274
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Biofabrication of Silver Nanoparticles Using Nostoc muscorum Lukesova 2/91: Optimization, Characterization, and Biological Applications

ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 5625-5649 | Received 07 May 2023, Accepted 16 Sep 2023, Published online: 05 Oct 2023

References

  • Arjun PNJ, Sankar B, Shankar KV, et al. Silver and Silver Nanoparticles for the Potential Treatment of COVID-19: a Review. Coatings. 2022;12(11):1679. doi:10.3390/coatings12111679
  • Miu BA, Dinischiotu A. New Green Approaches in Nanoparticles Synthesis: an Overview. Molecules. 2022;27(19):6472. doi:10.3390/molecules27196472
  • Khan F, Shahid A, Zhu H, et al. Prospects of algae-based green synthesis of nanoparticles for environmental applications. Chemosphere. 2022;293:133571. doi:10.1016/j.chemosphere.2022.133571
  • Hamida RS, Ali MA, Abdelmeguid NE, et al. Lichens—A potential source for nanoparticles fabrication: a review on nanoparticles biosynthesis and their prospective applications. J Fungi. 2021;7(4):291. doi:10.3390/jof7040291
  • Ying S, Guan Z, Ofoegbu PC, et al. Green synthesis of nanoparticles: current developments and limitations. Environ Technol Innovation. 2022;26:102336. doi:10.1016/j.eti.2022.102336
  • Chetia L, Kalita D, Ahmed GA. Synthesis of Ag nanoparticles using diatom cells for ammonia sensing. Sensing Bio-Sensing Res. 2017;16:55–61. doi:10.1016/j.sbsr.2017.11.004
  • Kaur K, Sidhu AK, Kaur K, Sidhu AK. Green synthesis: an eco-friendly route for the synthesis of iron oxide nanoparticles. Front Nanotechnol. 2021;3:655062. doi:10.3389/fnano.2021.655062
  • Abdullah SM, Kolo K, Sajadi SM. Greener pathway toward the synthesis of lichen‐based ZnO@ TiO2@ SiO2 and Fe3O4@ SiO2 nanocomposites and investigation of their biological activities. Food Sci Nutrition. 2020;8(8):4044–4054. doi:10.1002/fsn3.1661
  • Husain S, Sardar M, Fatma T. Screening of cyanobacterial extracts for synthesis of silver nanoparticles. World J Microbiol Biotechnol. 2015;31(8):1279–1283. doi:10.1007/s11274-015-1869-3
  • Hamida RS, Abdelmeguid NE, Ali MA, et al. Synthesis of silver nanoparticles using a novel cyanobacteria Desertifilum sp. extract: their antibacterial and cytotoxicity effects. Int J Nanomedicine. 2020;Volume 15:49–63. doi:10.2147/IJN.S238575
  • Hamida RS, Ali MA, Almohawes ZN, et al. Green Synthesis of Hexagonal Silver Nanoparticles Using a Novel Microalgae Coelastrella aeroterrestrica Strain BA_Chlo4 and Resulting Anticancer, Antibacterial, and Antioxidant Activities. Pharmaceutics. 2022;14(10):2002. doi:10.3390/pharmaceutics14102002
  • Ssekatawa K, Byarugaba DK, Kato CD, et al. Green strategy–based synthesis of silver nanoparticles for antibacterial applications. Front Nanotechnol. 2021;3:697303. doi:10.3389/fnano.2021.697303
  • Sarkar K, Banerjee SL, Kundu PP, et al. Biofunctionalized surface-modified silver nanoparticles for gene delivery. J Materials Chem B. 2015;3(26):5266–5276. doi:10.1039/C5TB00614G
  • Jadhav K, Deore S, Dhamecha D, et al. Phytosynthesis of silver nanoparticles: characterization, biocompatibility studies, and anticancer activity. ACS Biomater Sci Eng. 2018;4(3):892–899. doi:10.1021/acsbiomaterials.7b00707
  • Shantkriti S, M P. Bioynthesis of silver nanoparticles using Dunaliella salina and its antibacterial applications. Appl Surface Sci Adv. 2023;13:100377. doi:10.1016/j.apsadv.2023.100377
  • Roychoudhury P, Gopal PK, Paul S, et al. Cyanobacteria assisted biosynthesis of silver nanoparticles—a potential antileukemic agent. J Appl Phycol. 2016;28(6):3387–3394. doi:10.1007/s10811-016-0852-1
  • Varghese Alex K, Tamil Pavai P, Rugmini R, et al. Green synthesized Ag nanoparticles for bio-sensing and photocatalytic applications. ACS omega. 2020;5(22):13123–13129. doi:10.1021/acsomega.0c01136
  • Ghiuță I, Cristea D. Silver Nanoparticles for Delivery Purposes, in Nanoengineered Biomaterials for Advanced Drug Delivery. Elsevier; 2020:347–371.
