D, Patel A, et al. Biogenic synthesis of silver nanoparticles using Nicotiana tobaccum leaf extract and study of their antibacterial effect. Afr J Biotechnol. 2011;10(41):8122–8130. doi:10.5897/AJB11.394
  • Lal S, Jana U, Manna PK, Mohanta GP, Manavalan R, Pal SL. Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci. 2011;2011(6):228–234.
  • Kowalczyk B, Lagzi I, Grzybowski BA. Nanoseparations: strategies for size and/or shape-selective purification of nanoparticles. Curr Opin Colloid Interface Sci. 2011;16(2):135–148. doi:10.1016/J.COCIS.2011.01.004
  • Brice-Profeta S, Arrio MA, Tronc E, et al. Magnetic order in γ-Fe2O3 nanoparticles: a XMCD study. J Magn Magn Mater. 2005;288:354–365. doi:10.1016/J.JMMM.2004.09.120
  • Faraji M, Yamini Y, Rezaee M. Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc. 2010;7(1):1–37. doi:10.1007/BF03245856/METRICS
  • Tiwari DK, Behari J, Sen P. Time and dose-dependent antimicrobial potential of Ag nanoparticles synthesized by top-down approach. Curr Sci. 2008;95(5):647–655.
  • Gupta V, Gupta AR, Kant V. Synthesis, characterization and biomedical applications of nanoparticles. Sci Int. 2013;1(5):167–174. doi:10.5567/SCIINTL.2013.167.174
  • Rajeshkumar S, Bharath LV. Mechanism of plant-mediated synthesis of silver nanoparticles – A review on biomolecules involved, characterisation and antibacterial activity. Chem Biol Interact. 2017;273:219–227. doi:10.1016/J.CBI.2017.06.019
  • De Jaeger N, Demeyere H, Finsy R, et al. Particle sizing by photon correlation spectroscopy part I: monodisperse latices: influence of scattering angle and concentration of dispersed material. Part Part Syst Charact. 1991;8(1–4):179–186. doi:10.1002/PPSC.19910080134
  • Magdy G, Aboelkassim E, El-Domany RA, Belal F. Green synthesis, characterization, and antimicrobial applications of silver nanoparticles as fluorescent nanoprobes for the spectrofluorimetric determination of ornidazole and miconazole. Sci Rep. 2022;12(1):1–15. doi:10.1038/s41598-022-25830-x
  • Amooaghaie R, Saeri MR, Azizi M. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicol Environ Saf. 2015;120:400–408. doi:10.1016/J.ECOENV.2015.06.025
  • Vishveshvar K, Aravind Krishnan MV, Haribabu K, Vishnuprasad S. Green synthesis of copper oxide nanoparticles using Ixiro coccinea plant leaves and its characterization. Bionanoscience. 2018;8(2):554–558. doi:10.1007/S12668-018-0508-5/METRICS
  • Sankar V, Salinraj P, Athira R, Soumya RS, Raghu KG. Cerium nanoparticles synthesized using aqueous extract of Centella asiatica: characterization, determination of free radical scavenging activity and evaluation of efficacy against cardiomyoblast hypertrophy. RSC Adv. 2015;5(27):21074–21083. doi:10.1039/C4RA16893C
  • Alsammarraie FK, Wang W, Zhou P, Mustapha A, Lin M. Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surf B Biointerfaces. 2018;171:398–405. doi:10.1016/J.COLSURFB.2018.07.059
  • Krishnaraj C, Muthukumaran P, Ramachandran R, Balakumaran MD, Kalaichelvan PT. Acalypha indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol Rep. 2014;4(1):42–49. doi:10.1016/J.BTRE.2014.08.002
