380
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Bovine Serum Albumin – Hydroxyapatite Nanoflowers as Potential Local Drug Delivery System of Ciprofloxacin

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 6449-6467 | Received 28 Jul 2023, Accepted 05 Oct 2023, Published online: 08 Nov 2023

References

  • Jain KK. An Overview of Drug Delivery Systems. Drug Delivery Sys. 2020:1–54. doi:10.1007/978-1-4939-9798-5_1
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. doi:10.1186/s12951-018-0392-8
  • Stolarczyk EU, Leś A, Łaszcz M, et al. The ligand exchange of citrates to thioabiraterone on gold nanoparticles for prostate cancer therapy. Int J Pharm. 2020;583:119319. doi:10.1016/j.ijpharm.2020.119319
  • Stolarczyk EU, Stolarczyk K, Łaszcz M, et al. Synthesis and characterization of genistein conjugated with gold nanoparticles and the study of their cytotoxic properties. Eur J Pharm Sci. 2017;96:176–185. doi:10.1016/j.ejps.2016.09.019
  • Maruszak W, Stolarczyk EU, Stolarczyk K. CE method for the in-process control of the synthesis of active substances conjugated with gold nanoparticles. J Pharm Biomed Anal. 2017;141:52–58. doi:10.1016/j.jpba.2017.03.048
  • Dzwonek M, Załubiniak D, Piątek P, et al. Towards potent but less toxic nanopharmaceuticals – lipoic acid bioconjugates of ultrasmall gold nanoparticles with an anticancer drug and addressing unit. RSC Adv. 2018;8(27):14947–14957. doi:10.1039/C8RA01107A
  • Swiech O, Majdecki M, Bilewicz R. PEGylated Network Nanostructured by Gold Nanoparticles for Electrochemical Sensing of Aromatic Redox and Nonredox Analytes. ACS Appl Polym Mater. 2023;5(1):214–222. doi:10.1021/acsapm.2c01451
  • Swiech O, Krzak A, Majdecki M, et al. Water-soluble galactosamine derivative of β-cyclodextrin as protective ligand and targeted carrier for delivery of toxic anthracycline drug. Int J Pharm. 2020;589:119834. doi:10.1016/j.ijpharm.2020.119834
  • Swiech O, Majdecki M, Opuchlik LJ, Bilewicz R. Impact of pH and cell medium on the interaction of doxorubicin with lipoic acid cyclodextrin conjugate as the drug carrier. J Incl Phenom Macrocycl Chem. 2020;97(1–2):129–136. doi:10.1007/s10847-020-00994-z
  • Bartkowiak A, Matyszewska D, Krzak A, Zaborowska M, Broniatowski M, Bilewicz R. Incorporation of simvastatin into lipid membranes: why deliver a statin in form of inclusion complex with hydrophilic cyclodextrin. Colloids Surfaces B Biointerfaces. 2021;204:111784. doi:10.1016/j.colsurfb.2021.111784
  • Mierzwa M, Cytryniak A, Krysiński P, Bilewicz R. Lipidic Liquid Crystalline Cubic Phases and Magnetocubosomes as Methotrexate Carriers. Nanomaterials. 2019;9(4):636. doi:10.3390/nano9040636
  • Cytryniak A, Nazaruk E, Bilewicz R, et al. Lipidic Cubic-Phase Nanoparticles (Cubosomes) Loaded with Doxorubicin and Labeled with 177Lu as a Potential Tool for Combined Chemo and Internal Radiotherapy for Cancers. Nanomaterials. 2020;10(11):2272. doi:10.3390/nano10112272
  • Cytryniak A, Żelechowska-Matysiak K, Nazaruk E, et al. Cubosomal Lipid Formulation for Combination Cancer Treatment: delivery of a Chemotherapeutic Agent and Complexed α-Particle Emitter 213 Bi. Mol Pharm. 2022;19(8):2818–2831. doi:10.1021/acs.molpharmaceut.2c00182
  • Bartkowiak A, Nazaruk E, Gajda E, et al. Simvastatin Coadministration Modulates the Electrostatically Driven Incorporation of Doxorubicin into Model Lipid and Cell Membranes. ACS Biomater Sci Eng. 2022;8(10):4354–4364. doi:10.1021/acsbiomaterials.2c00724
  • García Del Pozo E, Collazos J, Cartón JA, Camporro D, Asensi V. Bacterial osteomyelitis: microbiological, clinical, therapeutic, and evolutive characteristics of 344 episodes. Rev Esp Quimioter. 2018;31(3):217–225.
  • Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629–655. doi:10.1016/S0140-6736(21)02724-0
  • Ge J, Lei J, Zare RN. Protein–inorganic hybrid nanoflowers. Nat Nanotechnol. 2012;7(7):428–432. doi:10.1038/nnano.2012.80
  • Dube S, Rawtani D. Understanding intricacies of bioinspired organic-inorganic hybrid nanoflowers: a quest to achieve enhanced biomolecules immobilization for biocatalytic, biosensing and bioremediation applications. Adv Colloid Interface Sci. 2021;295:102484. doi:10.1016/j.cis.2021.102484
  • Le XA, Le TN, Kim M. Dual-Functional Peroxidase-Copper Phosphate Hybrid Nanoflowers for Sensitive Detection of Biological Thiols. Int J Mol Sci. 2021;23(1):366. doi:10.3390/ijms23010366
  • Batule BS, Park KS, Gautam S, Cheon HJ, Kim M, Park HG. Intrinsic peroxidase-like activity of sonochemically synthesized protein copper nanoflowers and its application for the sensitive detection of glucose. Sensors Actuators B Chem. 2019;283:749–754. doi:10.1016/j.snb.2018.12.028
  • Guo J, Wang Y, Zhao M. A self-activated nanobiocatalytic cascade system based on an enzyme-inorganic hybrid nanoflower for colorimetric and visual detection of glucose in human serum. Sensors Actuators B Chem. 2019;284:45–54. doi:10.1016/j.snb.2018.12.102
  • Shcharbin D, Halets-Bui I, Abashkin V, et al. Hybrid metal-organic nanoflowers and their application in biotechnology and medicine. Colloids Surfaces B Biointerfaces. 2019;182:110354. doi:10.1016/j.colsurfb.2019.110354
  • Liu Y, Chen J, Du M, Wang X, Ji X, He Z. The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker. Biosens Bioelectron. 2017;92:68–73. doi:10.1016/j.bios.2017.02.004
  • Zhu J, Wen M, Wen W, et al. Recent progress in biosensors based on organic-inorganic hybrid nanoflowers. Biosens Bioelectron. 2018;120:175–187. doi:10.1016/j.bios.2018.08.058
  • Aydemir D, Gecili F, Özdemir N, Nuray Ulusu N. Synthesis and characterization of a triple enzyme-inorganic hybrid nanoflower (TrpE@ihNF) as a combination of three pancreatic digestive enzymes amylase, protease and lipase. J Biosci Bioeng. 2020;129(6):679–686. doi:10.1016/j.jbiosc.2020.01.008
  • Zhang Z, Zhang Y, Song R, et al. Manganese(II) phosphate nanoflowers as electrochemical biosensors for the high-sensitivity detection of ractopamine. Sensors Actuators B Chem. 2015;211:310–317. doi:10.1016/j.snb.2015.01.106
  • Zhang Z, Zhang Y, He L, et al. A feasible synthesis of Mn 3 (PO 4) 2 @BSA nanoflowers and its application as the support nanomaterial for Pt catalyst. J Power Sources. 2015;284:170–177. doi:10.1016/j.jpowsour.2015.03.011
  • Cui J, Jia S. Organic–inorganic hybrid nanoflowers: a novel host platform for immobilizing biomolecules. Coord Chem Rev. 2017;352:249–263. doi:10.1016/j.ccr.2017.09.008
  • Kim KH, Jeong JM, Lee SJ, Choi BG, Lee KG. Protein-directed assembly of cobalt phosphate hybrid nanoflowers. J Colloid Interface Sci. 2016;484:44–50. doi:10.1016/j.jcis.2016.08.059
  • Altinkaynak C, Tavlasoglu S, Ÿzdemir N, Ocsoy I. A new generation approach in enzyme immobilization: organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme Microb Technol. 2016;93-94:105–112. doi:10.1016/j.enzmictec.2016.06.011
  • Bilal M, Asgher M, Shah SZH, Iqbal HMN. Engineering enzyme-coupled hybrid nanoflowers: the quest for optimum performance to meet biocatalytic challenges and opportunities. Int J Biol Macromol. 2019;135:677–690. doi:10.1016/j.ijbiomac.2019.05.206
  • Somturk B, Yilmaz I, Altinkaynak C, Karatepe A, Özdemir N, Ocsoy I. Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme Microb Technol. 2016;86:134–142. doi:10.1016/j.enzmictec.2015.09.005
