210
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Anticancer Analysis of CD44 Targeted Cyclosporine Loaded Thiolated Chitosan Nanoformulations for Sustained Release in Triple-Negative Breast Cancer

ORCID Icon
Pages 5713-5732 | Received 08 Jun 2023, Accepted 30 Sep 2023, Published online: 11 Oct 2023

References

  • Terkelsen T, Russo F, Gromov P, et al. Secreted breast tumor interstitial fluid microRNAs and their target genes are associated with triple-negative breast cancer, tumor grade, and immune infiltration. Breast Cancer Res. 2020;22(1):1–36. doi:10.1186/s13058-020-01295-6
  • Bou Zerdan M, Ghorayeb T, Saliba F, et al. Triple-negative breast cancer: updates on classification and treatment in 2021. Cancers. 2022;14:1253. doi:10.3390/cancers14051253
  • Ismail A, El-Mahdy HA, Abulsoud AI, et al. Beneficial and detrimental aspects of miRNAs as chief players in breast cancer: a comprehensive review. Int J Biol Macromolecules. 2022:67.
  • Cuthbert RJ, Russell NH, Jones PA, Morgan AG. Treatment of acute myeloid leukaemia in a renal allograft recipient: implications of cyclosporin immunosuppressive treatment. J Clin Pathol. 1991;44:693–695. doi:10.1136/jcp.44.8.693
  • Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases. Signal Transduction Targeted Therapy. 2022;7:272. doi:10.1038/s41392-022-01134-4
  • Hao W, Cui Y, Fan Y, et al. Hybrid membrane-coated nanosuspensions for multi-modal anti-glioma therapy via drug and antigen delivery. J Nanobiotechnol. 2021;19(1):1–24. doi:10.1186/s12951-021-01110-0
  • Guo X, Wei X, Chen Z, Zhang X, Yang G, Zhou S. Multifunctional nanoplatforms for subcellular delivery of drugs in cancer therapy. Progress Materials Sci. 2020;107:100599.
  • Tong X, Pan W, Su T, Zhang M, Dong W, Qi X. Recent advances in natural polymer-based drug delivery systems. Reactive Functional Polymers. 2020;148:104501. doi:10.1016/j.reactfunctpolym.2020.104501
  • Naseer F, Ahmad T, Kousar K, Kakar S, Gul R, Anjum S. Formulation of surface-functionalized hyaluronic acid-coated thiolated chitosan nano-formulation for the delivery of vincristine in prostate cancer: a multifunctional targeted drug delivery approach. J Drug Delivery Sci Technol. 2022;74:103545. doi:10.1016/j.jddst.2022.103545
  • Pillai CKS, Paul W, Sharma CP. Chitosan: manufacture, properties and uses. Chitosan. 2011;133–216.
  • Mohammad F, A. Al-Lohedan H, N. Al-Haque H. Chitosan-mediated fabrication of metal nanocomposites for enhanced biomedical applications. Adv Materials Lett. 2017;8(2):89–100. doi:10.5185/amlett.2017.6925
  • Kousar K, Naseer F, Abduh MS, et al. Green synthesis of hyaluronic acid coated, thiolated chitosan nanoparticles for CD44 targeted delivery and sustained release of Cisplatin in cervical carcinoma. Front Pharmacol. 2022;13.
  • Sarkar SD, Farrugia BL, Dargaville TR, Dhara S. Physico-chemical/biological properties of tripolyphosphate cross-linked chitosan based nanofibers. Materials Sci Eng C. 2013;33(3):1446–1454. doi:10.1016/j.msec.2012.12.066
  • Narmani A, Jafari SM. Chitosan-based nanodelivery systems for cancer therapy: recent advances. Carbohydrate Polymers. 2021;272:118464. doi:10.1016/j.carbpol.2021.118464
  • Luo M, Wicha MS. Targeting cancer stem cell redox metabolism to enhance therapy responses. Proce Semi Radiation Oncol. 2019;29(1):42–54. doi:10.1016/j.semradonc.2018.10.003
  • Mattheolabakis G, Milane L, Singh A, Amiji MM. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J Drug Targeting. 2015;23(7–8):605–618. doi:10.3109/1061186X.2015.1052072
  • Uz Zaman S, Arshad R, Tabish TA, Naseem AA, Shahnaz G. others Mapping the potential of thiolated pluronic based nanomicelles for the safe and targeted delivery of vancomycin against staphylococcal blepharitis. J Drug Delivery Sci Technol. 2021;61:102220. doi:10.1016/j.jddst.2020.102220
  • Anitha A, Deepa N, Chennazhi KP, Nair SV, Tamura H, Jayakumar R. Development of mucoadhesive thiolated chitosan nanoparticles for biomedical applications. Carbohydrate Polymers. 2011;83(1):66–73. doi:10.1016/j.carbpol.2010.07.028
  • Wang Y, Cai H, Naviner LAB, et al. A process-variation-resilient methodology of circuit design by using asymmetrical forward body bias in 28 nm FDSOI. Microelectronics Reliability. 2016;64:26–30. doi:10.1016/j.microrel.2016.07.073
