225
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Preparation and Evaluation of Curcumin Derivatives Nanoemulsion Based on Turmeric Extract and Its Antidepressant Effect

, , , , , , , , ORCID Icon, , , , , , , & show all
Pages 7965-7983 | Received 15 Jul 2023, Accepted 20 Nov 2023, Published online: 26 Dec 2023

References

  • World Health Organization. Depression and Other Common Mental Disorders: global Health Estimates. 2017. Available from: https://apps.who.int/iris/handle/10665/254610. Accessed March 13, 2022.
  • Kennedy SH. Core symptoms of major depressive disorder: relevance to diagnosis and treatment. Dialogues Clin Neurosci. 2008;10(3):271–277. doi:10.31887/DCNS.2008.10.3/shkennedy
  • Kiyohara C, Yoshimasu K. Molecular epidemiology of major depressive disorder. Environ Health Preventative Med. 2009;14(2):71–87. doi:10.1007/s12199-008-0073-6
  • Jakobsen JC, Katakam KK, Schou A, et al. Selective serotonin reuptake inhibitors versus placebo in patients with major depressive disorder. A systematic review with meta-analysis and Trial Sequential Analysis. BMC Psychiatry. 2017;17:28. doi:10.1186/s12888-016-1173-2
  • Fornaro M, Anastasia A, Novello S, et al. The emergence of loss of efficacy during antidepressant drug treatment for major depressive disorder: an integrative review of evidence, mechanisms, and clinical implications. Pharmacol Res. 2019;139:494–502. doi:10.1016/j.phrs.2018.10.025
  • Gaynes B, Lux L, Gartlehner G, et al. Defining treatment-resistant depression. Depression Anxiety. 2020;37(2):134–145. doi:10.1002/da.22968
  • Rodriguez-Landa JF, German-Ponciano LJ, Puga-Olguin A, Olmos-Vazquez OJ. Pharmacological, Neurochemical, and Behavioral Mechanisms Underlying the Anxiolytic- and Antidepressant-like Effects of Flavonoid Chrysin. Molecules. 2022;27(11):17. doi:10.3390/molecules27113551
  • Lu J, Wang X, Wu AX, et al. Ginsenosides in central nervous system diseases: pharmacological actions, mechanisms, and therapeutics. Phytother Res. 2022;36(4):1523–1544. doi:10.1002/ptr.7395
  • Huang F, Cai X, Hou X, et al. A dynamic covalent polymeric antimicrobial for conquering drug-resistant bacterial infection. Exploration. 2022;2(5):20210145. doi:10.1002/EXP.20210145
  • Fusar-Poli L, Vozza L, Gabbiadini A, et al. Curcumin for depression: a meta-analysis. Crit Rev Food Sci Nutr. 2020;60(15):2643–2653. doi:10.1080/10408398.2019.1653260
  • Abu-Taweel GM, Al-Fifi Z. Protective effects of curcumin towards anxiety and depression-like behaviors induced mercury chloride. Saudi J Biol Sci. 2021;28(1):125–134. doi:10.1016/j.sjbs.2020.09.011
  • Marques JGD, Antunes FTT, Brum LFD, et al. Adaptogenic effects of curcumin on depression induced by moderate and unpredictable chronic stress in mice. Behav Brain Res. 2021;399:8. doi:10.1016/j.bbr.2020.113002
  • Rubab S, Naeem K, Rana I, et al. Enhanced neuroprotective and antidepressant activity of curcumin-loaded nanostructured lipid carriers in lipopolysaccharide-induced depression and anxiety rat model. Int J Pharm. 2021;603:13. doi:10.1016/j.ijpharm.2021.120670
  • Afzal A, Batool Z, Sadir S, et al. Therapeutic Potential of Curcumin in Reversing the Depression and Associated Pseudodementia via Modulating Stress Hormone, Hippocampal Neurotransmitters, and BDNF Levels in Rats. Neurochem Res. 2021;46(12):3273–3285. doi:10.1007/s11064-021-03430-x
  • Appendino G, Allegrini P, de Combarieu E, Novicelli F, Ramaschi G, Sardone N. Shedding light on curcumin stability. Fitoterapia. 2022;156:5. doi:10.1016/j.fitote.2021.105084
  • Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–818. doi:10.1021/mp700113r
  • Zhang J, Li S, An FF, et al. Self-carried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release. Nanoscale. 2015;7(32):13503–13510. doi:10.1039/c5nr03259h
  • Peram MR, Jalalpure SS, Palkar MB, Diwan PV. Stability studies of pure and mixture form of curcuminoids by reverse phase-HPLC method under various experimental stress conditions. Food Sci Biotechnol. 2017;26(3):591–602. doi:10.1007/s10068-017-0087-1
  • Wei MM, Zhao SJ, Dong XM, et al. A combination index and glycoproteomics-based approach revealed synergistic anticancer effects of curcuminoids of turmeric against prostate cancer PC3 cells. J Ethnopharmacol. 2021;267:113467. doi:10.1016/j.jep.2020.113467
  • Ramires OV, Alves BD, Barros PAB, et al. Nanoemulsion Improves the Neuroprotective Effects of Curcumin in an Experimental Model of Parkinson’s Disease. Neurotox Res. 2021;39(3):787–799. doi:10.1007/s12640-021-00362-w
  • Rodriguez-Burneo N, Busquets MA, Estelrich J. Magnetic Nanoemulsions: comparison between Nanoemulsions Formed by Ultrasonication and by Spontaneous Emulsification. Nanomaterials. 2017;7(7):13. doi:10.3390/nano7070190
  • Zhang J, Nie W, Chen R, et al. Green Mass Production of Pure Nanodrugs via an Ice-Template-Assisted Strategy. Nano Lett. 2019;19(2):658–665. doi:10.1021/acs.nanolett.8b03043
  • Kose LP, Gulcin I. Evaluation of the Antioxidant and Antiradical Properties of Some Phyto and Mammalian Lignans. Molecules. 2021;26(23):15. doi:10.3390/molecules26237099
  • Minato T, Nakamura N, Saiki T, et al. β-Aminoisobutyric acid, L-BAIBA, protects PC12 cells from hydrogen peroxide-induced oxidative stress and apoptosis via activation of the AMPK and PI3K/Akt pathway. IBRO Neurosci Rep. 2021;12:65–72. doi:10.1016/j.ibneur.2021.12.001
  • Lau T, Proissl V, Ziegler J, Schloss P. Visualization of neurotransmitter uptake and release in serotonergic neurons. J Neurosci Methods. 2015;241:10–17. doi:10.1016/j.jneumeth.2014.12.009
  • Guo P, Pi C, Zhao SJ, et al. Oral co-delivery nanoemulsion of 5-fluorouracil and curcumin for synergistic effects against liver cancer. Expert Opin Drug Deliv. 2020;17(10):1473–1484. doi:10.1080/17425247.2020.1796629
  • Ye Q, Li J, Li T, et al. Development and evaluation of puerarin-loaded controlled release nanostructured lipid carries by central composite design. Drug Dev Ind Pharm. 2021;47(1):113–125. doi:10.1080/03639045.2020.1862170
  • Geng D, Li Y, Wang C, et al. Optimization, and in vitro and in vivo evaluation of etomidate intravenous lipid emulsion. Drug Deliv. 2021;28(1):873–883. doi:10.1080/10717544.2021.1917729
  • Jang JH, Jeong SH, Lee YB. Enhanced Lymphatic Delivery of Methotrexate Using W/O/W Nanoemulsion: in vitro Characterization and Pharmacokinetic Study. Pharmaceutics. 2020;12(10):978. doi:10.3390/pharmaceutics12100978
  • Li HN, Xiang YJ, Zhu ZM, et al. Rifaximin-mediated gut microbiota regulation modulates the function of microglia and protects against CUMS-induced depression-like behaviors in adolescent rat. J Neuroinflamm. 2021;18(1):18. doi:10.1186/s12974-021-02303-y
  • Song MK, Lee JH, Kim YJ. Effect of chronic handling and social isolation on emotion and cognition in adolescent rats. Physiol Behav. 2021;237:7. doi:10.1016/j.physbeh.2021.113440
  • Xia J, Gu L, Guo YT, et al. Gut Microbiota Mediates the Preventive Effects of Dietary Capsaicin Against Depression-Like Behavior Induced by Lipopolysaccharide in Mice. Front Cell Infect Microbiol. 2021;11:13. doi:10.3389/fcimb.2021.627608
