174
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Endogenous H2O2 Self-Replenishment and Sustainable Cascades Enhance the Efficacy of Sonodynamic Therapy

, , , , , , , , , , , , ORCID Icon & show all
Pages 6667-6687 | Received 17 Aug 2023, Accepted 01 Nov 2023, Published online: 12 Nov 2023

References

  • Tang Z, Liu Y, He M, Bu W. Chemodynamic Therapy: tumour Microenvironment-Mediated Fenton and Fenton-like Reactions. Angewandte Chem Int Edition. 2019;131:958–968. doi:10.1002/anie.201805664
  • Yang X, Yang Y, Gao F, Wei -J-J, Qian C-G, Sun M-J. Biomimetic hybrid nanozymes with self-supplied H+ and accelerated O2 generation for enhanced starvation and photodynamic therapy against hypoxic tumors. Nano Lett. 2019;19:4334–4342. doi:10.1021/acs.nanolett.9b00934
  • Fu J, Li T, Zhu Y, Hao Y. Ultrasound‐activated oxygen and ROS generation nanosystem systematically modulates tumor microenvironment and sensitizes sonodynamic therapy for hypoxic solid tumors. Adv Funct Mater. 2019;29:1906195. doi:10.1002/adfm.201906195
  • Gong F, Cheng L, Yang N. Preparation of TiH 1.924 nanodots by liquid-phase exfoliation for enhanced sonodynamic cancer therapy. Nat Commun. 2020;11:3712. doi:10.1038/s41467-020-17485-x
  • Zhang Y, Zhang X, Yang H, et al. Advanced biotechnology-assisted precise sonodynamic therapy. Chem Soc Rev. 2021;50:11227–11248. doi:10.1039/d1cs00403d
  • Xiao Z, Chen Q, Yang Y, et al. State of the art advancements in sonodynamic therapy (SDT): metal-Organic frameworks for SDT [J]. Chem Eng J. 2022;449:137889. doi:10.1016/j.cej.2022.137889
  • Liang S, Deng X, Ma P, Cheng Z, Lin J. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy. Adv Mater. 2020;32:2003214. doi:10.1002/adma.202003214
  • Son S, Kim JH, Wang X, et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem Soc Rev. 2020;49:3244–3261. doi:10.1039/c9cs00648f
  • An J, Hu YG, Cheng K, et al. ROS-augmented and tumor-microenvironment responsive biodegradable nanoplatform for enhancing chemo-sonodynamic therapy. Biomaterials. 2020;119761. doi:10.1016/j.biomaterials.2020.119761
  • Zhang C, Chen WH, Liu LH, Qiu WX, Yu WY, Zhang XZ. An O2 self-supplementing and reactive-oxygen-species-circulating amplified nanoplatform via H2O/H2O2 splitting for tumor imaging and photodynamic therapy. Adv Funct Mater. 2017;27:1700626. doi:10.1002/adfm.201700626
  • Liu LH, Zhang YH, et al. Dual-stage light amplified photodynamic therapy against hypoxic tumor based on an O2 self-sufficient nanoplatform. Small. 2017;13:1701621. doi:10.1002/smll.201701621
  • Yang G, Xu L, Chao Y, et al. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat Commun. 2017;8:902. doi:10.1038/s41467-017-01050-0
  • Yang Y, Huang J, Liu M, et al. Emerging Sonodynamic Therapy-Based Nanomedicines for Cancer Immunotherapy. Adv Sci. 2023;10:2204365. doi:10.1002/advs.202204365
  • Du JR, Wang Y, Yue ZH, et al. Recent advances in sonodynamic immunotherapy. J Cancer Res Clin Oncol. 2023;149(4):1645–1656. doi:10.1007/s00432-022-04190-z
  • Wang J, Sun J, Hu W, et al. A porous Au@Rh bimetallic core-shell nanostructure as an H2O2-driven oxygenerator to alleviate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv Mater. 2020;32:2001862. doi:10.1002/adma.202001862
  • Pan M, Jiang Q, Sun J, et al. Programming DNA nanoassembly for enhanced photodynamic therapy. Angew Chem. 2020;59:1897. doi:10.1002/anie.201912574
  • Xu S, Zhu X, Zhang C, Huang W, Zhou Y, Yan D. Oxygen and Pt (II) self-generating conjugate for synergistic photo-chemo therapy of hypoxic tumor. Nat Commun. 2018;9:2053. doi:10.1038/s41467-018-04318-1
  • QWu G. MnO2-laden black phosphorus for MRI-guided synergistic PTT/PDT/chemotherapy. Matter. 2019;1:496. doi:10.1016/j.matt.2019.03.007
  • Li X, Kwon N, Guo T, Liu Z, Yoon J. Innovative strategies for hypoxic-tumor photodynamic therapy. Angew Chem. 2018;57:11522. doi:10.1016/j.ajps.2023.100775
  • Chu C, Lin H, Liu H, et al. Tumor Microenvironment-Triggered Supramolecular System as an In Situ Nanotheranostic Generator for Cancer Phototherapy. Adv Mater. 2017;29:1605928. doi:10.1002/adma.201605928