  • Tyavambiza C, Elbagory AM, Madiehe AM, Meyer M, Meyer S. The antimicrobial and anti-inflammatory effects of silver nanoparticles synthesised from Cotyledon orbiculata aqueous extract. Nanomaterials. 2021;11(5):1343. doi:10.3390/nano11051343
  • Hemlata MPR, Singh AP, Tejavath KK. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega. 2020;5(10):5520–5528. doi:10.1021/acsomega.0c00155
  • Fadaka AO, Meyer S, Ahmed O, et al. Broad spectrum anti-bacterial activity and non-selective toxicity of Gum Arabic silver nanoparticles. Int J Mol Sci. 2022;23(3):1799. doi:10.3390/ijms23031799
  • Liang T, Qiu X, Ye X, et al. Biosynthesis of selenium nanoparticles and their effect on changes in urinary nanocrystallites in calcium oxalate stone formation. Biotech. 2020;10(1):1–6. doi:10.1007/s13205-019-1999-7
  • Raut RW, Haroon ASM, Malghe YS, Nikam BT, Kashid SB. Rapid Biosynthesis Of Platinum And Palladium Metal Nanoparticles Using Root Extract Of Asparagus Racemosus Linn. Adv Mater Lett. 2013;4(8):650–654. doi:10.5185/AMLETT.2012.11470
  • Rabiee N, Bagherzadeh M, Kiani M, Ghadiri AM. Rosmarinus officinalis directed palladium nanoparticle synthesis: investigation of potential anti-bacterial, anti-fungal and Mizoroki-Heck catalytic activities. Adv Powder Technol. 2020;31(4):1402–1411. doi:10.1016/J.APT.2020.01.024
  • Katata-Seru L, Moremedi T, Aremu OS, Bahadur I. Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: removal of nitrate from water and antibacterial activity against Escherichia coli. J Mol Liq. 2018;256:296–304. doi:10.1016/J.MOLLIQ.2017.11.093
  • Kora AJ, Rastogi L. Green synthesis of palladium nanoparticles using gum ghatti (Anogeissus latifolia) and its application as an antioxidant and catalyst. Arab J Chem. 2018;11(7):1097–1106. doi:10.1016/j.arabjc.2015.06.024
  • Kanimozhi S, Durga R, Sabithasree M, et al. Biogenic synthesis of silver nanoparticle using Cissus quadrangularis extract and its invitro study. J King Saud Univ Sci. 2022;34(4):101930. doi:10.1016/j.jksus.2022.101930
  • Sameem S, Neupane NP, Saleh Ansari SM, et al. Phyto-fabrication of silver nanoparticles from Ziziphus mauritiana against hepatic carcinoma via modulation of Rho family-alpha serine/threonine protein kinase. J Drug Deliv Sci Technol. 2022;70:103227. doi:10.1016/J.JDDST.2022.103227
  • Ovais M, Khalil AT, Islam NU, et al. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl Microbiol Biotechnol. 2018;102(16):6799–6814. doi:10.1007/S00253-018-9146-7
  • Ayinde WB, Gitari WM, Munkombwe M, Amidou S. Green synthesis of Ag/MgO nanoparticle modified nanohydroxyapatite and its potential for defluoridation and pathogen removal in groundwater. Phys Chem Earth. 2018;107:25–37. doi:10.1016/j.pce.2018.08.007
  • Dauthal P, Mukhopadhyay M. Phyto-synthesis and structural characterization of catalytically active gold nanoparticles biosynthesized using Delonix regia leaf extract. Biotech. 2016;6(2). doi:10.1007/S13205-016-0432-8
  • Sathiya CK, Akilandeswari S. Fabrication and characterization of silver nanoparticles using Delonix elata leaf broth. Spectrochim Acta Part A Mol Biomol Spectrosc. Spectrochim Acta A Mol Biomol Spectrosc. 2014;128:337–341. doi:10.1016/J.SAA.2014.02.172
  • Ayaz M, Junaid M, Ullah F, et al. Anti-Alzheimer’s studies on ß-sitosterol isolated from Polygonum hydropiper L. Front Pharmacol. 2017;8(OCT). doi:10.3389/FPHAR.2017.00697