  • Nath D, Banerjee P. Green nanotechnology–a new hope for medical biology. Environ Toxicol Pharmacol. 2013;36(3):997–1014. doi:10.1016/j.etap.2013.09.002
  • Majeed S, Saravanan M, Danish M, et al. Bioengineering of green-synthesized TAT peptide-functionalized silver nanoparticles for apoptotic cell-death mediated therapy of breast adenocarcinoma. Talanta. 2023;253:124026. doi:10.1016/j.talanta.2022.124026
  • Hamida RS, Ali MA, Redhwan AMO, et al. Cyanobacteria–a promising platform in green nanotechnology: a review on nanoparticles fabrication and their prospective applications. Int J Nanomedicine. 2020;Volume 15:6033–6066. doi:10.2147/IJN.S256134
  • Basiratnia E, Einali A, Azizian-Shermeh O, et al. Biological synthesis of gold nanoparticles from suspensions of green microalga Dunaliella salina and their antibacterial potential. BioNanoScience. 2021;11(4):977–988. doi:10.1007/s12668-021-00897-4
  • Caliskan G, Mutaf T, Agba HC, et al. Green Synthesis and Characterization of Titanium Nanoparticles Using Microalga, Phaeodactylum tricornutum. Geomicrobiol J. 2022;39(1):83–96. doi:10.1080/01490451.2021.2008549
  • Yildirim O, Ozkaya B. Effect of nanoparticles synthesized from green extracts on dark fermentative biohydrogen production. Biomass Bioenergy. 2023;170:106707. doi:10.1016/j.biombioe.2023.106707
  • Asif N, Ahmad R, Fatima S, et al. Toxicological assessment of Phormidium sp. derived copper oxide nanoparticles for its biomedical and environmental applications. Sci Rep. 2023;13(1):6246. doi:10.1038/s41598-023-33360-3
  • Hrouzek P, Ventura S, Lukešová A, et al. Diversity of soil Nostoc strains: phylogenetic and phenotypic variability. Arch Hydrobiol Suppl Algol Stud. 2005;117(1):251–264.
  • Chorus I, Welker M. Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management. Taylor & Francis; 2021.
  • Ahmadi MA, Nourouzi B. A new report of n fixation by two species of cyanobacteria. 2008.
  • Hrouzek P, Tomek P, Lukešová A, et al. Cytotoxicity and secondary metabolites production in terrestrial Nostoc strains, originating from different climatic/geographic regions and habitats: is their cytotoxicity environmentally dependent? Environ Toxicol. 2011;26(4):345–358. doi:10.1002/tox.20561
  • Princy K, Gopinath A. Optimization of physicochemical parameters in the biofabrication of gold nanoparticles using marine macroalgae Padina tetrastromatica and its catalytic efficacy in the degradation of organic dyes. J Nanostructure Chem. 2018;8(3):333–342. doi:10.1007/s40097-018-0277-2
  • Hamida RS, Ali MA, Mugren N, et al. Planophila laetevirens -Mediated Synthesis of Silver Nanoparticles: optimization, Characterization, and Anticancer and Antibacterial Potentials. ACS omega. 2023;8(32):29169–29188. doi:10.1021/acsomega.3c02368
  • Havel J, Link H, Hofinger M, et al. Comparison of genetic algorithms for experimental multi-objective optimization on the example of medium design for cyanobacteria. Biotechnol J. 2006;1(5):549–555. doi:10.1002/biot.200500052
  • Bolch CJ, Orr PT, Jones GJ, et al. Genetic, morphological, and toxicological variation among globally distributed strains of Nodularia (Cyanobacteria). J Phycol. 1999;35(2):339–355. doi:10.1046/j.1529-8817.1999.3520339.x
  • Weisburg WG, Barns SM, Pelletier DA, et al. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2):697–703. doi:10.1128/jb.173.2.697-703.1991
  • Hamida RS, Ali MA, Alkhateeb MA, et al. Algal-Derived Synthesis of Silver Nanoparticles Using the Unicellular ulvophyte sp. MBIC10591: optimisation, Characterisation, and Biological Activities. Molecules. 2022;28(1):279. doi:10.3390/molecules28010279
  • Hamida RS, Ali MA, Alfassam HE, et al. One-Step Phytofabrication Method of Silver and Gold Nanoparticles Using Haloxylon Salicornicum for Anticancer, Antimicrobial, and Antioxidant Activities. Pharmaceutics. 2023;15(2):529. doi:10.3390/pharmaceutics15020529
  • Thakur RS, Ahirwar B. A steroidal derivative from Trigonella foenum graecum L. that induces apoptosis in vitro and in vivo. j Food Drug Analysis. 2019;27(1):231–239. doi:10.1016/j.jfda.2018.05.001
  • Lashkari A, Najafi F, Kavoosi G, et al. Evaluating the In vitro anti-cancer potential of estragole from the essential oil of Agastache foeniculum [Pursh.] Kuntze. Biocatalysis Agr Biotechnol. 2020;27:101727. doi:10.1016/j.bcab.2020.101727
  • Yang X, Zhang X, Yang S-P, et al. Evaluation of the antibacterial activity of patchouli oil. Iranian j Pharm Res. 2013;12(3):307.
