297
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Controlled SPION-Exosomes Loaded with Quercetin Preserves Pancreatic Beta Cell Survival and Function in Type 2 Diabetes Mellitus

, , , ORCID Icon, , , , & show all
Pages 5733-5748 | Received 26 Jun 2023, Accepted 23 Sep 2023, Published online: 12 Oct 2023

References

  • Tinajero MG, Malik VS. An update on the epidemiology of type 2 diabetes: a global perspective. Endocrin Metab Clin of North America. 2021;50(3):337–355. doi:10.1016/j.ecl.2021.05.013
  • Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus -- present and future perspectives. Nat Rev Endocrinol. 2011;8(4):228–236. doi:10.1038/nrendo.2011.183
  • Defronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med. 2000;133(1):73–74. doi:10.7326/0003-4819-133-1-200007040-00016
  • Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98. doi:10.1038/nrendo.2017.151
  • Artasensi A, Pedretti A, Vistoli G, Fumagalli L. Type 2 diabetes mellitus: a review of multi-target drugs. Molecules. 2020;25(8). doi:10.3390/molecules25081987
  • Gloyn AL, Drucker DJ. Precision medicine in the management of type 2 diabetes. Lancet Diabetes Endo. 2018;6(11):891–900. doi:10.1016/S2213-8587(18)30052-4
  • Wang Y, Dai Z, Wang Q, et al. Clinical application of traditional Chinese medicine therapy for type 2 diabetes mellitus: an evidence map. Evid-Based Compl Alt: eCAM. 2022;2022:2755332. doi:10.1155/2022/2755332
  • Ghorbani A, Rashidi R, Shafiee-Nick R. Flavonoids for preserving pancreatic beta cell survival and function: a mechanistic review. Biomed Pharmacother. 2019;111:947–957. doi:10.1016/j.biopha.2018.12.127
  • Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol Res. 2005;51(2):117–123. doi:10.1016/j.phrs.2004.06.002
  • Li D, Jiang C, Mei G, et al. Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes. Nutrients. 2020;12(10):2954. doi:10.3390/nu12102954
  • Maciel RM, Costa MM, Martins DB, et al. Antioxidant and anti-inflammatory effects of quercetin in functional and morphological alterations in streptozotocin-induced diabetic rats. Res Vet Sci. 2013;95(2):389–397. doi:10.1016/j.rvsc.2013.04.028
  • Zhuang M, Qiu H, Li P, Hu L, Wang Y, Rao L. Islet protection and amelioration of type 2 diabetes mellitus by treatment with quercetin from the flowers of Edgeworthia gardneri. Drug Drug Des Dev Ther. 2018;12:955–966. doi:10.2147/dddt.s153898
  • Khaled KA, El-Sayed YM, Al-Hadiya BM. Disposition of the flavonoid quercetin in rats after single intravenous and oral doses. Drug Dev Ind Pharm. 2001;29(4):397–403. doi:10.1081/ddc-120018375
  • Farokhzad OC, Robert L. Impact of nanotechnology on drug delivery. Acs Nano. 2009;3(1):16–20. doi:10.1021/nn900002m
  • Giannouli M, Karagkiozaki V, Pappa F, Moutsios I, Gravalidis C, Logothetidis S. Fabrication of quercetin-loaded PLGA nanoparticles via electrohydrodynamic atomization for cardiovascular disease. Mater Today: Proceedings. 2018;5:15998–16005. doi:10.1016/j.matpr.2018.05.044
  • Seong JS, Yun ME, Park SN. Surfactant-stable and pH-sensitive liposomes coated with N-succinyl-chitosan and chitooligosaccharide for delivery of quercetin. Carbohyd Polym. 2018;181:659–667. doi:10.1016/j.carbpol.2017.11.098
  • Debnath K, Jana NR, Jana NR. Quercetin encapsulated polymer nanoparticle for inhibiting intracellular polyglutamine aggregation. Acs Appl Bio Mater. 2019;2(12):5298–5305. doi:10.1021/acsabm.9b00518
  • Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomedicine. 2020;15:6917–6934. doi:10.2147/ijn.s264498
  • Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9(1). doi:10.1186/s13578-019-0282-2
  • Sun Y, Shi H, Yin S, et al. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano. 2018;12(8):7613–7628. doi:10.1021/acsnano.7b07643
  • Wei H, Hu Y, Wang J, Gao X, Qian X, Tang M. Superparamagnetic iron oxide nanoparticles: cytotoxicity, metabolism, and cellular behavior in biomedicine applications. Int J Nanomedicine. 2021;16:6097–6113. doi:10.2147/ijn.s321984
  • Qi H, Liu C, Long L, et al. Blood exosomes endowed with magnetic and targeting properties for cancer therapy. Acs Nano. 2016;10(3):3323–3333. doi:10.1021/acsnano.5b06939
