345
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Recombinase Polymerase Amplification-Based Biosensors for Rapid Zoonoses Screening

ORCID Icon, , , , ORCID Icon, & show all
Pages 6311-6331 | Received 02 Sep 2023, Accepted 21 Oct 2023, Published online: 05 Nov 2023

References

  • Tian D, Sun Y, Xu H, et al. The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 Omicron variant. J Med Virol. 2022;94(6):2376–2383. doi:10.1002/jmv.27643
  • World Health Organization, Food and Agriculture Organization of the United Nations, World Organisation for Animal Health & United Nations Environment Programme. One health joint plan of action (‎2022‒2026)‎: working together for the health of humans, animals, plants and the environment. Available from: https://www.who.int/publications/i/item/9789240059139. Accessed October 28, 2023.
  • Carpenter A, Waltenburg MA, Hall A, et al. Vaccine Preventable Zoonotic Diseases: challenges and Opportunities for Public Health Progress. Vaccines. 2022;10(7). doi:10.3390/vaccines10070993
  • Zhou D, Wang S, Yang K, et al. Rapid and simultaneous detection of Japanese encephalitis virus by real-time nucleic acid sequence-based amplification. Micro Pathog. 2021;150:104724. doi:10.1016/j.micpath.2020.104724
  • Reid P, Heng N, Hale JD, et al. A TaqMan-based quantitative PCR screening assay for the probiotic Streptococcus salivarius K12 based on the specific detection of its megaplasmid-associated salivaricin B locus. J Microbiol Methods. 2020;170:105837. doi:10.1016/j.mimet.2020.105837
  • Lobato IM, O’Sullivan CK. Recombinase polymerase amplification: basics, applications and recent advances. Trends Analyt Chem. 2018;98:19–35. doi:10.1016/j.trac.2017.10.015
  • Zhang N, Li C, Dou X, et al. Overview and Future Perspectives of Microfluidic Digital Recombinase Polymerase Amplification (dRPA). Crit Rev Anal Chem. 2022;52(8):1969–1989. doi:10.1080/10408347.2022.2042669
  • Soroka M, Wasowicz B, Rymaszewska A. Loop-Mediated Isothermal Amplification (LAMP): the Better Sibling of PCR? Cells. 2021;10(8). doi:10.3390/cells10081931
  • Xu G, Hu L, Zhong H, et al. Cross priming amplification: mechanism and optimization for isothermal DNA amplification. Sci Rep. 2012;2:246. doi:10.1038/srep00246
  • Myrmel M, Oma V, Khatri M, et al. Single primer isothermal amplification (SPIA) combined with next generation sequencing provides complete bovine coronavirus genome coverage and higher sequence depth compared to sequence-independent single primer amplification (SISPA). PLoS One. 2017;12(11). doi:10.1371/journal.pone.0187780
  • He F, Zhou W, Cai R, et al. Systematic assessment of the performance of whole-genome amplification for SNP/CNV detection and β-thalassemia genotyping. J Hum Genet. 2018;63(4):407–416. doi:10.1038/s10038-018-0411-5
  • Carter JG, Orueta Iturbe L, Duprey JHA, et al. Ultrarapid detection of SARS-CoV-2 RNA using a reverse transcription-free exponential amplification reaction, RTF-EXPAR. Proc Natl Acad Sci USA. 2021;118(35). doi:10.1073/pnas.2100347118
  • Wang X, Liu Y, Liu H, et al. Recent advances and application of whole genome amplification in molecular diagnosis and medicine. MedComm. 2022;3(1). doi:10.1002/mco2.116
  • Mota DS, Guimaraes JM, Gandarilla A, et al. Recombinase polymerase amplification in the molecular diagnosis of microbiological targets and its applications. Can J Microbiol. 2022;68(6):383–402. doi:10.1139/cjm-2021-0329
  • Behrmann O, Bachmann I, Spiegel M, et al. Rapid Detection of SARS-CoV-2 by Low Volume Real-Time Single Tube Reverse Transcription Recombinase Polymerase Amplification Using an Exo Probe with an Internally Linked Quencher (Exo-IQ). Clin Chem. 2020;66(8):1047–1054. doi:10.1093/clinchem/hvaa116
  • Zhao L, Wang J, Sun XX, et al. Development and Evaluation of the Rapid and Sensitive RPA Assays for Specific Detection of Salmonella spp. in Food Samples. Front Cell Infect Microbiol. 2021;11:631921. doi:10.3389/fcimb.2021.631921
  • TwistAmp® manuals. Available from: https://www.twistdx.co.uk/en/support/manuals/twistamp-manuals. Accessed October 28, 2023.