  • Jha AK, Prasad K. Mechanistic plethora of biogenetic nanosynthesis: an evaluation. Nanotechnol Life Sci. 2018;1–24. doi:10.1007/978-3-319-99570-0_1/COVER
  • Edison TJI, Sethuraman MG. Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 2012;47(9):1351–1357. doi:10.1016/J.PROCBIO.2012.04.025
  • Saad AM, El-Saadony MT, El-Tahan AM, et al. Polyphenolic extracts from pomegranate and watermelon wastes as substrate to fabricate sustainable silver nanoparticles with larvicidal effect against Spodoptera littoralis. Saudi J Biol Sci. 2021;28(10):5674–5683. doi:10.1016/J.SJBS.2021.06.011
  • Kanwal U, Bukhari NI, Ovais M, Abass N, Hussain K, Raza A. Advances in nano-delivery systems for doxorubicin: an updated insight. J Drug Target. 2018;26(4):296–310. doi:10.1080/1061186X.2017.1380655
  • Londhe S, Haque S, Patra CR. Silver and gold nanoparticles: potential cancer theranostic applications, recent development, challenges, and future perspectives. Gold Silver Nanopart. 2023;247–290. doi:10.1016/B978-0-323-99454-5.00006-8
  • Raja S, Ramesh V, Thivaharan V. Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arab J Chem. 2017;10(2):253–261. doi:10.1016/J.ARABJC.2015.06.023
  • Wang Z, Fang C, Megharaj M. Characterization of iron–polyphenol nanoparticles synthesized by three plant extracts and their Fenton oxidation of azo dye. ACS Sustain Chem Eng. 2014;2(4):1022–1025. doi:10.1021/sc500021n
  • Gopinath K, Kumaraguru S, Bhakyaraj K, et al. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb Pathog. 2016;101:1–11. doi:10.1016/J.MICPATH.2016.10.011
  • Jha AK, Prasad K, Prasad K, Kulkarni AR. Plant system: nature’s nanofactory. Colloids Surf B Biointerfaces. 2009;73(2):219–223. doi:10.1016/J.COLSURFB.2009.05.018
  • Hussain M, Raja NI, Iqbal M, Aslam S. Applications of plant flavonoids in the green synthesis of colloidal silver nanoparticles and impacts on human health. Iran J Sci Technol Trans a Sci. 2019;43(3):1381–1392. doi:10.1007/S40995-017-0431-6/METRICS
  • Zhou Y, Lin W, Huang J, et al. Biosynthesis of gold nanoparticles by foliar broths: roles of biocompounds and other attributes of the extracts. Nanoscale Res Lett. 2010;5(8):1351–1359. doi:10.1007/S11671-010-9652-8
  • Ahmad N, Sharma S, Alam MK, et al. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces. 2010;81(1):81–86. doi:10.1016/J.COLSURFB.2010.06.029
  • Dubey SP, Lahtinen M, Särkkä H, Sillanpää M. Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf B Biointerfaces. 2010;80(1):26–33. doi:10.1016/j.colsurfb.2010.05.024
  • Sahu N, Soni D, Chandrashekhar B, et al. Synthesis of silver nanoparticles using flavonoids: hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity. Int Nano Lett. 2016;6(3):173–181. doi:10.1007/S40089-016-0184-9
  • Sharma V, Janmeda P. Extraction, isolation and identification of flavonoid from Euphorbia neriifolia leaves. Arab J Chem. 2017;10(4):509–514. doi:10.1016/J.ARABJC.2014.08.019
  • Rakhi M, Gopal BB. Terminalia Arjuna Bark Extract Mediated Size Controlled Synthesis of Polyshaped Gold Nanoparticles and Its Application in Catalysis. Int J Res Chem Environ. 2012;2(338):338–344.