  • Hao M, Fan G, Zhang Y, Xin Y, Zhang L. Preparation and characterization of copper-Brevibacterium cholesterol oxidase hybrid nanoflowers. Int J Biol Macromol. 2019;126:539–548. doi:10.1016/j.ijbiomac.2018.12.237
  • Gaetke LM, Chow-Johnson HS, Chow CK. Copper: toxicological relevance and mechanisms. Arch Toxicol. 2014;88(11):1929–1938. doi:10.1007/s00204-014-1355-y
  • Farcasanu IC, Popa CV, Ruta LL. Calcium and Cell Response to Heavy Metals: can Yeast Provide an Answer? Calcium Signal Transduction. 2018. doi:10.5772/intechopen.78941
  • Li K, Wang XF, Li DY, et al. The good, the bad, and the ugly of calcium supplementation: a review of calcium intake on human health. Clin Interv Aging. 2018;13:2443–2452. doi:10.2147/CIA.S157523
  • Giorgi C, Marchi S, Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol. 2018;19(11):713–730. doi:10.1038/s41580-018-0052-8
  • Wang LB, Wang YC, He R, et al. A New Nanobiocatalytic System Based on Allosteric Effect with Dramatically Enhanced Enzymatic Performance. J Am Chem Soc. 2013;135(4):1272–1275. doi:10.1021/ja3120136
  • Koley P, Sakurai M, Takei T, Aono M. Facile fabrication of silk protein sericin-mediated hierarchical hydroxyapatite-based bio-hybrid architectures: excellent adsorption of toxic heavy metals and hazardous dye from wastewater. RSC Adv. 2016;6(89):86607–86616. doi:10.1039/C6RA12818A
  • Ghosh K, Balog ERM, Sista P, et al. Temperature-dependent morphology of hybrid nanoflowers from elastin-like polypeptides. APL Mater. 2014;2(2):021101. doi:10.1063/1.4863235
  • Yin Y, Xiao Y, Lin G, Xiao Q, Lin Z, Cai Z. An enzyme–inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity. J Mater Chem B. 2015;3(11):2295–2300. doi:10.1039/C4TB01697A
  • Zhao F, Wang Q, Dong J, et al. Enzyme-inorganic nanoflowers/alginate microbeads: an enzyme immobilization system and its potential application. Process Biochem. 2017;57:87–94. doi:10.1016/j.procbio.2017.03.026
  • Liu Y, Zhang Y, Li X, Yuan Q, Liang H. Self-repairing metal–organic hybrid complexes for reinforcing immobilized chloroperoxidase reusability. Chem Commun. 2017;53(22):3216–3219. doi:10.1039/C6CC10319G
  • Wang X, Shi J, Li Z, et al. Facile One-Pot Preparation of Chitosan/Calcium Pyrophosphate Hybrid Microflowers. ACS Appl Mater Interfaces. 2014;6(16):14522–14532. doi:10.1021/am503787h
  • Ye R, Zhu C, Song Y, et al. One-pot bioinspired synthesis of all-inclusive protein–protein nanoflowers for point-of-care bioassay: detection of E. coli O157:H7 from milk. Nanoscale. 2016;8(45):18980–18986. doi:10.1039/C6NR06870G
  • Patel D, Haag SL, Patel JS, Ytreberg FM, Bernards MT. Paired Simulations and Experimental Investigations into the Calcium-Dependent Conformation of Albumin. J Chem Inf Model. 2022;62(5):1282–1293. doi:10.1021/acs.jcim.1c01104
  • Kuten Pella O, Hornyák I, Horváthy D, Fodor E, Nehrer S, Lacza Z. Albumin as a Biomaterial and Therapeutic Agent in Regenerative Medicine. Int J Mol Sci. 2022;23(18):10557. doi:10.3390/ijms231810557
  • Evans TW. Review article: albumin as a drug-biological effects of albumin unrelated to oncotic pressure. Aliment Pharmacol Ther. 2002;16:6–11. doi:10.1046/j.1365-2036.16.s5.2.x
  • Kratz F, Elsadek B. Clinical impact of serum proteins on drug delivery. J Control Release. 2012;161(2):429–445. doi:10.1016/j.jconrel.2011.11.028
  • Maurya P, Singh S, Mishra N, et al. Albumin-based nanomaterials in drug delivery and biomedical applications. Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications. Elsevier; 2021:465–496. doi:10.1016/B978-0-12-820874-8.00012-9