  • Zhang Y, Tian J, Li K, et al. Label-free visual biosensor based on cascade amplification for the detection of Salmonella. Anal Chim Acta. 2019;1075:144–151. doi:10.1016/j.aca.2019.05.020
  • Tran DH, Tran HT, Pham T, et al. Direct multiplex recombinase polymerase amplification for rapid detection of S taphylococcus aureus and P seudomonas aeruginosa in food. Mol Biol Res Commum. 2022;11(1):1–10. doi:10.22099/mbrc.2021.41503.1664
  • Tian J, Chu H, Zhang Y, et al. TiO2 Nanoparticle-Enhanced Linker Recombinant Strand Displacement Amplification (LRSDA) for Universal Label-Free Visual Bioassays. ACS Appl Mater Interfaces. 2019;11(50):46504–46514. doi:10.1021/acsami.9b16314
  • Liu D, Shen H, Zhang Y, et al. A microfluidic-integrated lateral flow recombinase polymerase amplification (MI-IF-RPA) assay for rapid COVID-19 detection. Lab Chip. 2021;21(10):2019–2026. doi:10.1039/d0lc01222j
  • Qian J, Boswell SA, Chidley C, et al. An enhanced isothermal amplification assay for viral detection. Nat Commum. 2020;11(1):5920. doi:10.1038/s41467-020-19258-y
  • Bender AT, Sullivan BP, Zhang JY, et al. HIV detection from human serum with paper-based isotachophoretic RNA extraction and reverse transcription recombinase polymerase amplification. Analyst. 2021;146(9):2851–2861. doi:10.1039/d0an02483j
  • Chen J, Xu Y, Yan H, et al. Sensitive and rapid detection of pathogenic bacteria from urine samples using multiplex recombinase polymerase amplification. Lab Chip. 2018;18(16):2441–2452. doi:10.1039/c8lc00399h
  • Tan KK, Azizan NS, Yaacob VN, et al. Operational utility of the reverse-transcription recombinase polymerase amplification for detection of dengue virus. BMC Infect Dis. 2018;18(1):169. doi:10.1186/s12879-018-3065-1
  • Weidmann M, Faye O, Faye O, et al. Development of Mobile Laboratory for Viral Hemorrhagic Fever Detection in Africa. J Infect Dis. 2018;218(10):1622–1630. doi:10.1093/infdis/jiy362
  • Xiong E, Jiang L, Tian T, et al. Simultaneous Dual-Gene Diagnosis of SARS-CoV-2 Based on CRISPR/Cas9-Mediated Lateral Flow Assay. Angew Chem Int Ed Engl. 2021;60(10):5307–5315. doi:10.1002/anie.202014506
  • Moore MD, Jaykus LA. Development of a Recombinase Polymerase Amplification Assay for Detection of Epidemic Human Noroviruses. Sci Rep. 2017;7:40244. doi:10.1038/srep40244
  • Sullivan BP, Chou YS, Bender AT, et al. Quantitative isothermal amplification on paper membranes using amplification nucleation site analysis. Lab Chip. 2022;22(12):2352–2363. doi:10.1039/d2lc00007e
  • Chan K, Weaver SC, Wong PY, et al. Rapid, Affordable and Portable Medium-Throughput Molecular Device for Zika Virus. Sci Rep. 2016;6:38223. doi:10.1038/srep38223
  • Leal FW, Ternova L, Parasnis SA, et al. Climate Change and Zoonoses: a Review of Concepts, Definitions, and Bibliometrics. Int J Environ Res Public Health. 2022;19(2). doi:10.3390/ijerph19020893
  • Fouque F, Reeder JC. Impact of past and on-going changes on climate and weather on vector-borne diseases transmission: a look at the evidence. Infect Dis Poverty. 2019;8(1):51. doi:10.1186/s40249-019-0565-1
  • Conrady B. Epidemiological, Mitigation and Economic Impact of Zoonoses. Int J Environ Res Public Health. 2021;18(21). doi:10.3390/ijerph182111704