  • El-Seedi HR, El-Shabasy RM, Khalifa SAM, et al. Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Adv. 2019;9(42):24539–24559. doi:10.1039/C9RA02225B
  • Nasrollahzadeh M, Sajadi SM. Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature. J Colloid Interface Sci. 2015;457:141–147. doi:10.1016/J.JCIS.2015.07.004
  • Rehman Mashwani UR, Khan Z, Khan T, et al. Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv Colloid Interface Sci. 2016;234:132–141. doi:10.1016/J.CIS.2016.04.008
  • Shankar SS, Ahmad A, Pasricha R, Sastry M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem. 2003;13(7):1822–1826. doi:10.1039/B303808B
  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotech Prog. 2008;22(2):577–583. doi:10.1021/bp0501423
  • Brahmachari G, Sarkar S, Ghosh R, et al. Sunlight-induced rapid and efficient biogenic synthesis of silver nanoparticles using aqueous leaf extract of Ocimum sanctum Linn. with enhanced antibacterial activity. Org Med Chem Lett. 2014;4(1). doi:10.1186/S13588-014-0018-6
  • Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM. Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf B Biointerfaces. 2013;107:227–234. doi:10.1016/J.COLSURFB.2013.02.004
  • Durán M, Silveira CP, Durán N. Catalytic role of traditional enzymes for biosynthesis of biogenic metallic nanoparticles: a mini-review. IET Nanobiotechnol. 2015;9(5):314–323. doi:10.1049/IET-NBT.2014.0054
  • Bhattacharjee RR, Das AK, Haldar D, Si S, Banerjee A, Mandal TK. Peptide-assisted synthesis of gold nanoparticles and their self-assembly. J Nanosci Nanotechnol. 2005;5(7):1141–1147. doi:10.1166/JNN.2005.166
  • Li S, Shen Y, Xie A, et al. Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem. 2007;9(8):852–858. doi:10.1039/B615357G
  • Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science. 2013;339(6122):971–975. doi:10.1126/SCIENCE.1229568
  • Priya MM, Karunai Selvi B, Paul JAJ. green synthesis of silver nanoparticles from the leaf extracts of Euphorbia hirta and Nerium indicum. Dig J Nanomater Biostructures. 2011;6(2):869–877.
  • Molpeceres J, Aberturas MR, Guzman M. Biodegradable nanoparticles as a delivery system for cyclosporine: preparation and characterization. J Microencapsul. 2000;17(5):599–614. doi:10.1080/026520400417658
  • Chauhan RP, Gupta C, Prakash D. Methodological advancements in green nanotechnology and their applications in biological synthesis of herbal nanoparticles. Int J Bioassays. 2012;1(7):6–10.
  • Galdopórpora JM, Municoy S, Ibarra F, et al. A green synthesis method to tune the morphology of CuO and ZnO nanostructures. Curr Nanosci. 2021;19(2):186–193. doi:10.2174/1573413717666210921152709
  • Chauhan CC, Gupta T, Meena SS, et al. Tailoring magnetic and dielectric properties of SrFe12O19/NiFe2O4 ferrite nanocomposites synthesized in presence of Calotropis gigantea (crown) flower extract. J Alloys Compd. 2022;900:163415. doi:10.1021/ac0206723
  • Rehana D, Mahendiran D, Kumar RS, Rahiman AK. In vitro antioxidant and antidiabetic activities of zinc oxide nanoparticles synthesized using different plant extracts. Bioprocess Biosyst Eng. 2017;40(6):943–957. doi:10.1007/S00449-017-1758-2
  • Chauhan CC, Gor AA, Gupta T, Desimone MF, Patni N, Jotania RB. Investigation of structural, optical, magnetic, and dielectric properties of calcium hexaferrite synthesized in presence of Azadirachta indica and Murraya koenigii leaves extract. Ceram Int. 2022;48(14):20134–20145. doi:10.1016/J.CERAMINT.2022.03.292
  • Chen Z, Balankura T, Fichthorn KA, Rioux RM. Revisiting the polyol synthesis of silver nanostructures: role of chloride in nanocube formation. ACS Nano. 2019;13(2):1849–1860. doi:10.1021/ACSNANO.8B08019
  • Nalajala N, Chakraborty A, Bera B, Neergat M. Chloride (Cl−) ion-mediated shape control of palladium nanoparticles. Nanotechnology. 2016;27(6):065603. doi:10.1088/0957-4484/27/6/065603
  • Rajeshkumar S. Synthesis of silver nanoparticles using fresh bark of Pongamia pinnata and characterization of its antibacterial activity against gram positive and gram-negative pathogens. Resour Technol. 2016;2(1):30–35. doi:10.1016/J.REFFIT.2016.06.003
  • López-Serrano A, Olivas RM, Landaluze JS, Cámara C. Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal Methods. 2013;6(1):38–56. doi:10.1039/C3AY40517F
  • Bootz A, Vogel V, Schubert D, Kreuter J. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly (butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm. 2004;57(2):369–375. doi:10.1016/S0939-6411(03)00193-0
  • Mavrocordatos D, Perret D, Leppard GG. Strategies and advances in the characterisation of environmental colloids by electron microscopy. IUPAC Ser Anal Phys Chem Environ Syst. 2007;10:345. doi:10.1002/9780470024539.ch8
  • Balnois E, Papastavrou G, Wilkinson KJ. Environmental colloids and particles: current knowledge and future development. Anal Phys Chem Environ Syst. 2007;2007:1.
