399
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Metal–Phenolic Networks for Chronic Wounds Therapy

, , , , , , , , , & ORCID Icon show all
Pages 6425-6448 | Received 08 Aug 2023, Accepted 27 Oct 2023, Published online: 07 Nov 2023

References

  • Joorabloo A, Liu TQ. Recent advances in nanomedicines for regulation of macrophages in wound healing. J Nanobiotechnol. 2022;20(1):407. doi:10.1186/s12951-022-01616-1
  • Ji JY, Ren DY, Weng YZ. Efficiency of multifunctional antibacterial hydrogels for chronic wound healing in diabetes: a comprehensive review. Int J Nanomed. 2022;17:3163–3176. doi:10.2147/IJN.S363827
  • Schilrreff P, Alexiev U. Chronic inflammation in non-healing skin wounds and promising natural bioactive compounds treatment. Int J Mol Sci. 2022;23(9):4928. doi:10.3390/ijms23094928
  • Sharifi S, Hajipour MJ, Gould L, Mahmoudi M. Nanomedicine in healing chronic wounds: opportunities and challenges. Mol Pharmaceut. 2021;18(2):550–575. doi:10.1021/acs.molpharmaceut.0c00346
  • Blanco-Fernandez B, Castano O, Mateos-Timoneda MA, Engel E, Perez-Amodio S. Nanotechnology approaches in chronic wound healing. Adv Wound Care. 2021;10(5):234–256. doi:10.1089/wound.2019.1094
  • Serra R, Grande R, Butrico L, et al. Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev Anti Infe. 2015;13(5):605–613. doi:10.1586/14787210.2015.1023291
  • Ibberson CB, Whiteley M. The social life of microbes in chronic infection. Curr Opin Microbiol. 2020;53:44–50. doi:10.1016/j.mib.2020.02.003
  • Maheswary T, Nurul AA, Fauzi MB. The insights of Microbes’ Roles in wound healing: a comprehensive review. Pharmaceutics. 2021;13(7):981. doi:10.3390/pharmaceutics13070981
  • Xu ZJ, Liang B, Tian JZ, Wu J. Anti-inflammation biomaterial platforms for chronic wound healing. Biomater Sci. 2021;9(12):4388–4409. doi:10.1039/D1BM00637A
  • Matter MT, Probst S, Lauchli S, Herrmann IK. Uniting drug and delivery: metal oxide hybrid nanotherapeutics for skin wound care. Pharmaceutics. 2020;12(8):780. doi:10.3390/pharmaceutics12080780
  • Teot L, Ohura N. Challenges and management in wound care. Plast Reconstr Surg. 2021;147(1s–1):9s–15s. doi:10.1097/PRS.0000000000007628
  • Thomas DC, Tsu CL, Nain RA, Arsat N, Fun SS, Lah NA. The role of debridement in wound bed preparation in chronic wound: a narrative review. Ann Med Surg. 2021;71:102876. doi:10.1016/j.amsu.2021.102876
  • Nuutila K, Eriksson E. Moist wound healing with commonly available dressings. Adv Wound Care. 2021;10(12):685–698. doi:10.1089/wound.2020.1232
  • Chin JD, Zhao L, Mayberry TG, Cowan BC, Wakefield MR, Fang YJ. Photodynamic therapy, probiotics, acetic acid, and essential oil in the treatment of chronic wounds infected with Pseudomonas aeruginosa. Pharmaceutics. 2023;15(6):1721. doi:10.3390/pharmaceutics15061721
  • Oluwole DO, Coleman L, Buchanan W, Chen T, La Ragione RM, Liu LX. Antibiotics-free compounds for chronic wound healing. Pharmaceutics. 2022;14(5):1021. doi:10.3390/pharmaceutics14051021
  • Zhang ZB, Guo JD, He YX, et al. An injectable double network hydrogel with hemostasis and antibacterial activity for promoting multidrug-resistant bacteria infected wound healing. Biomater Sci. 2022;10(12):3268–3281. doi:10.1039/D2BM00347C
  • He Y, Chang Q, Lu F. Oxygen-releasing biomaterials for chronic wounds breathing: from theoretical mechanism to application prospect. Mater Today Bio. 2023;20:100687. doi:10.1016/j.mtbio.2023.100687
  • Dai W, Dong YC, Han T, et al. Microenvironmental cue-regulated exosomes as therapeutic strategies for improving chronic wound healing. NPG Asia Mater. 2022;14(1):75. doi:10.1038/s41427-022-00419-y
  • Wang YZ, Armato U, Wu J. Targeting tunable physical properties of materials for chronic wound care. Front Bioeng Biotech. 2020;8:584.