  • Judson SD, Rabinowitz PM. Zoonoses and global epidemics. Curr Opin Infect Dis. 2021;34(5):385–392. doi:10.1097/QCO.0000000000000749
  • Yang M, Ke Y, Wang X, et al. Development and Evaluation of a Rapid and Sensitive EBOV-RPA Test for Rapid Diagnosis of Ebola Virus Disease. Sci Rep. 2016;6:26943. doi:10.1038/srep26943
  • Ahn H, Batule BS, Seok Y, et al. Single-Step Recombinase Polymerase Amplification Assay Based on a Paper Chip for Simultaneous Detection of Multiple Foodborne Pathogens. Anal Chem. 2018;90(17):10211–10216. doi:10.1021/acs.analchem.8b01309
  • Wang L, Zhao P, Si X, et al. Rapid and Specific Detection of Listeria monocytogenes With an Isothermal Amplification and Lateral Flow Strip Combined Method That Eliminates False-Positive Signals From Primer-Dimers. Front Microbiol. 2019;10:2959. doi:10.3389/fmicb.2019.02959
  • Davi SD, Kissenkotter J, Faye M, et al. Recombinase polymerase amplification assay for rapid detection of Monkeypox virus. Diagn Microbiol Infect Dis. 2019;95(1):41–45. doi:10.1016/j.diagmicrobio.2019.03.015
  • Dieng I, Hedible BG, Diagne MM, et al. Mobile Laboratory Reveals the Circulation of Dengue Virus Serotype I of Asian Origin in Medina Gounass (Guediawaye), Senegal. Diagnostics. 2020;10(6). doi:10.3390/diagnostics10060408
  • Faye M, Abd EWA, Faye O, et al. A recombinase polymerase amplification assay for rapid detection of rabies virus. Sci Rep. 2021;11(1):3131. doi:10.1038/s41598-021-82479-8
  • Yehia N, Eldemery F, Arafa AS, et al. Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid Detection of Avian Influenza Virus H9N2 HA Gene. Vet Sci. 2021;8(7). doi:10.3390/vetsci8070134
  • Tomar PS, Kumar S, Patel S, et al. Development and Evaluation of Real-Time Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid and Sensitive Detection of West Nile Virus in Human Clinical Samples. Front Cell Infect Microbiol. 2020;10:619071. doi:10.3389/fcimb.2020.619071
  • Yoo H, Lee JY, Park KS, et al. Lead-start isothermal polymerase amplification controlled by DNAzymatic switches. Nanoscale. 2022;14(21):7828–7836. doi:10.1039/d1nr07894a
  • Archer J, Barksby R, Pennance T, et al. Analytical and Clinical Assessment of a Portable, Isothermal Recombinase Polymerase Amplification (RPA) Assay for the Molecular Diagnosis of Urogenital Schistosomiasis. Molecules. 2020;25(18). doi:10.3390/molecules25184175
  • Yang X, Zhang X, Wang Y, et al. A Real-Time Recombinase Polymerase Amplification Method for Rapid Detection of Vibrio vulnificus in Seafood. Front Microbiol. 2020;11:586981. doi:10.3389/fmicb.2020.586981
  • Garrido-Maestu A, Azinheiro S, Fucinos P, et al. Comparative study of multiplex real-time recombinase polymerase amplification and ISO 11290-1 methods for the detection of Listeria monocytogenes in dairy products. Food Microbiol. 2020;92:103570. doi:10.1016/j.fm.2020.103570
  • Guo M, Feng P, Zhang L, et al. Rapid Detection of Clostridium tetani by Recombinase Polymerase Amplification Using an Exo Probe. J Microbiol Biotechnol. 2022;32(1):91–98. doi:10.4014/jmb.2109.09022
  • Zheng Y, Hu P, Ren H, et al. RPA-SYBR Green I based instrument-free visual detection for pathogenic Yersinia enterocolitica in meat. Anal Biochem. 2021;621:114157. doi:10.1016/j.ab.2021.114157
