291
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Topical Application of Cell-Penetrating Peptide Modified Anti-VEGF Drug Alleviated Choroidal Neovascularization in Mice

ORCID Icon, ORCID Icon, , , , , ORCID Icon, & ORCID Icon show all
Pages 35-51 | Received 31 Aug 2023, Accepted 19 Dec 2023, Published online: 02 Jan 2024

References

  • Folgar FA, Yuan EL, Sevilla MB, et al. Drusen volume and retinal pigment epithelium abnormal thinning volume predict 2-year progression of age-related macular degeneration. Ophthalmology. 2016;123:39–50.e1. doi:10.1016/j.ophtha.2015.09.016
  • Thomas CN, Sim DA, Lee WH, et al. Emerging therapies and their delivery for treating age-related macular degeneration. Br J Pharmacol. 2022;179(9):1908–1937. doi:10.1111/bph.15459
  • Keenan TDL, Chakravarthy U, Loewenstein A, et al. Automated quantitative assessment of retinal fluid volumes as important biomarkers in neovascular age-related macular degeneration. Am J Ophthalmol. 2021;224:267–281. doi:10.1016/j.ajo.2020.12.012
  • Sharma A, Parachuri N, Kumar N, et al. Notion of tolerating subretinal fluid in neovascular AMD: understanding the fine print before the injection pause. Br J Ophthalmol. 2021;105(2):149–150. doi:10.1136/bjophthalmol-2020-317933
  • Finn AP, Pistilli M, Tai V, et al. Localized optical coherence tomography precursors of macular atrophy and fibrotic scar in the comparison of age-related macular degeneration treatments trials. Am J Ophthalmol. 2021;223:338–347. doi:10.1016/j.ajo.2020.11.002
  • Lai PX, Chen CW, Wei SC, et al. Ultrastrong trapping of VEGF by graphene oxide: anti-angiogenesis application. Biomaterials. 2016;109:12–22. doi:10.1016/j.biomaterials.2016.09.005
  • Churm R, Dunseath GJ, Prior SL, et al. Development and characterization of an in vitro system of the human retina using cultured cell lines. Clin Exp Ophthalmol. 2019;47(8):1055–1062. doi:10.1111/ceo.13578
  • Ishibashi T, Hata Y, Yoshikawa H, et al. Expression of vascular endothelial growth factor in experimental choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol. 1997;235(3):159–167. doi:10.1007/BF00941723
  • Ao L, Gao H, Jia L, et al. Matrine inhibits synovial angiogenesis in collagen-induced arthritis rats by regulating HIF-VEGF-Ang and inhibiting the PI3K/Akt signaling pathway. Mol Immunol. 2022;141:13–20. doi:10.1016/j.molimm.2021.11.002
  • Xiao Y, Thakkar KN, Zhao H, et al. The m6A RNA demethylase FTO is a HIF-independent synthetic lethal partner with the VHL tumor suppressor. Proc Natl Acad Sci U S A. 2020;117(35):21441–21449. doi:10.1073/pnas.2000516117
  • Sarkar A, Junnuthula V, Dyawanapelly S. Ocular therapeutics and molecular delivery strategies for Neovascular Age-Related Macular Degeneration (nAMD). Int J Mol Sci. 2021;22. doi:10.3390/ijms221910594
  • Hashida N, Nishida K. Recent advances and future prospects: current status and challenges of the intraocular injection of drugs for vitreoretinal diseases. Adv Drug Deliv Rev. 2023;198:114870. doi:10.1016/j.addr.2023.114870
  • Study Investigators IVAN, Chakravarthy U, Harding SP, et al. Ranibizumab versus bevacizumab to treat neovascular age-related macular degeneration: one-year findings from the IVAN randomized trial. Ophthalmology. 2012;119(7):1399–1411. doi:10.1016/j.ophtha.2012.04.015
  • Li X, Xu G, Wang Y, et al. Safety and efficacy of conbercept in neovascular age-related macular degeneration: results from a 12-month randomized Phase 2 study: aurora study. Ophthalmology. 2014;121(9):1740–1747. doi:10.1016/j.ophtha.2014.03.026
  • Menke MN, Ebneter A, Zinkernagel MS, Wolf S. Differentiation between good and low-responders to intravitreal ranibizumab for macular edema secondary to retinal vein occlusion. J Ophthalmol. 2016;2016:9875741. doi:10.1155/2016/9875741
  • Wei Q, Wan Z, Hu Y, Peng Q. Cytokine and chemokine profile changes in patients after intravitreal conbercept injection for diabetic macular edema. Drug Des Devel Ther. 2019;13:4367–4374. doi:10.2147/DDDT.S222004
