222
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Nanoclay-Doped Electrospun Nanofibers for Tissue Engineering: Investigation on the Structural Modifications in Physiological Environment

, , , , , ORCID Icon, ORCID Icon & show all
Pages 7695-7710 | Received 22 Jul 2023, Accepted 19 Nov 2023, Published online: 13 Dec 2023

References

  • López-Galindo A, Viseras C, Cerezo P. Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl Clay Sci. 2007;36:51–63. doi:10.1016/j.clay.2006.06.016
  • Naumenko EA, Guryanov ID, Yendluri R, Lvov YM, Fakhrullin RF. Clay nanotube–biopolymer composite scaffolds for tissue engineering. Nanoscale. 2016;8:7257–7271. doi:10.1039/C6NR00641H
  • Mousa M, Evans ND, Oreffo ROC, Dawson JI. Clay nanoparticles for regenerative medicine and bio-material design: a review of clay bioactivity. Biomaterials. 2018;159:204–214. doi:10.1016/j.biomaterials.2017.12.024
  • Gaharwar AK, Cross LM, Peak CW, et al. Nanoclay for bio-medical applications: regenerative medicine, therapeutic delivery, and additive manufacturing. Adv Mater. 2019;31:1900332. doi:10.1002/adma.201900332
  • Cervini-Silva J, Ramírez-Apan MT, Gómez-Vidales V, Palacios E, Montoya A, De Jesús ER. Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays. Colloids Surf B. 2015;129:1–6. doi:10.1016/j.colsurfb.2015.03.019
  • Carretero MI, Gomes CSF, Tateo F. Clays, drugs, and human health. In Develop Clay Sci. 2013;5:711–764.
  • Ghadiri M, Hau H, Chrzanowski W, Agus H, Rohanizadeh R. Laponite clay as a carrier for in situ delivery of tetracycline. RSC Advan. 2013;3:20193–20201. doi:10.1039/c3ra43217c
  • Tenci M, Rossi S, Aguzzi C, et al. Carvacrol/clay hybrids loaded into in situ gelling films. Int J Pharm. 2017;31:676–688.
  • Viseras C, Carazo E, Borrego-Sánchez A, et al. Clay minerals in skin drug delivery. Clays Clay Miner. 2019;67:59–71.
  • García-Villén F, Souza I, de Melo Barbosa R, et al. Natural inorganic ingredients in wound healing. Curr Pharm Des. 2020;26:621–641.
  • Phull QZ, Arain AA, Ansari MA, Memon AR. Wound healing effects of bentonite: a rabbit model experimental study. Biomed J. 2018;10:7683–7686.
  • Sandri G, Aguzzi C, Rossi S, et al. Halloysite and chitosan oligosaccharide nanocomposite for wound healing. Acta Biomater. 2017;57:216–224. doi:10.1016/j.actbio.2017.05.032
  • Mohebali A, Abdouss M. Layered biocompatible pH-responsive antibacterial composite film based on HNT/PLGA/chitosan for controlled release of minocycline as burn wound dressing. Int J Biol Macromol. 2020;164:4193–4204.
  • Askari M, Afshar M, Naghizadeh A, Khorashadizadeh M, Zardast M. Bentonite nanoparticles and honey co-administration effects on skin wound healing: experimental study in the BALB/c MICE. Int J Low Extrem Wounds. 2022;2022:15347346221118497.