  • Gunaratna G, Manamperi A, Böhlken-Fascher S, et al. Evaluation of rapid extraction and isothermal amplification techniques for the detection of Leishmania donovani DNA from skin lesions of suspected cases at the point of need in Sri Lanka. Parasit Vectors. 2018;11(1):665. doi:10.1186/s13071-018-3238-1
  • Yang B, Kong J, Fang X. Bandage-like wearable flexible microfluidic recombinase polymerase amplification sensor for the rapid visual detection of nucleic acids. Talanta. 2019;204:685–692. doi:10.1016/j.talanta.2019.06.031
  • Law I, Loo J, Kwok HC, et al. Automated real-time detection of drug-resistant Mycobacterium tuberculosis on a lab-on-a-disc by Recombinase Polymerase Amplification. Anal Biochem. 2018;544:98–107. doi:10.1016/j.ab.2017.12.031
  • Wang Z, Wang Y, Lin L, et al. A finger-driven disposable micro-platform based on isothermal amplification for the application of multiplexed and point-of-care diagnosis of tuberculosis. Biosens Bioelectron. 2022;195:113663. doi:10.1016/j.bios.2021.113663
  • Kong M, Li Z, Wu J, et al. A wearable microfluidic device for rapid detection of HIV-1 DNA using recombinase polymerase amplification. Talanta. 2019;205:120155. doi:10.1016/j.talanta.2019.120155
  • Li X, Zheng T, Xie YN, et al. Recombinase Polymerase Amplification Coupled with a Photosensitization Colorimetric Assay for Fast Salmonella spp. Testing. Anal Chem. 2021;93(16):6559–6566. doi:10.1021/acs.analchem.1c00791
  • Cao Y, Zheng K, Jiang J, et al. A novel method to detect meat adulteration by recombinase polymerase amplification and SYBR green I. Food Chem. 2018;266:73–78. doi:10.1016/j.foodchem.2018.05.115
  • Zhang Y, Chai Y, Hu Z, et al. Recent Progress on Rapid Lateral Flow Assay-Based Early Diagnosis of COVID-19. Front Bioeng Biotechnol. 2022;10:866368. doi:10.3389/fbioe.2022.866368
  • Liu HB, Du XJ, Zang YX, et al. SERS-Based Lateral Flow Strip Biosensor for Simultaneous Detection of Listeria monocytogenes and Salmonella enterica Serotype Enteritidis. J Agric Food Chem. 2017;65(47):10290–10299. doi:10.1021/acs.jafc.7b03957
  • Li J, Zhong Q, Shang MY, et al. Preliminary Evaluation of Rapid Visual Identification of Burkholderia pseudomallei Using a Newly Developed Lateral Flow Strip-Based Recombinase Polymerase Amplification (LF-RPA) System. Front Cell Infect Microbiol. 2021;11:804737. doi:10.3389/fcimb.2021.804737
  • Xu Y, Wei Y, Cheng N, et al. Nucleic Acid Biosensor Synthesis of an All-in-One Universal Blocking Linker Recombinase Polymerase Amplification with a Peptide Nucleic Acid-Based Lateral Flow Device for Ultrasensitive Detection of Food Pathogens. Anal Chem. 2018;90(1):708–715. doi:10.1021/acs.analchem.7b01912
  • Xi Y, Xu CZ, Xie ZZ, et al. Rapid and visual detection of dengue virus using recombinase polymerase amplification method combined with lateral flow dipstick. Mol Cell Probes. 2019;46:101413. doi:10.1016/j.mcp.2019.06.003
  • Huang P, Jin H, Zhao Y, et al. Nucleic acid visualization assay for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) by targeting the UpE and N gene. PloS Negl Trop Dis. 2021;15(3):e9227. doi:10.1371/journal.pntd.0009227
  • James AS, Todd S, Pollak NM, et al. Ebolavirus diagnosis made simple, comparable and faster than molecular detection methods: preparing for the future. Virol J. 2018;15(1):75. doi:10.1186/s12985-018-0985-8