  • Kouchakzadeh H, Safavi MS, Shojaosadati SA. Efficient Delivery of Therapeutic Agents by Using Targeted Albumin Nanoparticles. Drug Delivery Systems. 2015:121–143. doi:10.1016/bs.apcsb.2014.11.002
  • Ipte PR, Sahoo S, Satpati AK. Spectro-electrochemistry of ciprofloxacin and probing its interaction with bovine serum albumin. Bioelectrochemistry. 2019;130:107330. doi:10.1016/j.bioelechem.2019.107330
  • Doble A. Ciprofloxacin. In: XPharm: The Comprehensive Pharmacology Reference. Elsevier; 2007:1–8. doi:10.1016/B978-008055232-3.61473-4
  • Szafran M, Zakrzewska-Czerwińska J, Jakimowicz D. Bacterial type I topoisomerases – biological function and potential use as targets for antibiotic treatments. Postepy Hig Med Dosw. 2013;67:130–142. doi:10.5604/17322693.1038352
  • Sharma PC, Jain A, Jain S, Pahwa R, Yar MS. Ciprofloxacin: review on developments in synthetic, analytical, and medicinal aspects. J Enzyme Inhib Med Chem. 2010;25(4):577–589. doi:10.3109/14756360903373350
  • Gao Y, Shang Q, Li W, et al. Antibiotics for cancer treatment: a double-edged sword. J Cancer. 2020;11(17):5135–5149. doi:10.7150/jca.47470
  • Kim BN, Kim ES, Oh MD. Oral antibiotic treatment of staphylococcal bone and joint infections in adults. J Antimicrob Chemother. 2014;69(2):309–322. doi:10.1093/jac/dkt374
  • Paul BK, Guchhait N, Bhattacharya SC. Binding of ciprofloxacin to bovine serum albumin: photophysical and thermodynamic aspects. J Photochem Photobiol B Biol. 2017;172:11–19. doi:10.1016/j.jphotobiol.2017.04.026
  • Hu YJ, Ou-Yang Y, Zhang Y, Liu Y. Affinity and Specificity of Ciprofloxacin-Bovine Serum Albumin Interactions: spectroscopic Approach. Protein J. 2010;29(4):234–241. doi:10.1007/s10930-010-9244-6
  • Anand U, Kurup L, Mukherjee S. Deciphering the role of pH in the binding of Ciprofloxacin Hydrochloride to Bovine Serum Albumin. Phys Chem Chem Phys. 2012;14(12):4250. doi:10.1039/c2cp00001f
  • Verma R, Mishra SR, Gadore V, Ahmaruzzaman M. Hydroxyapatite-based composites: excellent materials for environmental remediation and biomedical applications. Adv Colloid Interface Sci. 2023;315:102890. doi:10.1016/j.cis.2023.102890
  • Du M, Chen J, Liu K, Xing H, Song C. Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Compos Part B Eng. 2021;215:108790. doi:10.1016/j.compositesb.2021.108790
  • Mondal S, Dorozhkin SV, Pal U. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. WIREs Nanomed Nanobiotechnol. 2018;10(4). doi:10.1002/wnan.1504
  • Varadavenkatesan T, Vinayagam R, Pai S, Kathirvel B, Pugazhendhi A, Selvaraj R. Synthesis, biological and environmental applications of hydroxyapatite and its composites with organic and inorganic coatings. Prog Org Coatings. 2021;151:106056. doi:10.1016/j.porgcoat.2020.106056
  • Pham HH, Luo P, Génin F, Dash AK. Synthesis and characterization of hydroxyapatite-ciprofloxacin delivery systems by precipitation and spray drying technique. AAPS PharmSciTech. 2002;3(1):1–9. doi:10.1208/pt030101
  • Shanaghi A, Mehrjou B, Ahmadian Z, Souri AR, Chu PK. Enhanced corrosion resistance, antibacterial properties, and biocompatibility by hierarchical hydroxyapatite/ciprofloxacin-calcium phosphate coating on nitrided NiTi alloy. Mater Sci Eng C. 2021;118:111524. doi:10.1016/j.msec.2020.111524
  • Anita Lett J, Sagadevan S, Fatimah I, et al. Recent advances in natural polymer-based hydroxyapatite scaffolds: properties and applications. Eur Polym J. 2021;148:110360. doi:10.1016/j.eurpolymj.2021.110360