  • Zhang X, Shu WT, Yu QH, Qu WR, Wang YN, Li R. Functional biomaterials for treatment of chronic wound. Front Bioeng Biotech. 2020;8:516. doi:10.3389/fbioe.2020.00516
  • Lopez-Goerne TM, Padilla-Godinez FJ, Castellanos M, Perez-Davalos LA. Catalytic nanomedicine: a brief review of bionanocatalysts. Nanomedicine. 2022;17(16):1131–1156. doi:10.2217/nnm-2022-0027
  • Zheng MH, Wang XC, Yue O, et al. Skin-inspired gelatin-based flexible bio-electronic hydrogel for wound healing promotion and motion sensing. Biomaterials. 2021;276:121026. doi:10.1016/j.biomaterials.2021.121026
  • Liu XH, Hou MD, Luo XM, et al. Thermoresponsive hemostatic hydrogel with a biomimetic nanostructure constructed from aggregated collagen nanofibers. Biomacromolecules. 2021;22(2):319–329. doi:10.1021/acs.biomac.0c01167
  • Nakipoglu M, Tezcaner A, Contag CH, Annabi N, Ashammakhi N. Bioadhesives with Antimicrobial Properties. Adv Mater. 2023;e2300840. doi:10.1002/adma.202300840
  • Khadem E, Kharaziha M, Bakhsheshi-Rad HR, Das O, Berto F. Cutting-edge progress in stimuli-responsive bioadhesives: from synthesis to clinical applications. Polymers. 2022;14(9):1709. doi:10.3390/polym14091709
  • Sierra-Sanchez A, Kim KH, Blasco-Morente G, Arias-Santiago S. Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries. Npj Regen Med. 2021;6(1):35. doi:10.1038/s41536-021-00144-0
  • Przekora A. A concise review on tissue engineered artificial skin grafts for chronic wound treatment: can we reconstruct functional skin tissue in vitro? Cells. 2020;9(7):1622. doi:10.3390/cells9071622
  • Pormohammad A, Monych NK, Ghosh S, Turner DL, Turner RJ. Nanomaterials in wound healing and infection control. Antibiotics. 2021;10(5):473. doi:10.3390/antibiotics10050473
  • Ataide JA, Zanchetta B, Santos EM, et al. Nanotechnology-based dressings for wound management. Pharmaceuticals. 2022;15(10):1286. doi:10.3390/ph15101286
  • Girija AR, Balasubramanian S, Cowin AJ. Nanomaterials-based drug delivery approaches for wound healing. Curr Pharm Design. 2022;28(9):711–726. doi:10.2174/1381612828666220328121211
  • Dey AD, Yousefiasl S, Kumar A, et al. miRNA-encapsulated abiotic materials and biovectors for cutaneous and oral wound healing: biogenesis, mechanisms, and delivery nanocarriers. Bioeng Transl Med. 2023;8(1):e10343. doi:10.1002/btm2.10343
  • Lin Y, Chen Z, Liu Y, Wang J, Lv W, Peng R. Recent advances in nano-formulations for skin wound repair applications. Drug Des Devel Ther. 2022;16:2707–2728. doi:10.2147/DDDT.S375541
  • Gowda BHJ, Mohanto S, Singh A, et al. Nanoparticle-based therapeutic approaches for wound healing: a review of the state-of-The-art. Mater Today Chem. 2023;27:101319.
  • Butenko S, Miwa H, Liu YZ, Plikus MV, Scumpia PO, Liu WF. Engineering immunomodulatory biomaterials to drive skin wounds toward regenerative healing. Csh Perspect Biol. 2023;15(5):a041242.
  • Rios-Galacho M, Martinez-Moreno D, Lopez-Ruiz E, Galvez-Martin P, Marchal JA. An overview on the manufacturing of functional and mature cellular skin substitutes. Tissue Eng Part B. 2022;28(5):0131.