  • Wali A, Gorain M, Inamdar S, Kundu G, Badiger M. In vivo wound healing performance of halloysite clay and gentamicin-incorporated cellulose ether-PVA electrospun nanofiber mats. ACS Appl Bio Mater. 2019;2:4324–4334. doi:10.1021/acsabm.9b00589
  • Same S, Nakhjavani SA, Samee G, Davaran S, Jahanbani Y, Davaran S. Halloysite clay nanotube in regenerative medicine for tissue and wound healing. Ceram Int. 2022;48:31065–31079. doi:10.1016/j.ceramint.2022.05.037
  • Kurnik M, Ortega G, Dauphin-Ducharme P, Li H, Caceres A, Plaxco KW. Quantitative measurements of protein− surface interaction thermodynamics. Proc Natl Acad Sci. 2018;115:8352–8357. doi:10.1073/pnas.1800287115
  • Frutiger A, Tanno A, Hwu S, Tiefenauer RF, Voros J, Nakatsuka N. Nonspecific binding—fundamental concepts and consequences for biosensing applications. Chem Rev. 2021;121:8095–8160. doi:10.1021/acs.chemrev.1c00044
  • Castner DG. Biomedical surface analysis: evolution and future directions. Biointerphases. 2017;12:02C301. doi:10.1116/1.4982169
  • Rubio C, Costa D, Bellon-Fontaine MN, Relkin P, Pradier CM, Marcus P. Characterization of bovine serum albumin adsorption on chromium and AISI 304 stainless steel, consequences for the Pseudomonas fragi K1 adhesion. Colloids Surf B. 2002;24:193–205. doi:10.1016/S0927-7765(01)00242-9
  • Allizond V, Banche G, Salvoni M, et al. Facile one-step electrospinning process to prepare AgNPs-Loaded PLA and PLA/PEO mats with antibacterial activity. Polymers. 2023;15:1470. doi:10.3390/polym15061470
  • Comini S, Sparti R, Coppola B, et al. Novel silver-functionalized poly(ε-Caprolactone)/biphasic calcium phosphate scaffolds designed to counteract post-surgical infections in orthopedic applications. Int J Mol Sci. 2021;22:10176. doi:10.3390/ijms221810176
  • Qi X, Su T, Zhang M, et al. Sustainable, flexible and biocompatible hydrogels derived from microbial polysaccharides with tailorable structures for tissue engineering. Carbohydr Polym. 2020;237:116160. doi:10.1016/j.carbpol.2020.116160
  • Qi X, Su T, Zhang M, et al. Macroporous hydrogel scaffolds with tunable physicochemical properties for tissue engineering constructed using renewable polysaccharides. ACS Appl Mater Interfaces. 2020;12:13256–13264. doi:10.1021/acsami.9b20794
  • Su T, Zhang M, Zeng Q, et al. Mussel-inspired agarose hydrogel scaffolds for skin tissue engineering. Bioact. Mater. 2021;6:579–588. doi:10.1016/j.bioactmat.2020.09.004
  • Sandri G, Rossi S, Bonferoni MC, et al. Chitosan/glycosaminoglycan scaffolds for skin reparation. Carbohydr Polym. 2019;220:219–227. doi:10.1016/j.carbpol.2019.05.069
  • Sandri G, Miele D, Faccendini A, et al. Chitosan/glycosaminoglycan scaffolds: the role of silver nanoparticles to control microbial infections in wound healing. Polymers. 2019;11:1207. doi:10.3390/polym11071207
  • Ruggeri M, Sánchez-Espejo R, Casula L, et al. Clay-based hydrogels as drug delivery vehicles of curcumin nanocrystals for topical application. Pharmaceutics. 2022;14:2836. doi:10.3390/pharmaceutics14122836
  • Ruggeri M, Sánchez-Espejo R, Casula L, et al. Bentonite- and palygorskite-based gels for topical drug delivery applications. Pharmaceutics. 2023;15:1253. doi:10.3390/pharmaceutics15041253
  • Faccendini A, Ruggeri M, Miele D, et al. Norfloxacin-loaded electrospun scaffolds: montmorillonite nanocomposite vs. free drug. Pharmaceutics. 2020;12:325. doi:10.3390/pharmaceutics12040325
  • García-Villén F, Faccendini A, Aguzzi C, et al. Montmorillonite-norfloxacin nanocomposite intended for healing of infected wounds. Int J Nanomedicine. 2019;14:5051–5060. doi:10.2147/IJN.S208713
  • Sandri G, Faccendini A, Longo M, et al. Halloysite- and montmorillonite-loaded scaffolds as enhancers of chronic wound healing. Pharmaceutics. 2020;12:179. doi:10.3390/pharmaceutics12020179
  • Nordtveit RJ, Varum KM, Smidsrod O. Degradation of fully water-soluble, partially N-acetylated chitosans with lysozyme. Carbohydr Polym. 1994;23:253–260. doi:10.1016/0144-8617(94)90187-2
  • Kupiec TC, Matthews P, Ahmad R. Dry-heat sterilization of parenteral oil vehicles. Int J Pharm Compd. 2000;4:223–224.