  • Nie Z, Zhao Y, Shu X, et al. Recombinase polymerase amplification with lateral flow strip for detecting Babesia microti infections. Parasitol Int. 2021;83:102351. doi:10.1016/j.parint.2021.102351
  • Lai MY, Ooi CH, Lau YL. Recombinase Polymerase Amplification Combined with a Lateral Flow Strip for the Detection of Plasmodium knowlesi. Am J Trop Med Hyg. 2018;98(3):700–703. doi:10.4269/ajtmh.17-0738
  • Wang P, Liao L, Ma C, et al. Duplex On-Site Detection of Vibrio cholerae and Vibrio vulnificus by Recombinase Polymerase Amplification and Three-Segment Lateral Flow Strips. Biosensors. 2021;11(5). doi:10.3390/bios11050151
  • Jauset-Rubio M, Tomaso H, El-Shahawi MS, et al. Duplex Lateral Flow Assay for the Simultaneous Detection of Yersinia pestis and Francisella tularensis. Anal Chem. 2018;90(21):12745–12751. doi:10.1021/acs.analchem.8b03105
  • Hull IT, Kline EC, Gulati GK, et al. Isothermal Amplification with a Target-Mimicking Internal Control and Quantitative Lateral Flow Readout for Rapid HIV Viral Load Testing in Low-Resource Settings. Anal Chem. 2022;94(2):1011–1021. doi:10.1021/acs.analchem.1c03960
  • Alam N, Tong L, He Z, et al. Improving the sensitivity of cellulose fiber-based lateral flow assay by incorporating a water-dissolvable polyvinyl alcohol dam. Cellulose. 2021;28(13):8641–8651. doi:10.1007/s10570-021-04083-3
  • Napione L. Integrated Nanomaterials and Nanotechnologies in Lateral Flow Tests for Personalized Medicine Applications. Nanomaterials. 2021;11(9). doi:10.3390/nano11092362
  • Bengtson M, Bharadwaj M, Franch O, et al. CRISPR-dCas9 based DNA detection scheme for diagnostics in resource-limited settings. Nanoscale. 2022;14(5):1885–1895. doi:10.1039/d1nr06557b
  • Serebrennikova KV, Berlina AN, Sotnikov DV, et al. Raman Scattering-Based Biosensing: new Prospects and Opportunities. Biosensors. 2021;11(12). doi:10.3390/bios11120512
  • Langer J, Jimenez DAD, Aizpurua J, et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano. 2020;14(1):28–117. doi:10.1021/acsnano.9b04224
  • Zhuang J, Zhao Z, Lian K, et al. SERS-based CRISPR/Cas assay on microfluidic paper analytical devices for supersensitive detection of pathogenic bacteria in foods. Biosens Bioelectron. 2022;207:114167. doi:10.1016/j.bios.2022.114167
  • Wang J, Koo KM, Wee EJ, et al. A nanoplasmonic label-free surface-enhanced Raman scattering strategy for non-invasive cancer genetic subtyping in patient samples. Nanoscale. 2017;9(10):3496–3503. doi:10.1039/c6nr09928a
  • Xue X, Chen L, Zhao C, et al. Tailored FTO/Ag/ZIF-8 structure as SERS substrate for ultrasensitive detection. Spectrochim Acta A Mol Biomol Spectrosc. 2022;282:121693. doi:10.1016/j.saa.2022.121693
  • Qi W, Tian Y, Lu D, et al. Detection of glutathione in dairy products based on surface-enhanced infrared absorption spectroscopy of silver nanoparticles. Front Nutr. 2022;9:982228. doi:10.3389/fnut.2022.982228
  • Okoro G, Husain S, Saukani M, et al. Emerging Trends in Nanomaterials for Photosynthetic Biohybrid Systems. Acs Mater Lett. 2023;5(1):95–115. doi:10.1021/acsmaterialslett.2c00752
  • Kuo JC, Tan SH, Hsiao YC, et al. Unveiling the Antibacterial Mechanism of Gold Nanoclusters via In Situ Transmission Electron Microscopy. Acs Sustain Chem Eng. 2022;10(1):464–471. doi:10.1021/acssuschemeng.1c06714