  • Li N, Hu B, Wang A, et al. Facile Bioinspired Preparation of Fluorinase@Fluoridated Hydroxyapatite Nanoflowers for the Biosynthesis of 5′-Fluorodeoxy Adenosine. Sustainability. 2020;12(1):431. doi:10.3390/su12010431
  • Ait Said H, Noukrati H, Ben Youcef H, Mahdi I, Oudadesse H, Barroug A. In situ precipitated hydroxyapatite-chitosan composite loaded with ciprofloxacin: formulation, mechanical, in vitro antibiotic uptake, release, and antibacterial properties. Mater Chem Phys. 2023;294:127008. doi:10.1016/j.matchemphys.2022.127008
  • Shen B, Wen X, Korshin GV. Electrochemical oxidation of ciprofloxacin in two different processes: the electron transfer process on the anode surface and the indirect oxidation process in bulk solutions. Environ Sci Process Impacts. 2018;20(6):943–955. doi:10.1039/C8EM00122G
  • Trivedi P, Vasudevan D. Spectroscopic Investigation of Ciprofloxacin Speciation at the Goethite−Water Interface. Environ Sci Technol. 2007;41(9):3153–3158. doi:10.1021/es061921y
  • Zhao Z, Zhang J, Wang M, et al. Structure advantage and peroxidase activity enhancement of deuterohemin-peptide–inorganic hybrid flowers. RSC Adv. 2016;6(106):104265–104272. doi:10.1039/C6RA24192A
  • Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res. 2002;62(4):600–612. doi:10.1002/jbm.10280
  • Yadav P, Yadav AB. Preparation and characterization of BSA as a model protein loaded chitosan nanoparticles for the development of protein-/peptide-based drug delivery system. Futur J Pharm Sci. 2021;7(1):200. doi:10.1186/s43094-021-00345-w
  • Ozhukil Kollath V, De Geest BG, Mullens S, et al. Systematic Processing of β-Tricalcium Phosphate for Efficient Protein Loading and In Vitro Analysis of Antigen Uptake. Adv Eng Mater. 2013;15(4):295–301. doi:10.1002/adem.201200177
  • Kowalczuk D, Gładysz A, Pitucha M, Kamiński DM, Barańska A, Drop B. Spectroscopic Study of the Molecular Structure of the New Hybrid with a Potential Two-Way Antibacterial Effect. Molecules. 2021;26(5):1442. doi:10.3390/molecules26051442
  • Hussein‐Al‐Ali SH, Abudoleh SM, Abualassal QIA, Abudayeh Z, Aldalahmah Y, Hussein MZ. Preparation and characterisation of ciprofloxacin‐loaded silver nanoparticles for drug delivery. IET Nanobiotechnology. 2022;16(3):92–101. doi:10.1049/nbt2.12081
  • Ozhukil Kollath V, Mullens S, Luyten J, Traina K, Cloots R. Protein–calcium phosphate nanocomposites: benchmarking protein loading via physical and chemical modifications against co-precipitation. RSC Adv. 2015;5(69):55625–55632. doi:10.1039/C5RA08060F
  • Füredi-Milhofer H, Hlady V, Baker FS, Beebe RA, Wikholm NW, Kittelberger J. Temperature-programmed dehydration of hydroxyapatite. J Colloid Interface Sci. 1979;70(1):1–9. doi:10.1016/0021-9797(79)90002-X
  • Senra MR, Lima RB, Souza D, Marques M, Monteiro SN. Thermal characterization of hydroxyapatite or carbonated hydroxyapatite hybrid composites with distinguished collagens for bone graft. J Mater Res Technol. 2020;9(4):7190–7200. doi:10.1016/j.jmrt.2020.04.089
  • Olivera ME, Manzo RH, Junginger HE, et al. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: ciprofloxacin Hydrochloride. J Pharm Sci. 2011;100(1):22–33. doi:10.1002/jps.22259
  • Kisicki JC, Griess RS, Ott CL, et al. Multiple-dose pharmacokinetics and safety of rufloxacin in normal volunteers. Antimicrob Agents Chemother. 1992;36(6):1296–1301. doi:10.1128/AAC.36.6.1296
  • Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci. 2015;125:75–84. doi:10.1016/j.ces.2014.08.046
  • Madni A, Tahir N, Rehman M, et al. Hybrid Nano-carriers for Potential Drug Delivery. In: Advanced Technology for Delivering Therapeutics. InTech; 2017. doi:10.5772/66466