  • Bundschuh T, Yun JI, Knopp R. Determination of size, concentration and elemental composition of colloids with laser-induced breakdown detection/spectroscopy (LIBD/S). Fresenius J Anal Chem. 2001;371(8):1063–1069. doi:10.1007/S002160101065/METRICS
  • Bundschuh T, Knopp R, Kim JI. Laser-induced breakdown detection (LIBD) of aquatic colloids with different laser systems. Colloids Surf a Physicochem Eng Asp. 2001;177(1):47–55. doi:10.1016/S0927-7757(99)00497-5
  • Cai Y, Peng WP, Chang HC. Ion Trap Mass Spectrometry of Fluorescently Labeled Nanoparticles. Anal Chem. 2003;75(8):1805–1811. doi:10.1021/AC0206723
  • Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. “Green” synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnology. 2018;16(1):1–24. doi:10.1186/s12951-018-0408-4
  • Mustapha T, Misni N, Ithnin NR, Daskum AM, Unyah NZ. A review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications. Int J Environ Res Public Health. 2022;19(2):674. doi:10.3390/ijerph19020674
  • Ramazanli VN, Ahmadov IS. Synthesis of silver nanoparticles by using extract of Olive leaves. Adv Biol Earth Sci. 2022;7(3):238–244.
  • Sabeena G, Rajaduraipandian S, Pushpalakshmi E, et al. Green and chemical synthesis of CuO nanoparticles: a comparative study for several in vitro bioactivities and in vivo toxicity in zebrafish embryos. J King Saud Univ Sci. 2022;34(5):102092. doi:10.1016/j.jksus.2022.102092
  • Sudhasree S, Shakila Banu A, Brindha P, Kurian GA. Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity. Toxicol Environ Chem. 2014;96(5):743–754. doi:10.1080/02772248.2014.923148
  • Hano C, Abbasi BH. Plant-based green synthesis of nanoparticles: production, characterization and applications. Biomolecules. 2022;12(1):31. doi:10.3390/biom12010031
  • Rahimzadeh CY, Barzinjy AA, Mohammed AS, Hamad SM, Mukherjee A. Green synthesis of SiO2 nanoparticles from Rhus coriaria L. extract: comparison with chemically synthesized SiO2 nanoparticles. PLoS One. 2022;17(8):e0268184. doi:10.1371/journal.pone.0268184
  • Abdelmigid HM, Morsi MM, Hussien NA, Alyamani AA, Al Sufyani NM, Premkumar T. Comparative analysis of nanosilver particles synthesized by different approaches and their antimicrobial efficacy. J Nanomater. 2021;2021:1–12. doi:10.1155/2021/2204776
  • Baran A, Fırat Baran M, Keskin C, et al. Investigation of Antimicrobial and Cytotoxic Properties and Specification of Silver Nanoparticles (AgNPs) Derived from Cicer arietinum L. Green Leaf Extract. Front Bioeng Biotechnol. 2022;10:855136. doi:10.3389/fbioe.2022.855136
  • Aravind M, Amalanathan M, Mary MSM. Synthesis of TiO2 nanoparticles by chemical and green synthesis methods and their multifaceted properties. SN Appl Sci. 2021;3(4):1–10. doi:10.1007/s42452-021-04281-5
  • Meyer RA, Sunshine JC, Green JJ. Biomimetic particles as therapeutics. Trends Biotechnol. 2015;33(9):514–524. doi:10.1016/j.tibtech.2015.07.001