  • Silvestro I, Francolini I, Di Lisio V, Martinelli A, Pietrelli L. Preparation and characterization of TPP-chitosan crosslinked scaffolds for tissue engineering. Materials. 2020;13(16):3577. doi:10.3390/ma13163577
  • Mukhtar M, Pallagi E, Csóka I, et al. Aerodynamic properties and in silico deposition of isoniazid loaded chitosan/thiolated chitosan and hyaluronic acid hybrid nanoplex DPIs as a potential TB treatment. Int J Biol Macromolecules. 2020;165:3007–3019. doi:10.1016/j.ijbiomac.2020.10.192
  • Yanat M, Schroën K. Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. Reactive Functional Polymers. 2021;161:104849. doi:10.1016/j.reactfunctpolym.2021.104849
  • Jalilian M, Derakhshandeh K, Kurd M, Lashani H. Targeting Solid Lipid Nanoparticles with Anisamide for Docetaxel Delivery to Prostate Cancer: preparation, Optimization, and In-vitro Evaluation. Iranian J Pharm Res. 2021;20:327. doi:10.22037/ijpr.2020.113436.14302
  • Ghaferi M, Amari S, Vivek Mohrir B, Raza A, Ebrahimi Shahmabadi H, Alavi SE. Preparation, characterization, and evaluation of cisplatin-loaded polybutylcyanoacrylate nanoparticles with improved in vitro and in vivo anticancer activities. Pharmaceuticals. 2020;13(3):44. doi:10.3390/ph13030044
  • Bhattacharya DS, Svechkarev D, Souchek JJ, et al. Impact of structurally modifying hyaluronic acid on CD44 interaction. J Materials Chem B. 2017;5:8183–8192. doi:10.1039/C7TB01895A
  • Nur SG, Buket O, Sezgi K, et al. Synthesis of methotrexate loaded chitosan nanoparticles and in vitro evaluation of the potential in treatment of prostate cancer. Anti-Cancer Agents Medicinal Chem. 2016;16(8):1038–1042. doi:10.2174/1871520616666160101120040
  • Kumar N, Salar RK, Prasad M, Ranjan K. Synthesis, characterization and anticancer activity of vincristine loaded folic acid-chitosan conjugated nanoparticles on NCI-H460 non-small cell lung cancer cell line. Egyptian J Basic Appl Sci. 2018;5(1):87–99. doi:10.1016/j.ejbas.2017.11.002
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. doi:10.3390/pharmaceutics10020057
  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Controlled Release. 2000;65(1–2):271–284. doi:10.1016/S0168-3659(99)00248-5
  • Maria S, Sarwar HS, Sohail MF, et al. Synthesis and characterization of pre-activated thiolated chitosan nanoparticles for oral delivery of octreotide. J Drug Delivery Sci Technol. 2020;58:101807. doi:10.1016/j.jddst.2020.101807
  • Wang T, Hou J, Su C, Zhao L, Shi Y. Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44. J Nanobiotechnol. 2017;15(1):1–12. doi:10.1186/s12951-016-0245-2
  • Nakamura H, Watano S. Direct permeation of nanoparticles across cell membrane: a review. KONA Powder Particle J. 2018;2018011.
  • Sahu T, Ratre YK, Chauhan S, Bhaskar L, Nair MP, Verma HK. Nanotechnology based drug delivery system: current strategies and emerging therapeutic potential for medical science. J Drug Delivery Sci Technol. 2021;63:102487. doi:10.1016/j.jddst.2021.102487
  • Anitha A, Maya S, Deepa N, Chennazhi KP, Nair SV, Jayakumar R. Curcumin-loaded N, O-carboxymethyl chitosan nanoparticles for cancer drug delivery. J Biomaterials Sci Polymer Edition. 2012;23:1381–1400. doi:10.1163/092050611X581534
  • Eliezar J, Scarano W, Boase NRB, Thurecht KJ, Stenzel MH. In vivo evaluation of folate decorated cross-linked micelles for the delivery of platinum anticancer drugs. Biomacromolecules. 2015;16:515–523. doi:10.1021/bm501558d
  • Shahnaz G, Edagwa BJ, McMillan J, et al. Development of mannose-anchored thiolated amphotericin B nanocarriers for treatment of visceral leishmaniasis. Nanomedicine. 2017;12(2):99–115. doi:10.2217/nnm-2016-0325
  • Oh J-W, Chun SC, Chandrasekaran M. Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agronomy. 2019;9(1):21. doi:10.3390/agronomy9010021
  • Petschauer JS, Madden AJ, Kirschbrown WP, Song G, Zamboni WC. The effects of nanoparticle drug loading on the pharmacokinetics of anticancer agents. Nanomedicine. 2015;10(3):447–463. doi:10.2217/nnm.14.179
  • Xu S, Xu Q, Zhou J, Wang J, Zhang N, Zhang L. Preparation and characterization of folate-chitosan-gemcitabine core--shell nanoparticles for potential tumor-targeted drug delivery. J Nanosci Nanotechnol. 2013;13:129–138. doi:10.1166/jnn.2013.6794
  • Wang W, Tong C, Liu X, Li T, Liu B, Xiong W. Preparation and functional characterization of tumor-targeted folic acid-chitosan conjugated nanoparticles loaded with mitoxantrone. J Central South Univ. 2015;22(9):3311–3317. doi:10.1007/s11771-015-2871-5