  • Chang TK, Cheng TM, Chug HL, et al. Metabolic Mechanism Investigation of Antibacterial Active Cysteine-Conjugated Gold Nanoclusters in. Acs Sustain Chem Eng. 2019;7(18):15479–15486. doi:10.1021/acssuschemeng.9b03048
  • Dizaji AN, Ozek NS, Yilmaz A, et al. Gold nanorod arrays enable highly sensitive bacterial detection via surface-enhanced infrared absorption (SEIRA) spectroscopy. Colloids Surf B Biointerfaces. 2021;206:111939. doi:10.1016/j.colsurfb.2021.111939
  • Yao Z, Zhang Q, Zhu W, et al. Rapid detection of SARS-CoV-2 viral nucleic acids based on surface enhanced infrared absorption spectroscopy. Nanoscale. 2021;13(22):10133–10142. doi:10.1039/d1nr01652k
  • Ma Y, Li Q, Wang S, et al. Observation of tunable surface plasmon resonances and surface enhanced infrared absorption (SEIRA) based on indium tin oxide (ITO) nanoparticle substrates. Spectrochim Acta A Mol Biomol Spectrosc. 2022;271:120914. doi:10.1016/j.saa.2022.120914
  • Zhang J, Su R, Fu Q, et al. A survey on computational spectral reconstruction methods from RGB to hyperspectral imaging. Sci Rep. 2022;12(1):11905. doi:10.1038/s41598-022-16223-1
  • Hedde PN, Cinco R, Malacrida L, et al. Phasor-based hyperspectral snapshot microscopy allows fast imaging of live, three-dimensional tissues for biomedical applications. Commun Biol. 2021;4(1):721. doi:10.1038/s42003-021-02266-z
  • Jin X, Fu R, Du W, et al. Rapid, Highly Sensitive, and Label-Free Pathogen Assay System Using a Solid-Phase Self-Interference Recombinase Polymerase Amplification Chip and Hyperspectral Interferometry. Anal Chem. 2022;94(6):2926–2933. doi:10.1021/acs.analchem.1c04858
  • Reid MS, Le XC, Zhang H. Exponential Isothermal Amplification of Nucleic Acids and Assays for Proteins, Cells, Small Molecules, and Enzyme Activities: an EXPAR Example. Angew Chem Int Ed Engl. 2018;57(37):11856–11866. doi:10.1002/anie.201712217
  • Fang CS, Kim KS, Ha DT, et al. Washing-Free Electrochemical Detection of Amplified Double-Stranded DNAs Using a Zinc Finger Protein. Anal Chem. 2018;90(7):4776–4782. doi:10.1021/acs.analchem.8b00143
  • Al-Madhagi S, O’Sullivan CK, Prodromidis MI, et al. Combination of ferrocene decorated gold nanoparticles and engineered primers for the direct reagentless determination of isothermally amplified DNA. Mikrochim Acta. 2021;188(4):117. doi:10.1007/s00604-021-04771-8
  • Lee H, Yi SY, Kwon JS, et al. Rapid and highly sensitive pathogen detection by real-time DNA monitoring using a nanogap impedimetric sensor with recombinase polymerase amplification. Biosens Bioelectron. 2021;179:113042. doi:10.1016/j.bios.2021.113042
  • Nakano M, Kalsi S, Morgan H. Fast and sensitive isothermal DNA assay using microbead? dielectrophoresis for detection of anti-microbial resistance genes. Biosens Bioelectron. 2018;117:583–589. doi:10.1016/j.bios.2018.06.063
  • Kim HE, Schuck A, Lee SH, et al. Sensitive electrochemical biosensor combined with isothermal amplification for point-of-care COVID-19 tests. Biosens Bioelectron. 2021;182:113168. doi:10.1016/j.bios.2021.113168
  • Singh A, Sharma A, Ahmed A, et al. Recent Advances in Electrochemical Biosensors: applications, Challenges, and Future Scope. Biosensors. 2021;11(9). doi:10.3390/bios11090336