  • Martins J, Brijesh S. Anti-depressant activity of Erythrina variegata bark extract and regulation of monoamine oxidase activities in mice. J Ethnopharmacol. 2020;248:112280. doi:10.1016/j.jep.2019.112280
  • Zhou Y, Huang SH, Wu FL, et al. Atractylenolide III reduces depressive- and anxiogenic-like behaviors in rat depression models. Neurosci Lett. 2021;759:7. doi:10.1016/j.neulet.2021.136050
  • Kumar G, Virmani T, Pathak K, et al. Central Composite Design Implemented Azilsartan Medoxomil Loaded Nanoemulsion to Improve Its Aqueous Solubility and Intestinal Permeability: in vitro and Ex Vivo Evaluation. Pharmaceuticals. 2022;15(11):1343. doi:10.3390/ph15111343
  • Fang XB, Fang L, Gou SH, Cheng L. Design and synthesis of dimethylaminomethyl-substituted curcumin derivatives/analogues: potent antitumor and antioxidant activity, improved stability and aqueous solubility compared with curcumin. Bioorg Med Chem Lett. 2013;23(5):1297–1301. doi:10.1016/j.bmcl.2012.12.098
  • Sohn SI, Priya A, Balasubramaniam B, et al. Biomedical Applications and Bioavailability of Curcumin-An Updated Overview. Pharmaceutics. 2021;13(12):33. doi:10.3390/pharmaceutics13122102
  • Liang GA, Shao LL, Wang Y, et al. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg Med Chem. 2009;17(6):2623–2631. doi:10.1016/j.bmc.2008.10.044
  • Omidi S, Rafiee Z, Kakanejadifard A. Design and synthesis of curcumin nanostructures: evaluation of solubility, stability, antibacterial and antioxidant activities. Bioorganic Chem. 2021;116:9. doi:10.1016/j.bioorg.2021.105308
  • Anand P, Thomas SG, Kunnumakkara AB, et al. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol. 2008;76(11):1590–1611. doi:10.1016/j.bcp.2008.08.008
  • Zhou BT, Zhu ZQ, Ransom BR, Tong XP. Oligodendrocyte lineage cells and depression. Mol Psychiatr. 2021;26(1):103–117. doi:10.1038/s41380-020-00930-0
  • Kowalczewski PL, Olejnik A, Rybicka I, Zielinska-Dawidziak M, Bialas W, Lewandowicz G. Membrane Filtration-Assisted Enzymatic Hydrolysis Affects the Biological Activity of Potato Juice. Molecules. 2021;26(4):11. doi:10.3390/molecules26040852
  • Bhat A, Mahalakshmi AM, Ray B, et al. Benefits of curcumin in brain disorders. Biofactors. 2019;45(5):666–689. doi:10.1002/biof.1533
  • Lopresti AL. Potential Role of Curcumin for the Treatment of Major Depressive Disorder. CNS Drugs. 2022;36(2):123–141. doi:10.1007/s40263-022-00901-9
  • Roma E, Mattoni E, Lupattelli P, et al. New Dihydroxytyrosyl Esters from Dicarboxylic Acids: synthesis and Evaluation of the Antioxidant Activity In Vitro (ABTS) and in Cell-Cultures (DCF Assay). Molecules. 2020;25(14):3135. doi:10.3390/molecules25143135
  • Kang J, Wang Y, Guo X, et al. N-acetylserotonin protects PC12 cells from hydrogen peroxide induced damage through ROS mediated PI3K / AKT pathway. Cell Cycle. 2022;21(21):2268–2282. doi:10.1080/15384101.2022.2092817
  • Lee B, Lee H. Systemic Administration of Curcumin Affect Anxiety-Related Behaviors in a Rat Model of Posttraumatic Stress Disorder via Activation of Serotonergic Systems. Evid-Based Complement Altern Med. 2018;2018:12. doi:10.1155/2018/9041309
  • Babu DK, Diaz A, Samikkannu T, et al. Upregulation of Serotonin Transporter by Alcohol in Human Dendritic Cells: possible Implication in Neuroimmune Deregulation. Alcoholism. 2009;33(10):1731–1738. doi:10.1111/j.1530-0277.2009.01010.x
