128
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Key Modulation of ROS and HSP for Effective Therapy Against Hypoxic Tumor with Multifunctional Nanosystem

, , , , , , & show all
Pages 6829-6846 | Received 23 Aug 2023, Accepted 09 Nov 2023, Published online: 17 Nov 2023

References

  • Sharma D, Subbarao G, Saxena R. Hepatoblastoma. Semin Diagn Pathol. 2017;34(2):192–200. doi:10.1053/j.semdp.2016.12.015
  • Waters AM, Mathis MS, Beierle EA, Russell RT. A synopsis of pediatric patients with hepatoblastoma and Wilms tumor: NSQIP-P 2012–2016. J Surg Res. 2019;244:338–342. doi:10.1016/j.jss.2019.06.064
  • Zhi D, Yang T, O’Hagan J, Zhang S, Donnelly RF. Photothermal therapy. J Control Release. 2020;325:52–71. doi:10.1016/j.jconrel.2020.06.032
  • Li C, Cheng Y, Li D, et al. Antitumor applications of photothermal agents and photothermal synergistic therapies. Int J Mol Sci. 2022;23(14):7909.
  • Xin Y, Sun Z, Liu J, et al. Nanomaterial-mediated low-temperature photothermal therapy via heat shock protein inhibition. Front Bioeng Biotechnol. 2022;10:1027468. doi:10.3389/fbioe.2022.1027468
  • Ali MR, Ali HR, Rankin CR, El-Sayed MA. Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy. Biomaterials. 2016;102:1–8. doi:10.1016/j.biomaterials.2016.06.017
  • Xia Y, Li C, Cao J, et al. Liposome-templated gold nanoparticles for precisely temperature-controlled photothermal therapy based on heat shock protein expression. Colloids Surf B Biointerfaces. 2022;217:112686. doi:10.1016/j.colsurfb.2022.112686
  • Wang S, Tian Y, Tian W, et al. Selectively sensitizing malignant cells to photothermal therapy using a CD44-targeting heat shock protein 72 depletion nanosystem. ACS Nano. 2016;10(9):8578–8590. doi:10.1021/acsnano.6b03874
  • Cramer GM, Cengel KA, Busch TM. Forging forward in photodynamic therapy. Cancer Res. 2022;82(4):534–536. doi:10.1158/0008-5472.CAN-21-4122
  • Lan M, Zhao S, Liu W, Lee CS, Zhang W, Wang P. Photosensitizers for photodynamic therapy. Adv Healthc Mater. 2019;8(13):e1900132. doi:10.1002/adhm.201900132
  • Zhao P, Li H, Bu W. A forward vision for chemodynamic therapy: issues and opportunities. Angew Chem Int Ed Engl. 2023;62(7):e202210415. doi:10.1002/anie.202210415
  • Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30(16):R921–R925. doi:10.1016/j.cub.2020.06.081
  • Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. The hypoxic tumour microenvironment. Oncogenesis. 2018;7(1):10. doi:10.1038/s41389-017-0011-9
  • Li Y, Zhao L, Li X-F. Hypoxia and the Tumor Microenvironment. Technol Cancer Res Treat. 2021;20:15330338211036304. doi:10.1177/15330338211036304
  • Cui T, Li X, Shu Y, Huang X, Wang Y, Zhang W. Utilizing glutathione-triggered nanoparticles to enhance chemotherapy of lung cancer by reprograming the tumor microenvironment. Int J Pharm. 2018;552(1–2):16–26. doi:10.1016/j.ijpharm.2018.09.050
  • Zhang ZJ, Wang KP, Mo JG, Xiong L, Wen Y. Photodynamic therapy regulates fate of cancer stem cells through reactive oxygen species. World J Stem Cells. 2020;12(7):562–584. doi:10.4252/wjsc.v12.i7.562
  • Yuan B, Wang H, Xu JF, Zhang X. Activatable photosensitizer for smart photodynamic therapy triggered by reactive oxygen species in tumor cells. ACS Appl Mater Interfaces. 2020;12(24):26982–26990. doi:10.1021/acsami.0c07471
  • Wang T, Xu X, Zhang K. Nanotechnology-enabled chemodynamic therapy and immunotherapy. Curr Cancer Drug Targets. 2021;21(7):545–557. doi:10.2174/1568009621666210219101552
  • Chen Q, Li N, Wang X, et al. Mitochondria-targeting chemodynamic therapy nanodrugs for cancer treatment. Front Pharmacol. 2022;13:847048. doi:10.3389/fphar.2022.847048
  • Wang J, Kong W, Jin H, et al. Tumor microenvironment responsive theranostic agent for enhanced chemo/chemodynamic/photothermal therapy. Colloids Surf B Biointerfaces. 2022;218:112750. doi:10.1016/j.colsurfb.2022.112750
  • Tang H, Li C, Zhang Y, et al. Targeted Manganese doped silica nano GSH-cleaner for treatment of Liver Cancer by destroying the intracellular redox homeostasis. Theranostics. 2020;10(21):9865–9887. doi:10.7150/thno.46771
  • Zhong D, Wang Y, Xie F, et al. A biomineralized Prussian blue nanotherapeutic for enhanced cancer photothermal therapy. J Mater Chem B. 2022;10(25):4889–4896. doi:10.1039/D2TB00775D
  • Dong H, Wang G, Feng K, et al. Reference material of Prussian blue nanozymes for their peroxidase-like activity. Analyst. 2022;147(24):5633–5642. doi:10.1039/D2AN01401G
  • Cui R, Li B, Liao C, Zhang S. Copper-mediated chemodynamic therapy with ultra-low copper consumption by doping cupric ion on cross-linked (R)-(+)-lipoic acid nanoparticles. Regen Biomater. 2023;10:rbad021. doi:10.1093/rb/rbad021
  • Liu L, Zhang H, Peng L, et al. A copper-metal organic framework enhances the photothermal and chemodynamic properties of polydopamine for melanoma therapy. Acta Biomater. 2023;158:660–672. doi:10.1016/j.actbio.2023.01.010
  • Hu C, Cai L, Liu S, Liu Y, Zhou Y, Pang M. Copper-doped nanoscale covalent organic polymer for augmented photo/chemodynamic synergistic therapy and immunotherapy. Bioconjug Chem. 2020;31(6):1661–1670. doi:10.1021/acs.bioconjchem.0c00209
  • Yang J, Yang L, Li Q, Zhang L. Ferrocene-based multifunctional nanoparticles for combined chemo/chemodynamic/photothermal therapy. J Colloid Interface Sci. 2022;626:719–728. doi:10.1016/j.jcis.2022.06.117
  • He R, Zang J, Zhao Y, et al. Nanofactory for metabolic and chemodynamic therapy: pro-tumor lactate trapping and anti-tumor ROS transition. J Nanobiotechnology. 2021;19(1):426. doi:10.1186/s12951-021-01169-9