  • Mazumder K, Nabila A, Aktar A, et al. Bioactive variability and in vitro and in vivo antioxidant activity of unprocessed and processed flour of nine cultivars of Australian lupin species: a comprehensive substantiation. Antioxidants. 2020;9(4):282. doi:10.3390/antiox9040282
  • Gushiken LFS, Beserra FP, Hussni MF, et al. Beta-caryophyllene as an antioxidant, anti-inflammatory and re-epithelialization activities in a rat skin wound excision model. Oxid Med Cell Longev. 2022;2022:1–21. doi:10.1155/2022/9004014
  • El-Fayoumy EA, Shanab SM, Hassan OM, et al. Enhancement of active ingredients and biological activities of Nostoc linckia biomass cultivated under modified BG-11 0 medium composition. Biomass Conversion Biorefinery. 2021;1–18.
  • Htwe Y, Chow WS, Suda Y, et al., Effect of silver nitrate concentration on the production of silver nanoparticles by green method. Materials Today, 2019;17:568–573.
  • Fu L-M, Hsu J-H, Shih M-K, et al. Process optimization of silver nanoparticle synthesis and its application in mercury detection. Micromachines. 2021;12(9):1123. doi:10.3390/mi12091123
  • Sibiya P, Moloto MJ. Effect of precursor concentration and ph on the shape and size of starch capped silver selenide (ag 2 se) nanoparticles. Chalcogenide lett. 2014;11(11):56.
  • Piñero S, Camero S, Blanco S. Silver nanoparticles: influence of the temperature synthesis on the particles’ morphology. J Phys Conf Ser. 2017.
  • Traiwatcharanon P, Timsorn K, Wongchoosuk C. Flexible room-temperature resistive humidity sensor based on silver nanoparticles. Mater Res Express. 2017;4(8):085038. doi:10.1088/2053-1591/aa85b6
  • Husain S, Verma SK. Antibacterial efficacy of facile cyanobacterial silver nanoparticles inferred by antioxidant mechanism. Mater Sci Eng. 2021;122:111888. doi:10.1016/j.msec.2021.111888
  • Fawcett D, Verduin JJ, Shah M, et al. A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. J Nanosci. 2017;2017:1–15. doi:10.1155/2017/8013850
  • Mukherjee A, Sarkar D, Sasmal S. A review of green synthesis of metal nanoparticles using algae. Front Microbiol. 2021;12:693899. doi:10.3389/fmicb.2021.693899
  • Barabadi H, Mobaraki K, Jounaki K, et al. Exploring the biological application of Penicillium fimorum-derived silver nanoparticles: in vitro physicochemical, antifungal, biofilm inhibitory, antioxidant, anticoagulant, and thrombolytic performance. Heliyon. 2023;9(6):e16853. doi:10.1016/j.heliyon.2023.e16853
  • Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012;5577–5591. doi:10.2147/IJN.S36111
  • Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnology. 2014;12(1):1–11. doi:10.1186/1477-3155-12-5
  • Li Z, Guo M. Healthy efficacy of Nostoc commune Vaucher. Oncotarget. 2018;9(18):14669. doi:10.18632/oncotarget.23620
  • Singh G, Babele PK, Shahi SK, et al. Green synthesis of silver nanoparticles using cell extracts of Anabaena doliolum and screening of its antibacterial and antitumor activity. J Microbiol Biotechnol. 2014;24(10):1354–1367. doi:10.4014/jmb.1405.05003
  • Bin-Meferij MM, Hamida RS. Biofabrication and antitumor activity of silver nanoparticles utilizing novel nostoc sp. Bahar M Int J Nanomed. 2019;Volume 14:9019–9029. doi:10.2147/IJN.S230457
  • Hamida RS, Albasher G, Bin-Meferij MM. Oxidative stress and apoptotic responses elicited by nostoc-synthesized silver nanoparticles against different cancer cell lines. Cancers. 2020;12(8):2099. doi:10.3390/cancers12082099
  • Umapathi A, Madhyastha H, Navya PN, et al. Surface chemistry driven selective anticancer potential of functional silver nanoparticles toward lung cancer cells. Colloids Surf a Physicochem Eng Asp. 2022;652:129809. doi:10.1016/j.colsurfa.2022.129809
  • Abbaszadegan A, Ghahramani Y, Gholami A, et al. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater. 2015;16(1):53.