  • Jin Y, Li Z, Liu H, et al. Biodegradable, multifunctional DNAzyme nanoflowers for enhanced cancer therapy. NPG Asia Mater. 2017;9(3):e365–e365. doi:10.1038/am.2017.34
  • Guo Y, Li S, Wang Y, Zhang S. Diagnosis–Therapy Integrative Systems Based on Magnetic RNA Nanoflowers for Co-drug Delivery and Targeted Therapy. Anal Chem. 2017;89(4):2267–2274. doi:10.1021/acs.analchem.6b03346
  • Nwabuife JC, Omolo CA, Govender T. Nano delivery systems to the rescue of ciprofloxacin against resistant bacteria “E. coli; P. aeruginosa; Saureus; and MRSA” and their infections. J Control Release. 2022;349:338–353. doi:10.1016/j.jconrel.2022.07.003
  • Ciocilteu MV, Mocanu AG, Mocanu A, et al. Hydroxyapatite-ciprofloxacin delivery system: synthesis, characterisation and antibacterial activity. Acta Pharm. 2018;68(2):129–144. doi:10.2478/acph-2018-0011
  • Geuli O, Metoki N, Zada T, Reches M, Eliaz N, Mandler D. Synthesis, coating, and drug-release of hydroxyapatite nanoparticles loaded with antibiotics. J Mater Chem B. 2017;5(38):7819–7830. doi:10.1039/C7TB02105D
  • Benedini L, Laiuppa J, Santillán G, Baldini M, Messina P. Antibacterial alginate/nano-hydroxyapatite composites for bone tissue engineering: assessment of their bioactivity, biocompatibility, and antibacterial activity. Mater Sci Eng C. 2020;115:111101. doi:10.1016/j.msec.2020.111101
  • Sangeetha K, Girija EK. Tailor made alginate hydrogel for local infection prophylaxis in orthopedic applications. Mater Sci Eng C. 2017;78:1046–1053. doi:10.1016/j.msec.2017.04.154
  • Jariya SAI, Padmanabhan VP, Kulandaivelu R, et al. Drug delivery and antimicrobial studies of chitosan-alginate based hydroxyapatite bioscaffolds formed by the Casein micelle assisted synthesis. Mater Chem Phys. 2021;272:125019. doi:10.1016/j.matchemphys.2021.125019
  • Leprêtre S, Chai F, Hornez JC, et al. Prolonged local antibiotics delivery from hydroxyapatite functionalised with cyclodextrin polymers. Biomaterials. 2009;30(30):6086–6093. doi:10.1016/j.biomaterials.2009.07.045
  • Lin L, Shao J, Ma J, et al. Development of ciprofloxacin and nano-hydroxyapatite dual-loaded polyurethane scaffolds for simultaneous treatment of bone defects and osteomyelitis. Mater Lett. 2019;253:86–89. doi:10.1016/j.matlet.2019.06.028
  • Choi Y, Nirmala R, Lee JY, Rahman M, Hong ST, Kim HY. Antibacterial ciprofloxacin HCl incorporated polyurethane composite nanofibers via electrospinning for biomedical applications. Ceram Int. 2013;39(5):4937–4944. doi:10.1016/j.ceramint.2012.11.088
  • Alinavaz S, Mahdavinia GR, Jafari H, Hazrati M, Akbari A. Hydroxyapatite (HA)-based hybrid bionanocomposite hydrogels: ciprofloxacin delivery, release kinetics and antibacterial activity. J Mol Struct. 2021;1225:129095. doi:10.1016/j.molstruc.2020.129095
  • Castro C, Évora C, Baro M, Soriano I, Sánchez E. Two-month ciprofloxacin implants for multibacterial bone infections. Eur J Pharm Biopharm. 2005;60(3):401–406. doi:10.1016/j.ejpb.2005.02.005
  • Castro C, Sánchez E, Delgado A, et al. Ciprofloxacin implants for bone infection. In vitro–in vivo characterization. J Control Release. 2003;93(3):341–354. doi:10.1016/j.jconrel.2003.09.004
  • Placente D, Benedini LA, Baldini M, Laiuppa JA, Santillán GE, Messina PV. Multi-drug delivery system based on lipid membrane mimetic coated nano-hydroxyapatite formulations. Int J Pharm. 2018;548(1):559–570. doi:10.1016/j.ijpharm.2018.07.036
  • Cao T, Tang W, Zhao J, Qin L, Lan C. A Novel Drug Delivery Carrier Based on α-eleostearic Acid Grafted Hydroxyapatite Composite. J Bionic Eng. 2014;11(1):125–133. doi:10.1016/S1672-6529(14)60027-5