  • Scondotto G, Crisafulli S, Antonazzo IC, et al. Assessing intravitreal anti-VEGF drug safety using real-world data: methodological challenges in observational research. Expert Opin Drug Saf. 2022;21(2):205–214. doi:10.1080/14740338.2021.1957829
  • Cutroneo PM, Giardina C, Ientile V, et al. Overview of the safety of anti-VEGF drugs: analysis of the Italian spontaneous reporting system. Drug Saf. 2017;40(11):1131–1140. doi:10.1007/s40264-017-0553-y
  • Ng DS, Ho M, Lu LP, Lai TY. Safety review of anti-VEGF therapy in patients with myopic choroidal neovascularization. Expert Opin Drug Saf. 2022;21(1):43–54. doi:10.1080/14740338.2021.1952979
  • Arevalo JF, Sanchez JG, Fromow-Guerra J, et al. Comparison of two doses of primary intravitreal bevacizumab (Avastin) for diffuse diabetic macular edema: results from the Pan-American Collaborative Retina Study Group (PACORES) at 12-month follow-up. Graefes Arch Clin Exp Ophthalmol. 2009;247(6):735–743. doi:10.1007/s00417-008-1034-x
  • Storey PP, Pancholy M, Wibbelsman TD, et al. Rhegmatogenous Retinal Detachment after Intravitreal Injection of Anti-Vascular Endothelial Growth Factor. Ophthalmology. 2019;126(10):1424–1431. doi:10.1016/j.ophtha.2019.04.037
  • Ji K, Zhang Q, Tian M, Xing Y. Comparison of dexamethasone intravitreal implant with intravitreal anti-VEGF injections for the treatment of macular edema secondary to branch retinal vein occlusion: a meta-analysis. Medicine. 2019;98(22):e15798. doi:10.1097/MD.0000000000015798
  • Nguyen DD, Luo LJ, Lai JY. Thermogels containing sulfated hyaluronan as novel topical therapeutics for treatment of ocular surface inflammation. Mater Today Bio. 2022;13:100183. doi:10.1016/j.mtbio.2021.100183
  • Nguyen DD, Yao CH, Lue SJ, et al. Amination-mediated nano eye-drops with enhanced corneal permeability and effective burst release for acute glaucoma treatment. Chem Eng J Adv. 2023;451:138620. doi:10.1016/j.cej.2022.138620
  • Lai JY, Luo LJ, Nguyen DD. Multifunctional glutathione-dependent hydrogel eye drops with enhanced drug bioavailability for glaucoma therapy. Chem Eng J Adv. 2020;402:126190. doi:10.1016/j.cej.2020.126190
  • Koo EH, Eghrari AO, Dzhaber D, et al. Presence of SARS-CoV-2 Viral RNA in aqueous humor of asymptomatic individuals. Am J Ophthalmol. 2021;230:151–155. doi:10.1016/j.ajo.2021.05.008
  • Gallo M, Defaus S, Andreu D. 1988–2018: thirty years of drug smuggling at the nano scale. Challenges and opportunities of cell-penetrating peptides in biomedical research. Arch Biochem Biophys. 2019;661:74–86. doi:10.1016/j.abb.2018.11.010
  • Singh T, Murthy ASN, Yang HJ, et al. Versatility of cell-penetrating peptides for intracellular delivery of siRNA. Drug Deliv. 2018;25(1):1996–2006. doi:10.1080/10717544.2018.1543366
  • Porosk L, Gaidutšik I, Langel Ü. Approaches for the discovery of new cell-penetrating peptides. Expert Opin Drug Discov. 2021;16:553–565. doi:10.1080/17460441.2021.1851187
  • Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci. 2017;38(4):406–424. doi:10.1016/j.tips.2017.01.003
  • Yang CJ, Nguyen DD, Lai JY. Poly(l-Histidine)-Mediate on-demand therapeutic delivery of roughened ceria nanocages for treatment of chemical eye injury. Adv Sci. 2023;10(26):e2302174. doi:10.1002/advs.202302174
  • Palm-Apergi C, Lonn P, Dowdy SF. Do cell-penetrating peptides actually “penetrate” cellular membranes? Mol Ther. 2012;20(4):695–697. doi:10.1038/mt.2012.40
  • Lonn P, Kacsinta AD, Cui X-S, et al. Enhancing endosomal escape for intracellular delivery of macromolecular biologic therapeutics. Sci Rep. 2016;6(1):32301. doi:10.1038/srep32301
  • Siddique AB, Amr D, Abbas A, et al. Synthesis of hydroxyethylcellulose phthalate-modified silver nanoparticles and their multifunctional applications as an efficient antibacterial, photocatalytic and mercury-selective sensing agent. Int J Biol Macromol. 2023;256:128009. doi:10.1016/j.ijbiomac.2023.128009
  • Lipok M, Obstarczyk P, Żak A, et al. Single gold nanobipyramids sensing the chirality of amyloids. J Phys Chem Lett. 2023;14(49):11084–11091. doi:10.1021/acs.jpclett.3c02762