  • Richard D, Ferrand M, Kearley GJ. LAMP, Large Array Manipulation Program, 1996 (2001 version). J Neutron Res. 1996;4:33–39. doi:10.1080/10238169608200065
  • Ruggeri M, Vigani B, Boselli C, et al. Smart nano-in-microparticles to tackle bacterial infections in skin tissue engineering. Mater Today Bio. 2022;16:100418. doi:10.1016/j.mtbio.2022.100418
  • Ruggeri M, Bianchi E, Rossi S, et al. Maltodextrin-amino acids electrospun scaffolds cross-linked with Maillard-type reaction for skin tissue engineering. Biomater Adv. 2022;133:112593. doi:10.1016/j.msec.2021.112593
  • Budai-Szűcs M, Ruggeri M, Faccendini A, et al. Electrospun scaffolds in periodontal wound healing. Polymers. 2021;13:307. doi:10.3390/polym13020307
  • Feng F, Liu Y, Zhao B, Hu K. Characterization of half N-acetylated chitosan powders and films. Proced Engin. 2012;27:718–732. doi:10.1016/j.proeng.2011.12.511
  • Hokputsa S, Hu C, Paulsen BS, Harding SE. A physico-chemical comparative study on extracellular carbohydrate polymers from five desert algae. Carbohydr Polym. 2003;54:27–32. doi:10.1016/S0144-8617(03)00136-X
  • Madejová J, Bujdák J, Janek M, Komadel P. Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite. Spectrochim Acta A Mol Biomol Spectrosc. 1998;54:1397–1406. doi:10.1016/S1386-1425(98)00040-7
  • Massaro M, Viseras C, Cavallaro G, et al. Synthesis and characterization of nanomaterial based on halloysite and hectorite clay minerals covalently bridged. Nanomaterials. 2021;11:506. doi:10.3390/nano11020506
  • Danková Z, Mockovčiaková A, Dolinská S. Influence of ultrasound irradiation on cadmium cations adsorption by montmorillonite. Desalin Water Treat. 2014;52:5462–5469. doi:10.1080/19443994.2013.814006
  • Faccendini A, Bianchi E, Ruggeri M, et al. Smart device for biologically enhanced functional regeneration of osteo–tendon interface. Pharmaceutics. 2021;13:1996. doi:10.3390/pharmaceutics13121996
  • Bochicchio D, Cantu L, Cadario MV, et al. Polystyrene perturbs the structure, dynamics, and mechanical properties of DPPC membranes: an experimental and computational study. JCIS. 2022;605:110–119.
  • Zaccai G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science. 2000;288:1604–1607. doi:10.1126/science.288.5471.1604
  • Yan H, Zhang Z. Effect and mechanism of cation species on the gel properties of montmorillonite. Colloids Surf A. 2021;611:125824. doi:10.1016/j.colsurfa.2020.125824
  • García-Villén F, Sánchez-Espejo R, Borrego-Sánchez A, et al. Assessment of hectorite/spring water hydrogels as wound healing products. Multidiscip Digital Publishing Inst Proc. 2020;78:6.
  • Zheng Y, Zaoui A. Wetting and nanodroplet contact angle of the clay 2:1 surface: the case of Na-montmorillonite (001). Appl Surf Sci. 2017;396:717–722. doi:10.1016/j.apsusc.2016.11.015
  • Yang Y, Chen J, Ma G, et al. Waterborne cross-linkable polyacrylate latex coatings with good water resistance and strength stabilized by modified hectorite. Polymers. 2021;13:2470. doi:10.3390/polym13152470
  • Yi H, Jia F, Zhao Y, et al. Surface wettability of montmorillonite (0 0 1) surface as affected by surface charge and exchangeable cations: a molecular dynamic study. Appl Surf Sci. 2018;59:148–154. doi:10.1016/j.apsusc.2018.07.216
  • Zhang J, Zhou CH, Petit S, et al. Hectorite: synthesis, modification, assembly, and applications. Appl Clay Sci. 2019;177:114–138. doi:10.1016/j.clay.2019.05.001
  • Mohammed I, Al Shehri D, Mahmoud M, et al. A surface charge approach to investigating the influence of oil contacting clay minerals on wettability alteration. ACS omega. 2021;6:12841–12852. doi:10.1021/acsomega.1c01221
  • Bourlinos AB, Jiang DD, Giannelis EP. Clay−Organosiloxane hybrids:  a route to cross-linked clay particles and clay monoliths. Chem Mater. 2004;16(12):2404–2410. doi:10.1021/cm049975z
  • Wilson CJ, Clegg RE, Leavesley DI, et al. Mediation of biomaterial–cell interactions by adsorbed proteins: a review. Tissue Engin. 2005;11:11–18. doi:10.1089/ten.2005.11.1
  • Mucha M, Maršálek R, Bukáčková M, Zelenková G. Interaction among clays and bovine serum albumin. RSC Advan. 2020;10:43927–43939. doi:10.1039/D0RA01430C
  • Wyrzykowski D, Hebanowska E, Nowak-Wiczk G, Makowski M, Chmurzyński L. Thermal behaviour of citric acid and isomeric aconitic acids. J Therm Anal Calorim. 2011;104:731–735. doi:10.1007/s10973-010-1015-2
  • Ng KW, Tham W, Lim TC, Werner Hutmacher D. Assimilating cell sheets and hybrid scaffolds for dermal tissue engineering. J Biomed Mater Res A. 2005;75:425–438. doi:10.1002/jbm.a.30454
  • Wang Y, Wang G, Luo X, Qiu J, Tang C. Substrate stiffness regulates the proliferation, migration, and differentiation of epidermal cells. Burns. 2012;38(3):414–420. doi:10.1016/j.burns.2011.09.002