  • Hai Z, Li J, Wu J, et al. Alkaline Phosphatase-Triggered Simultaneous Hydrogelation and Chemiluminescence. J Am Chem Soc. 2017;139(3):1041–1044. doi:10.1021/jacs.6b11041
  • Kober C, Niessner R, Seidel MQ. Quantification of viable and non-viable Legionella spp. by heterogeneous asymmetric recombinase polymerase amplification (haRPA) on a flow-based chemiluminescence microarray. Biosens Bioelectron. 2018;100:49–55. doi:10.1016/j.bios.2017.08.053
  • Yan Y, Shi P, Song W, et al. Chemiluminescence and Bioluminescence Imaging for Biosensing and Therapy: in Vitro and In Vivo Perspectives. Theranostics. 2019;9(14):4047–4065. doi:10.7150/thno.33228
  • Latorre-Perez A, Gimeno-Valero H, Tanner K, et al. A Round Trip to the Desert: in situ Nanopore Sequencing Informs Targeted Bioprospecting. Front Microbiol. 2021;12:768240. doi:10.3389/fmicb.2021.768240
  • Gliddon HD, Frampton D, Munsamy V, et al. A Rapid Drug Resistance Genotyping Workflow for Mycobacterium tuberculosis, Using Targeted Isothermal Amplification and Nanopore Sequencing. Microbiol Spectr. 2021;9(3):e61021. doi:10.1128/Spectrum.00610-21
  • Wang Y, Zhao Y, Bollas A, et al. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol. 2021;39(11):1348–1365. doi:10.1038/s41587-021-01108-x
  • Yin J, Zou Z, Hu Z, et al. A “sample-in-multiplex-digital-answer-out” chip for fast detection of pathogens. Lab Chip. 2020;20(5):979–986. doi:10.1039/c9lc01143a
  • Schulz M, Calabrese S, Hausladen F, et al. Point-of-care testing system for digital single cell detection of MRSA directly from nasal swabs. Lab Chip. 2020;20(14):2549–2561. doi:10.1039/d0lc00294a
  • Cui JQ, Liu FX, Park H, et al. Droplet digital recombinase polymerase amplification (ddRPA) reaction unlocking via picoinjection. Biosens Bioelectron. 2022;202:114019. doi:10.1016/j.bios.2022.114019
  • Yin K, Ding X, Li Z, et al. Autonomous lab-on-paper for multiplexed, CRISPR-based diagnostics of SARS-CoV-2. Lab Chip. 2021;21(14):2730–2737. doi:10.1039/d1lc00293g
  • Huang M, Liu S, Xu Y, et al. CRISPR/Cas12a Technology Combined With RPA for Rapid and Portable SFTSV Detection. Front Microbiol. 2022;13:754995. doi:10.3389/fmicb.2022.754995
  • Talwar CS, Park KH, Ahn WC, et al. Detection of Infectious Viruses Using CRISPR-Cas12-Based Assay. Biosensors. 2021;11(9). doi:10.3390/bios11090301
  • An B, Zhang H, Su X, et al. Rapid and Sensitive Detection of Salmonella spp. Using CRISPR-Cas13a Combined With Recombinase Polymerase Amplification. Front Microbiol. 2021;12:732426. doi:10.3389/fmicb.2021.732426
  • Xiong D, Dai W, Gong J, et al. Rapid detection of SARS-CoV-2 with CRISPR-Cas12a. PloS Biol. 2020;18(12):e3000978. doi:10.1371/journal.pbio.3000978
  • Lu S, Tong X, Han Y, et al. Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a. Nat Biomed Eng. 2022;6(3):286–297. doi:10.1038/s41551-022-00861-x
  • Wang B, Wang R, Wang D, et al. Cas12aVDet: a CRISPR/Cas12a-Based Platform for Rapid and Visual Nucleic Acid Detection. Anal Chem. 2019;91(19):12156–12161. doi:10.1021/acs.analchem.9b01526
  • Cai Q, Wang R, Qiao Z, et al. Single-digit Salmonella detection with the naked eye using bio-barcode immunoassay coupled with recombinase polymerase amplification and a CRISPR-Cas12a system. Analyst. 2021;146(17):5271–5279. doi:10.1039/d1an00717c