  • Helmy A, El-Shazly M, Seleem A, et al. The synergistic effect of biosynthesized silver nanoparticles from a combined extract of parsley, corn silk, and gum Arabic: In vivo antioxidant, anti-inflammatory and antimicrobial activities. Mater Res Express. 2020;7(2):025002. doi:10.1371/journal.pone.0268184
  • Qanash H, Bazaid AS, Aldarhami A, et al. Phytochemical characterization and efficacy of Artemisia judaica extract loaded chitosan nanoparticles as inhibitors of cancer proliferation and microbial growth. Polym. 2023;15(2):391. doi:10.3390/POLYM15020391
  • Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C Mater Biol Appl. 2014;44:278–284. doi:10.1016/J.MSEC.2014.08.031
  • Kailasa SK, Park TJ, Rohit JV, Koduru JR. Antimicrobial activity of silver nanoparticles. Nanopart Pharmacother. 2019;461–484. doi:10.1016/B978-0-12-816504-1.00009-0
  • Pajerski W, Ochonska D, Brzychczy-Wloch M, et al. Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges. J Nanoparticle Res. 2019;21(8). doi:10.1007/s11051-019-4617-z
  • Ilbasmis-Tamer S, Turk M, Evran Ş, Boyaci IH, Ciftci H, Tamer U. Cytotoxic, apoptotic and necrotic effects of starch coated copper nanoparticles on Capan 1 pancreatic cancer cells. J Drug Deliv Sci Technol. 2023;79. doi:10.1016/j.jddst.2022.104077
  • Ismail AW, Sidkey N, Arafa R, Fathy R, El-Batal A. Evaluation of in vitro antifungal activity of silver and selenium nanoparticles against Alternaria solani caused early blight disease on potato. Br Biotechnol J. 2016;12(3):1–11. doi:10.9734/BBJ/2016/24155
  • Vrandečić K, Ćosić J, Ilić J, et al. Antifungal activities of silver and selenium nanoparticles stabilized with different surface coating agents. Pest Manag Sci. 2020;76(6):2021–2029. doi:10.1002/PS.5735
  • Nandini B, Hariprasad P, Prakash HS, Shetty HS, Geetha N. Trichogenic-selenium nanoparticles enhance disease suppressive ability of Trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet. Sci Reports. 2017;7(1):1–11. doi:10.1038/s41598-017-02737-6
  • Il Raj Yadav AISAD. Applications of Nickel Nanoparticles for Control of Fusarium Wilt on Lettuce and Tomato. Int J Innov Res Sci Eng Technol. 2016;5(5):7378–7385. doi:10.15680/IJIRSET.2016.0505132
  • Divya J, Hegde Yashoda R, Rajasekhar L. Green Nanoparticles - A Novel Approach for the Management of Banana Anthracnose Caused by Colletotrichum musae. Int J Curr Microbiol Appl Sci. 2017;6(10):1749–1756. doi:10.20546/ijcmas.2017.610.211
  • Osonga FJ, Kalra S, Miller RM, Isika D, Sadik OA. Synthesis, characterization and antifungal activities of eco-friendly palladium nanoparticles. RSC Adv. 2020;10(10):5894–5904. doi:10.1039/C9RA07800B
  • Asghar MA, Zahir E, Shahid SM, et al. Iron, copper and silver nanoparticles: green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. LWT. 2018;90:98–107. doi:10.1016/J.LWT.2017.12.009
  • Jacob SJ, Finub JS, Narayanan A. Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B Biointerfaces. 2012;91. doi:10.1016/J.COLSURFB.2011.11.001