  • Zhu HJ, Appel DI, Grundemann D, Richelson E, Markowitz JS. Evaluation of organic cation transporter 3 (SLC22A3) inhibition as a potential mechanism of antidepressant action. Pharmacol Res. 2012;65(4):491–496. doi:10.1016/j.phrs.2012.01.008
  • Pandey P, Gulati N, Makhija M, Purohit D, Dureja H. Nanoemulsion: a Novel Drug Delivery Approach for Enhancement of Bioavailability. Recent Pat Nanotechnol. 2020;14(4):276–293. doi:10.2174/1872210514666200604145755
  • Mura P, Maestrelli F, D’Ambrosio M, et al. Evaluation and Comparison of Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) as Vectors to Develop Hydrochlorothiazide Effective and Safe Pediatric Oral Liquid Formulations. Pharmaceutics. 2021;13(4):437. doi:10.3390/pharmaceutics13040437
  • Ho TM, Abik F, Mikkonen KS. An overview of nanoemulsion characterization via atomic force microscopy. Crit Rev Food Sci Nutr. 2022;62(18):4908–4928. doi:10.1080/10408398.2021.1879727
  • Li K, Pi C, Wen J, et al. Formulation of the novel structure curcumin derivative-loaded solid lipid nanoparticles: synthesis, optimization, characterization and anti-tumor activity screening in vitro. Drug Deliv. 2022;29(1):2044–2057. doi:10.1080/10717544.2022.2092235
  • Chuacharoen T, Prasongsuk S, Sabliov CM. Effect of Surfactant Concentrations on Physicochemical Properties and Functionality of Curcumin Nanoemulsions Under Conditions Relevant to Commercial Utilization. Molecules. 2019;24(15):12. doi:10.3390/molecules24152744
  • Wang J, Chen H, Guo T, et al. Isoliquiritigenin Nanoemulsion Preparation by Combined Sonication and Phase-Inversion Composition Method: in vitro Anticancer Activities. Bioengineering (Basel). 2022;9(8):382. doi:10.3390/bioengineering9080382
  • Li R, Qiao X, Li Q, et al. Metabolic and pharmacokinetic studies of curcumin, demethoxycurcumin and bisdemethoxycurcumin in mice tumor after intragastric administration of nanoparticle formulations by liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2011;879(26):2751–2758. doi:10.1016/j.jchromb.2011.07.042
  • Saadati S, Sadeghi A, Mansour A, et al. Curcumin and inflammation in non-alcoholic fatty liver disease: a randomized, placebo controlled clinical trial. BMC Gastroenterol. 2019;19(1):133. doi:10.1186/s12876-019-1055-4
  • Wang YY, Pi C, Feng XH, Hou Y, Zhao L, Wei YM. The Influence of Nanoparticle Properties on Oral Bioavailability of Drugs. Int J Nanomed. 2020;15:6295–6310. doi:10.2147/ijn.S257269
  • Jia HM, Feng YF, Liu YT, et al. Integration of H-1 NMR and UPLC-Q-TOF/MS for a Comprehensive Urinary Metabonomics Study on a Rat Model of Depression Induced by Chronic Unpredictable Mild Stress. PLoS One. 2013;8(5):11. doi:10.1371/journal.pone.0063624
  • Peng ZL, Zhang C, Yan L, et al. EPA is More Effective than DHA to Improve Depression-Like Behavior, Glia Cell Dysfunction and Hippcampal Apoptosis Signaling in a Chronic Stress-Induced Rat Model of Depression. Int J Mol Sci. 2020;21(5):17. doi:10.3390/ijms21051769
  • Zhang K, Wang ZQ, Pan X, Yang JY, Wu CF. Antidepressant-like effects of Xiaochaihutang in perimenopausal mice. J Ethnopharmacol. 2020;248:7. doi:10.1016/j.jep.2019.112318
  • Zhang SS, Tian YH, Jin SJ, et al. Isoflurane produces antidepressant effects inducing BDNF-TrkB signaling in CUMS mice. Psychopharmacology. 2019;236(11):3301–3315. doi:10.1007/s00213-019-05287-z
  • Khadrawy YA, Hosny EN, Magdy M, et al. Antidepressant effects of curcumin-coated iron oxide nanoparticles in a rat model of depression. Eur J Pharmacol. 2021;908:174384. doi:10.1016/j.ejphar.2021.174384