  • Chen Y, Ye D, Wu M, et al. Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv Mater. 2014;26:7019–7026. doi:10.1002/adma.201402572
  • Chen Z, Guo W, Wu Q, et al. Tumor reoxygenation for enhanced combination of radiation therapy and microwave thermal therapy using oxygen generation in situ by CuO nanosuperparticles under microwave irradiation. Theranostics. 2020;10:4659–4675. doi:10.7150/thno.42818
  • Li G, Wang S, Deng D, et al. Fluorinated Chitosan To Enhance Transmucosal Delivery of Sonosensitizer-Conjugated Catalase for Sonodynamic Bladder Cancer Treatment Post-intravesical Instillation. ACS Nano. 2020;14:1586–1599. doi:10.1021/acsnano.9b06689
  • Zhang Y, Zhao J, Zhang L, et al. A cascade nanoreactor for enhancing sonodynamic therapy on colorectal cancer via synergistic ROS augment and autophagy blockage. Nano Today. 2023;49:101798. doi:10.1016/j.nantod.2023.101798
  • Cao C, Zou H, Yang N, et al. Fe3O4/Ag/Bi2MoO6 Photoactivatable Nanozyme for Self-Replenishing and Sustainable Cascaded Nanocatalytic Cancer Therapy. Adv Mater. 2021;33:2106996. doi:10.1002/adma.202106996
  • Zhu P, Chen Y, Shi J. Nanoenzyme-Augmented Cancer Sonodynamic Therapy by Catalytic Tumor Oxygenation. ACS Nano. 2018;12:3780–3795. doi:10.1021/acsnano.8b00999
  • Liu Y, Cheng Y, Zhang H, et al. Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci Adv. 2020;6:eabb2695. doi:10.1126/sciadv.abb2695
  • Cheng Y, Kong X, Chang Y, et al. spatiotemporally synchronous oxygen self-supply and reactive oxygen species production on Z-scheme heterostructures for hypoxic tumor therapy. Adv Mater. 2020;32:1908109. doi:10.1002/adma.201908109
  • LPZhao RR. Self-delivery nanomedicine for O2-economized photodynamic tumor therapy [J]. Nano Lett. 2020;20:2062–2071. doi:10.1021/acs.nanolett.0c00047
  • Wang D, Wu H, Lim WQ, et al. A mesoporous nanoenzyme derived from metal organic frameworks with endogenous oxygen generation to alleviate tumor hypoxia for significantly enhanced photodynamic therapy. Adv Mater. 2019;31:1901893. doi:10.1002/adma.201901893
  • Jochems C, Schlom J. Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Exp Biol Med (Maywood). 2011;236:567–579. doi:10.1258/ebm.2011.011007
  • Zhang Z, Li B, Xie L, et al. Metal-Phenolic Network-Enabled Lactic Acid Consumption Reverses Immunosuppressive Tumor Microenvironment for Sonodynamic Therapy. ACS nano. 2021;16934–16945. doi:10.1021/acsnano.1c08026
  • Cao Y, Qiao B, Chen Q, et al. Tumor microenvironment remodeling via targeted depletion of M2-like tumor-associated macrophages for cancer immunotherapy. Acta Biomaterialia. 2023;160:239–251. doi:10.1016/j.actbio.2023.02.006
  • Chen Q, Xu L, Chen J, et al. Tumor vasculature normalization by orally fed erlotinib to modulate the tumor microenvironment for enhanced cancer nanomedicine and immunotherapy. Biomaterials. 2017;148:69–80. doi:10.1016/j.biomaterials.2017.09.021
  • Peng J, Xiao Y, Li W, et al. Photosensitizer Micelles Together with IDO Inhibitor Enhance Cancer Photothermal Therapy and Immunotherapy. Adv Sci. 2018;5:1700891. doi:10.1002/advs.201700891
  • Zhong X, Chen B, Yang Z. The role of tumor-associated macrophages in colorectal carcinoma progression. Cell Physiol Biochem. 2018;45:356–365. doi:10.1159/000486816
  • Pittet MJ, Nahrendorf M, Swirski FK. The journey from stem cell to macrophage. Ann N Y Acad Sci. 2014;1319:1–18. doi:10.1111/nyas.12393
  • Jeong SK, Kim JS, Lee CG, et al. Tumor associated macrophages provide the survival resistance of tumor cells to hypoxic microenvironmental condition through IL-6 receptor-mediated signals. Immunobiology. 2017;222:55–65. doi:10.1016/j.imbio.2015.11.010
  • Trac NT, Chung EJ. Peptide-based targeting of immunosuppressive cells in cancer. Bioact Mater. 2020;5:92–101. doi:10.1016/j.bioactmat.2020.01.006
  • Gupta V, Yull F, Khabele D. Bipolar tumor-associated macrophages in ovarian cancer as targets for therapy. Cancers. 2018;10:366. doi:10.3390/cancers10100366
  • Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Canc Res. 2006;66:605–612. doi:10.1158/0008-5472.CAN-05-4005
  • El-Dakdouki MH, Zhu DC, El-Boubbou K. Huang, Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromolecules. 2012;13:1144–1151. doi:10.1021/bm300046h
  • Toole BP. Hyaluronan-CD44 interactions in cancer: paradoxes and possibilities. Clin Canc Res. 2009;15:7462–7468. doi:10.1158/1078-0432.CCR-09-0479
  • Rayahin JE, Buhrman JS, Zhang Y, Koh TJ, Gemeinhart RA. High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater Sci Eng. 2015;1:481–493. doi:10.1021/acsbiomaterials.5b00181
  • Wang T, Niu K, Ni S, Zhang W, Liu Z, Zhang X. Hyaluronic Acid-Modified Gold-Polydopamine Complex Nanomedicine for Tumor-Targeting Drug Delivery and Chemo-Photothermal-Therapy Synergistic Therapy. ACS Sustain Chem Eng. 2022;10:1585–1594. doi:10.1021/acssuschemeng.1c07231
  • Li G, Li J, Zhou Z, et al. Silica-polydopamine core-shell self-confined templates for ultra-stable hollow Pt anchored N-doped carbon electrocatalysts. Dalton Trans. 2017;46:16419–16425. doi:10.1039/c7dt03021e
  • Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991–1003. doi:10.1038/nmat3776
  • Li Q, Yang M, Sun X, et al. NIR responsive nanoenzymes via photothermal ablation and hypoxia reversal to potentiate the STING-dependent innate antitumor immunity. Materials Today Bio. 2023;19:100566. doi:10.1016/j.mtbio.2023.100566
  • Qi C, Fu LH, Xu H, Wang TF, Lin J, Huang P. Melanin/polydopamine-based nanomaterials for biomedical applications. Sci China Chem. 2019;62:162–188. doi:10.1007/s11426-018-9392-6
  • Bernsmann F, Ball V, Addiego F, et al. Dopamine-melanin film deposition depends on the used oxidant and buffer solution. Langmuir. 2011;27:2819–2825. doi:10.1021/la104981s
  • Dong Z, Feng LZ, Hao Y, et al. Synthesis of hollow biomineralized CaCO3−Polydopamine nanoparticles for multimodal imaging-guided cancer photodynamic therapy with reduced skin photosensitivity. J Am Chem Soc. 2018;140:2165–2178. doi:10.1021/jacs.7b11036
  • Cheng W, Ling C, Xu L, et al. TPGS-functionalized polydopamine-modified mesoporous silica as drug nanocarriers for enhanced lung cancer chemotherapy against multidrug resistance. Small. 2017;13:1700623. doi:10.1002/smll.201700623
  • Ding L, Zhu X, Wang Y, et al. Intracellular fate of nanoparticles with polydopamine surface engineering and a novel strategy for exocytosis-inhibiting, lysosome impairment-based cancer therapy. Nano Lett. 2017;17:6790–6801. doi:10.1021/acs.nanolett.7b03021
  • Miller T, Breyer S, Colen G, et al. Premature drug release of polymeric micelles and its effects on tumor targeting. Int J Pharm. 2013;445:117–124. doi:10.1016/j.ijpharm.2013.01.059
  • Wang H, Morales RTT, Cui X, et al. A Photoresponsive Hyaluronan Hydrogel Nanocomposite for Dynamic Macrophage Immunomodulation. Adv Healthc Mater. 2019;8:e1801234. doi:10.1002/adhm.201801234
  • Rosa JMR. The CD44-Mediated Uptake of Hyaluronic Acid-Based Carriers in Macrophages. Adv Healthc Mater. 2017;6. doi:10.1002/adhm.201601012
  • Xu J, Xia X, Leung AW, et al. Sonodynamic action of pyropheophorbide-a methyl ester induces mitochondrial damage in liver cancer cells. Ultrasonics. 2011;51(4):480–484. doi:10.1016/j.ultras.2010.11.014
  • Li Q, Wang X, Wang P, et al. Efficacy of Chlorin e6 mediated Sono-Photodynamic therapy on 4T1 cells. Cancer Biother Radiopharm. 2014;29:42–52. doi:10.1089/cbr.2013.1526
  • Zhang Q, Bao C, Cai X, et al. Sonodynamic therapy‐assisted immunotherapy: a novel modality for cancer treatment. Cancer Sci. 2018;109:1330–1345. doi:10.1111/cas.13578
  • Ji C, Si J, Xu Y, et al. Mitochondria-targeted and ultrasound-responsive nanoparticles for oxygen and nitric oxide codelivery to reverse immunosuppression and enhance sonodynamic therapy for immune activation. Theranostics. 2021;11:8587–8604. doi:10.7150/thno.62572
  • He D, Hai L. Glutathione-activatable and O2/Mn2+-evolving nanocomposite for highly efficient and selective photodynamic and gene-silencing dual therapy. Adv Funct Mater. 2017;27:1704089. doi:10.1002/adfm.201704089