  • Satyavani K, Gurudeeban S, Ramanathan T, Balasubramanian T. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J Nanobiotechnology. 2011;9(1):1–8. doi:10.1186/1477-3155-9-43/FIGURES/7
  • Gurunathan S, Lee KJ, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH. Antiangiogenic properties of silver nanoparticles. Biomaterials. 2009;30(31):6341–6350. doi:10.1016/J.BIOMATERIALS.2009.08.008
  • Fuhrmann G. Drug delivery as a sustainable avenue to future therapies. J Control Release. 2023;354:746–754. doi:10.1016/j.jconrel.2023.01.045
  • Kulkarni N, Jain P, Shindikar A, Suryawanshi P, Thorat N. Advances in the colon-targeted chitosan based multiunit drug delivery systems for the treatment of inflammatory bowel disease. Carbohydr Polym. 2022;288:119351. doi:10.1016/j.carbpol.2022.119351
  • Nishanth RP, Jyotsna RG, Schlager JJ, Hussain SM, Reddanna P. Inflammatory responses of RAW 264.7 macrophages upon exposure to nanoparticles: role of ROS-NFκB signaling pathway. Nanotoxicology. 2011;5(4):502–516. doi:10.3109/17435390.2010.541604
  • Zhang J, Fu Y, Yang P, Liu X, Li Y, Gu Z. ROS Scavenging Biopolymers for Anti-Inflammatory Diseases: Classification and Formulation. Adv Mater Interfaces. 2020;7(16). doi:10.1002/admi.202000632
  • Zhou D, Fang T, Qing Lu L, Yi L. Neuroprotective potential of cerium oxide nanoparticles for focal cerebral ischemic stroke. J Huazhong Univ Sci Technol Med Sci. 2016;36(4):480–486. doi:10.1007/s11596-016-1612-9
  • Raghunandan D, Ravishankar B, Sharanbasava G, et al. Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol. 2011;2(1):57–65. doi:10.1007/S12645-011-0014-8
  • Naseer F, Ahmed M, Majid A, Kamal W, Phull AR. Green nanoparticles as multifunctional nanomedicines: insights into anti-inflammatory effects, growth signaling and apoptosis mechanism in cancer. Semin Cancer Biol. 2022;86:310–324. doi:10.1016/j.semcancer.2022.06.014
  • Tabish TA, Hamblin MR. Mitochondria-targeted nanoparticles (mitoNANO): An emerging therapeutic shortcut for cancer. Biomater Biosyst. 2021;3:100023. doi:10.1016/J.BBIOSY.2021.100023
  • Plackal Adimuriyil George B, Kumar N, Abrahamse H, Ray SS. Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells. Sci Rep. 2018;8(1):1–14. doi:10.1038/s41598-018-32480-5
  • Wang H, Zhang F, Wen H, et al. Tumor- And mitochondria-targeted nanoparticles eradicate drug resistant lung cancer through mitochondrial pathway of apoptosis. J Nanobiotechnology. 2020;18(1):1–21. doi:10.1186/S12951-019-0562-3/FIGURES/8
  • Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TPA. Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr. 2007;40(3):163. doi:10.3164/JCBN.40.163
  • Khan V, Najmi AK, Akhtar M, Aqil M, Mujeeb M, Pillai KK. A pharmacological appraisal of medicinal plants with antidiabetic potential. J Pharm Bioallied Sci. 2012;4(1):27. doi:10.4103/0975-7406.92727
  • Alamoudi EF, Khalil WKB, Ghaly IS, Hassan NHA. Nanoparticles from of Costus speciosus extract improves the antidiabetic and antilipidemic effects against STZ-induced diabetes mellitus in Albino rats. Int J Pharm Sci. 2014;2014:1.