  • Jia G, Han Y, An Y, et al. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials. 2018;178:302–316. doi:10.1016/j.biomaterials.2018.06.029
  • Zhuang M, Du D, Pu L, et al. SPION-decorated exosome delivered BAY 55-9837 targeting the pancreas through magnetism to improve the blood GLC response. Small. 2019;15(52):1903135. doi:10.1002/smll.201903135
  • Zhuang MJ, Chen XL, Du D, et al. SPION decorated exosome delivery of TNF-alpha to cancer cell membranes through magnetism. Nanoscale. 2020;12(1):173–188. doi:10.1039/c9nr05865f
  • Hekmatirad S, Moloudizargari M, Moghadamnia AA, et al. Inhibition of exosome release sensitizes U937 cells to pegylated liposomal doxorubicin. Front Immunol. 2021;12:692654. doi:10.3389/fimmu.2021.692654
  • Perugini V, Best M, Kumar S, et al. Carboxybetaine-modified succinylated chitosan-based beads encourage pancreatic β-cells (Min-6) to form islet-like spheroids under in vitro conditions. JJ Mater Sci-Mater M. 2017;29(1):15. doi:10.1007/s10856-017-6018-0
  • Zhang C, Deng J, Liu D, et al. Nuciferine ameliorates hepatic steatosis in high-fat diet/streptozocin-induced diabetic mice through a pparα/pparγ coactivator-1α pathway. Br J Pharmacol. 2018;175(22):4218–4228. doi:10.1111/bph.14482
  • Cheng Y, Yu X, Zhang J, et al. Pancreatic kallikrein protects against diabetic retinopathy in KK Cg-A(y)/J and high-fat diet/streptozotocin-induced mouse models of type 2 diabetes. Diabetologia. 2019;62(6):1074–1086. doi:10.1007/s00125-019-4838-9
  • Small L, Ehrlich A, Iversen J, et al. Comparative analysis of oral and intraperitoneal glucose tolerance tests in mice. Mol Metab. 2022;57:101440. doi:10.1016/j.molmet.2022.101440
  • Kawada-Horitani E, Kita S, Okita T, et al. Human adipose-derived mesenchymal stem cells prevent type 1 diabetes induced by immune checkpoint blockade. Diabetologia. 2022;65(7):1185–1197. doi:10.1007/s00125-022-05708-3
  • Ryan K. Selective disruption of Tcf7l2 in the pancreatic β cell impairs secretory function and lowers β cell mass. Hum Mol Genet. 2014;24(5):1390–1399. doi:10.1093/hmg/ddu553
  • Oh P. Preparation of quercetin esters and their antioxidant activity. J Agr Food Chem. 2019;67(38):10653–10659. doi:10.1021/acs.jafc.9b04154
  • Li JM, Wang W, Fan CY, et al. Quercetin preserves β -cell mass and function in fructose-induced hyperinsulinemia through modulating pancreatic akt/foxo1 activation. Evid-Based Compl Alt: eCAM. 2013;2013:303902. doi:10.1155/2013/303902
  • Carrasco-Pozo C, Tan KN, Reyes-Farias M, et al. The deleterious effect of cholesterol and protection by quercetin on mitochondrial bioenergetics of pancreatic β-cells, glycemic control and inflammation: in vitro and in vivo studies. Redox Biol. 2016;9:229–243. doi:10.1016/j.redox.2016.08.007
  • Kim E-K, Kwon K-B, Song M-Y, et al. Flavonoids protect against cytokine-induced pancreatic β-cell damage through suppression of nuclear factor κb activation. Pancreas. 2007;35(4):e1–9. doi:10.1097/mpa.0b013e31811ed0d2
  • Zhang Y, Liu D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur J Pharmacol. 2011;670(1):325–332. doi:10.1016/j.ejphar.2011.08.011
  • Kappel VD, Frederico MJS, Postal BG, Mendes CP, Cazarolli LH, Silva FRMB. The role of calcium in intracellular pathways of rutin in rat pancreatic islets: potential insulin secretagogue effect. Eur J Pharmacol. 2013;702(1):264–268. doi:10.1016/j.ejphar.2013.01.055
  • Lv X, Liu T, Ma H, et al. Preparation of essential oil-based microemulsions for improving the solubility, ph stability, photostability, and skin permeation of quercetin. AAPS PharmSciTech. 2017;18(8):3097–3104. doi:10.1208/s12249-017-0798-x
  • Zhi D, Yang T, Yang J, Fu S, Zhang S. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater. 2020;102:13–34. doi:10.1016/j.actbio.2019.11.027
  • Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606–1614. doi:10.1038/mt.2010.105
  • Shao J, Zaro J, Shen Y. Advances in exosome-based drug delivery and tumor targeting: from tissue distribution to intracellular fate. Int J Nanomedicine. 2020;15:9355–9371. doi:10.2147/ijn.s281890
  • Vessal M, Hemmati M, Vasei M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol C Toxicol Pharmacol. 2003;135(3):357–364. doi:10.1016/s1532-0456(03)00140-6