  • Wang Y, Lin H, Lin S, et al. Cell-penetrating peptide TAT-mediated delivery of acidic FGF to retina and protection against ischemia-reperfusion injury in rats. Cell Mol Med. 2010;14(7):1998–2005. doi:10.1111/j.1582-4934.2009.00786.x
  • Anand A, Jian HJ, Huang HH, et al. Anti-angiogenic carbon nanovesicles loaded with bevacizumab for the treatment of age-related macular degeneration. Carbon. 2023;201:362–370. doi:10.1016/j.carbon.2022.09.045
  • Luo LJ, Jian HJ, Harroun SG, et al. Targeting nanocomposites with anti-oxidative/inflammatory/angiogenic activities for synergistically alleviating macular degeneration. Appl Mater Today. 2021;24:101156. doi:10.1016/j.apmt.2021.101156
  • Bai N, Hou DQ, Mao CP, et al. MiR-376c-3p targets heparin-binding EGF-like growth factor (HBEGF) to inhibit proliferation and invasion in medullary thyroid carcinoma cells. Arch Med Sci. 2020;16(4):878–887. doi:10.5114/aoms.2019.85244
  • Vivès E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem. 1997;272:16010–16017. doi:10.1074/jbc.272.25.16010
  • Harbour JW, Worley L, Ma D, et al. Transducible peptide therapy for uveal melanoma and retinoblastoma. Arch Ophthalmol. 2002;120(10):1341–1346. doi:10.1001/archopht.120.10.1341
  • Abdullatif AM, Hassan LM, Shash RY, et al. Safety and efficacy of black tea extract in the treatment of acute bacterial conjunctivitis: a rabbit model. Eye Contact Lens. 2023;49(1):35–41. doi:10.1097/ICL.0000000000000954
  • Kim J, Kim ED, Shin HS, et al. Effectiveness and safety of injectable human papilloma virus vaccine administered as eyedrops. Vaccine. 2023;41(1):92–100. doi:10.1016/j.vaccine.2022.09.070
  • Singh A, Cho WKJ, Pulimamidi VK, et al. Interleukin-11 suppresses ocular surface inflammation and accelerates wound healing. Invest Ophthalmol Vis Sci. 2023;64:1. doi:10.1167/iovs.64.14.1
  • Nguyen DD, Luo LJ, Yang CJ, et al. Highly retina-permeating and long-acting resveratrol/metformin nanotherapeutics for enhanced treatment of macular degeneration. ACS Nano. 2023;17(1):168–183. doi:10.1021/acsnano.2c05824
  • Cerezo AB, Hornedo-Ortega R, Álvarez-Fernández MA, et al. Inhibition of VEGF-induced VEGFR-2 activation and HUVEC migration by melatonin and other bioactive indolic compounds. Nutrients. 2017;9(3):E249. doi:10.3390/nu9030249
  • Park SL, Won SY, Song JH, et al. Esculetin inhibits VEGF-induced angiogenesis both in vitro and in vivo. Am J Chin Med. 2016;44(01):61–76. doi:10.1142/S0192415X1650004X
  • Cheng H, Zhao Y, Wang Y, et al. The potential of novel synthesized carbon dots derived resveratrol using one-pot green method in accelerating in vivo wound healing. Int J Nanomed. 2023;18:6813–6828. doi:10.2147/IJN.S434071
  • Xu L, Wang W, Meng T, et al. New microtubulin inhibitor MT189 suppresses angiogenesis via the JNK-VEGF/VEGFR2 signaling axis. Cancer Lett. 2018;416:57–65. doi:10.1016/j.canlet.2017.12.022
  • Grossniklaus HE, Kang SJ, Berglin L. Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res. 2010;29(6):500–519. doi:10.1016/j.preteyeres.2010.05.003
  • Hara C, Kasai A, Gomi F, et al. Laser-induced choroidal neovascularization in mice attenuated by deficiency in the apelin-APJ system. Invest Ophthalmol Vis Sci. 2013;54(6):4321–4329. doi:10.1167/iovs.13-11611
  • Yamada K, Sakurai E, Itaya M, et al. Inhibition of laser-induced choroidal neovascularization by atorvastatin by downregulation of monocyte chemotactic protein-1 synthesis in mice. Invest Ophthalmol Vis Sci. 2007;48(4):1839–1843. doi:10.1167/iovs.06-1085
  • Joachim SC, Renner M, Reinhard J, et al. Protective effects on the retina after ranibizumab treatment in an ischemia model. PLoS One. 2017;12(8):e0182407. doi:10.1371/journal.pone.0182407
  • Du L, Peng H, Wu Q, et al. Observation of total VEGF level in hyperglycemic mouse eyes after intravitreal injection of the novel anti-VEGF drug conbercept. Mol Vis. 2015;21:185–193.
  • Zhu H, Ye J, Wu Y, et al. A synergistic therapy with antioxidant and anti-VEGF: towards its safe and effective elimination for corneal neovascularization. Adv Healthc Mater. 2023:e2302192. doi:10.1002/adhm.202302192