  • Al Rashid H. Preparation and characterization of PLGA loaded nanoparticles obtained from D. melanoxylon Roxb. leaves for their antiproliferative and antidiabetic activity. Int J Green Pharm. 2017;11(03). doi:10.22377/IJGP.V11I03.1154
  • Qanash H, Bazaid AS, Alharazi T, et al. Bioenvironmental applications of myco-created bioactive zinc oxide nanoparticle-doped selenium oxide nanoparticles. Biomass Convers Biorefin. 2023:1–12. doi:10.1007/S13399-023-03809-6
  • Deng W, Wang H, Wu B, Zhang X. Selenium-layered nanoparticles serving for oral delivery of phytomedicines with hypoglycemic activity to synergistically potentiate the antidiabetic effect. Acta Pharm Sin B. 2019;9(1):74–86. doi:10.1016/J.APSB.2018.09.009
  • Imran M, Hameed A, Hafizur RM, et al. Fabrication of Xanthan stabilized green gold nanoparticles based tolbutamide delivery system for enhanced insulin secretion in mice pancreatic islets. J Macromol Sci Part A Pure Appl Chem. 2018;55(11–12):729–735. doi:10.1080/10601325.2018.1510290
  • Shaheen TI, El-Naggar ME, Hussein JS, et al. Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats. Biomed Pharmacother. 2016;83:865–875. doi:10.1016/j.biopha.2016.07.052
  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – an updated report. Saudi Pharm J. 2016;24(4):473–484. doi:10.1016/j.jsps.2014.11.013
  • Claussen JC, Kim SS, Haque AU, Artiles MS, Porterfield DM, Fisher TS. Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes. J Diabetes Sci Technol. 2010;4(2):312–319. doi:10.1177/193229681000400211
  • Ahmad H, Venugopal K, Rajagopal K, et al. Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Eucalyptus globules and Their Fungicidal Ability Against Pathogenic Fungi of Apple Orchards. Biomol. 2020;10(3):425. doi:10.3390/BIOM10030425
  • Wahid I, Kumari S, Ahmad R, et al. Silver nanoparticle regulates salt tolerance in wheat through changes in ABA concentration, ion homeostasis, and defense systems. Biomolecules. 2020;10(11):1–19. doi:10.3390/biom10111506
  • Zaeem A, Drouet S, Anjum S, et al. Effects of biogenic zinc oxide nanoparticles on growth and oxidative stress response in flax seedlings vs. in vitro cultures: a comparative analysis. Biomolecules. 2020;10(6):1–16. doi:10.3390/BIOM10060918
  • Hano C, Tungmunnithum D. Plant polyphenols, more than just simple natural antioxidants: oxidative stress, aging and age-related diseases. Medicines. 2020;7(5):26. doi:10.3390/MEDICINES7050026
  • Singh R, Hano C, Nath G, Sharma B. Green Biosynthesis of Silver Nanoparticles Using Leaf Extract of Carissa carandas L. and Their Antioxidant and Antimicrobial Activity against Human Pathogenic Bacteria. Biomol. 2021;11(2):299. doi:10.3390/BIOM11020299
  • Khan SA, Shahid S, Shahid B, Fatima U, Abbasi SA. Green synthesis of MnO nanoparticles using Abutilon indicum leaf extract for biological, photocatalytic, and adsorption activities. Biomol. 2020;10(5):785. doi:10.3390/BIOM10050785
  • Tungmunnithum D, Drouet S, Kabra A, Hano C. enrichment in antioxidant flavonoids of stamen extracts from Nymphaea lotus l. using ultrasonic-assisted extraction and macroporous resin adsorption. Antioxidants. 2020;9(7):576. doi:10.3390/ANTIOX9070576
  • Alshehri AA, Malik MA. Phytomediated photo-induced green synthesis of silver nanoparticles using Matricaria chamomilla l. and its catalytic activity against rhodamine B. Biomolecules. 2020;10(12):1–24. doi:10.3390/BIOM10121604
  • Mallikarjuna K, Nasif O, Alharbi SA, et al. Phytogenic synthesis of Pd-Ag/rGO nanostructures using Stevia leaf extract for photocatalytic H2 production and antibacterial studies. Biomol. 2021;11(2):190. doi:10.3390/BIOM11020190