  • Aman R, Marsic T, Sivakrishna RG, et al. iSCAN-V2: a One-Pot RT-RPA-CRISPR/Cas12b Assay for Point-of-Care SARS-CoV-2 Detection. Front Bioeng Biotechnol. 2021;9:800104. doi:10.3389/fbioe.2021.800104
  • Park JS, Hsieh K, Chen L, et al. Digital CRISPR/Cas-Assisted Assay for Rapid and Sensitive Detection of SARS-CoV-2. Adv Sci. 2021;8(5):2003564. doi:10.1002/advs.202003564
  • Ali Z, Sanchez E, Tehseen M, et al. Bio-SCAN: a CRISPR/dCas9-Based Lateral Flow Assay for Rapid, Specific, and Sensitive Detection of SARS-CoV-2. ACS Synth Biol. 2022;11(1):406–419. doi:10.1021/acssynbio.1c00499
  • Zong N, Gao Y, Chen Y, et al. Automated Centrifugal Microfluidic Chip Integrating Pretreatment and Molecular Diagnosis for Hepatitis B Virus Genotyping from Whole Blood. Anal Chem. 2022;94(12):5196–5203. doi:10.1021/acs.analchem.2c00337
  • Yin D, Yin L, Wang J, et al. Visual Detection of Duck Tembusu Virus With CRISPR/Cas13: a Sensitive and Specific Point-of-Care Detection. Front Cell Infect Microbiol. 2022;12:848365. doi:10.3389/fcimb.2022.848365
  • Park BJ, Park MS, Lee JM, et al. Specific Detection of Influenza A and B Viruses by CRISPR-Cas12a-Based Assay. Biosensors. 2021;11(3). doi:10.3390/bios11030088
  • Jiao Z, Yang J, Long X, et al. CRISPR/Cas12a-Assisted Visual Logic-Gate Detection of Pathogenic Microorganisms Based on Water-Soluble DNA-Binding AIEgens. Front Chem. 2021;9:801972. doi:10.3389/fchem.2021.801972
  • You Y, Zhang P, Wu G, et al. Highly Specific and Sensitive Detection of Yersinia pestis by Portable Cas12a-UPTLFA Platform. Front Microbiol. 2021;12:700016. doi:10.3389/fmicb.2021.700016
  • Liu L, Duan JJ, Wei XY, et al. Generation and application of a novel high-throughput detection based on RPA-CRISPR technique to sensitively monitor pathogenic microorganisms in the environment. Sci Total Environ. 2022;838(Pt 2):156048. doi:10.1016/j.scitotenv.2022.156048
  • Xu JH, Kang L, Yuan B, et al. Development and evaluation of a rapid RPA/CRISPR-based detection of Francisella tularensis. Front Microbiol. 2022;13:901520. doi:10.3389/fmicb.2022.901520
  • Jirawannaporn S, Limothai U, Tachaboon S, et al. Rapid and sensitive point-of-care detection of Leptospira by RPA-CRISPR/Cas12a targeting lipL32. PloS Negl Trop Dis. 2022;16(1):e10112. doi:10.1371/journal.pntd.0010112
  • Tian T, Qiu Z, Jiang Y, et al. Exploiting the orthogonal CRISPR-Cas12a/Cas13a trans-cleavage for dual-gene virus detection using a handheld device. Biosens Bioelectron. 2022;196:113701. doi:10.1016/j.bios.2021.113701
  • Feng W, Peng H, Xu J, et al. Integrating Reverse Transcription Recombinase Polymerase Amplification with CRISPR Technology for the One-Tube Assay of RNA. Anal Chem. 2021;93(37):12808–12816. doi:10.1021/acs.analchem.1c03456
  • Malci K, Walls LE, Rios-Solis L. Rational Design of CRISPR/Cas12a-RPA Based One-Pot COVID-19 Detection with Design of Experiments. ACS Synth Biol. 2022;11(4):1555–1567. doi:10.1021/acssynbio.1c00617
  • Zavvar TS, Khoshbin Z, Ramezani M, et al. CRISPR/Cas-engineered technology: innovative approach for biosensor development. Biosens Bioelectron. 2022;214:114501. doi:10.1016/j.bios.2022.114501