  • Li Y, Miao Y, Yang LN, et al. Recent advances in the development and antimicrobial applications of metal-phenolic networks. Adv Sci. 2022;9(27):2202684. doi:10.1002/advs.202202684
  • Ejima H, Richardson JJ, Liang K, et al. One-step assembly of coordination complexes for versatile film and particle engineering. Science. 2013;341(6142):154–157. doi:10.1126/science.1237265
  • Yang B, Zhou S, Zeng J, et al. Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Res. 2020;13(4):1013–1019. doi:10.1007/s12274-020-2736-6
  • Dong ZL, Hao Y, Li QG, et al. Metal-polyphenol-network coated CaCO(3)as pH-responsive nanocarriers to enable effective intratumoral penetration and reversal of multidrug resistance for augmented cancer treatments. Nano Res. 2020;13(11):3057–3067. doi:10.1007/s12274-020-2972-9
  • Dong JT, Chen W, Feng JG, et al. Facile, smart, and degradable metal-organic framework nanopesticides gated with Fe-III-tannic acid networks in response to seven biological and environmental stimuli. Acs Appl Mater Inter. 2021;13(16):19507–19520. doi:10.1021/acsami.1c04118
  • Guo ZH, Xie WS, Lu JS, et al. Tannic acid-based metal phenolic networks for bio-applications: a review. J Mater Chem B. 2021;9(20):4098–4110. doi:10.1039/D1TB00383F
  • Huang H, Li P, Liu CL, et al. pH-Responsive nanodrug encapsulated by tannic acid complex for controlled drug delivery. Rsc Adv. 2017;7(5):2829–2835. doi:10.1039/C6RA26936B
  • Wang YA, Zhang JW, Zhao Y, et al. Innovations and challenges of polyphenol-based smart drug delivery systems. Nano Res. 2022;15(9):8156–8184. doi:10.1007/s12274-022-4430-3
  • Guo YX, Sun Q, Wu FG, Dai YL, Chen XY. Polyphenol-containing nanoparticles: synthesis, properties, and therapeutic delivery. Adv Mater. 2021;33(22):2007356. doi:10.1002/adma.202007356
  • Ejima H, Richardson JJ, Caruso F. Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces. Nano Today. 2017;12:136–148. doi:10.1016/j.nantod.2016.12.012
  • Slika H, Mansour H, Wehbe N, et al. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed Pharmacother. 2022;146:112442. doi:10.1016/j.biopha.2021.112442
  • Zhang MS, Wang L, Jin H, et al. Employing single valency polyphenol to prepare metal-phenolic network antitumor reagents through FeOOH assistance. J Control Release. 2023;358:612–625. doi:10.1016/j.jconrel.2023.05.020
  • Yan J, Wang GH, Xie LS, et al. Engineering radiosensitizer-based metal-phenolic networks potentiate STING pathway activation for advanced radiotherapy. Adv Mater. 2022;34(10):2105783. doi:10.1002/adma.202105783
  • Duan JW, Chen ZG, Liang XY, et al. Construction and application of therapeutic metal-polyphenol capsule for peripheral artery disease. Biomaterials. 2020;255:120199. doi:10.1016/j.biomaterials.2020.120199
  • Wei H, Qin J, Huang QX, et al. Epigallocatechin-3-gallate (EGCG) based metal-polyphenol nanoformulations alleviates chondrocytes inflammation by modulating synovial macrophages polarization. Biomed Pharmacother. 2023;161:114366. doi:10.1016/j.biopha.2023.114366
  • Wei ZW, Wang LY, Tang CQ, et al. Metal-phenolic networks nanoplatform to mimic antioxidant defense system for broad-spectrum radical eliminating and endotoxemia treatment. Adv Funct Mater. 2020;30(49):2002234. doi:10.1002/adfm.202002234
  • Shahidi F, Yeo J. Bioactivities of phenolics by focusing on suppression of chronic diseases: a review. Int J Mol Sci. 2018;19(6):1573. doi:10.3390/ijms19061573
  • Zheng D, Huang C, Huang H, et al. Antibacterial mechanism of curcumin: a review. Chem Biodivers. 2020;17(8):e2000171. doi:10.1002/cbdv.202000171
  • Zhang SC, Chai QH, Man ZT, et al. Bioinspired nano-painting on orthopedic implants orchestrates periprosthetic anti-infection and osseointegration in a rat model of arthroplasty. Chem Eng J. 2022;435:134848. doi:10.1016/j.cej.2022.134848
  • Gorzynik-Debicka M, Przychodzen P, Cappello F, et al. Potential health benefits of olive oil and plant polyphenols. Int J Mol Sci. 2018;19(3):686. doi:10.3390/ijms19030686
  • Xu Y, Xiao L, Chen J, et al. alpha-Fe(2)O(3) based nanotherapeutics for near-infrared/dihydroartemisinin dual-augmented chemodynamic antibacterial therapy. Acta Biomater. 2022;150:367–379. doi:10.1016/j.actbio.2022.07.047
  • Shi S, Zhang QP, Sun H, et al. Glucose oxidase-integrated metal-polyphenolic network as a microenvironment-activated cascade nanozyme for hyperglycemic wound disinfection. Acs Biomater Sci Eng. 2022;8(12):5145–5154. doi:10.1021/acsbiomaterials.2c00985
  • Lu C, Tian Y, Tian H, et al. An ultrasound activable metal-phenolic network nano-antibiotics for in vivo on-site infection therapy. Sci China Mater. 2023;66(1):395–406. doi:10.1007/s40843-022-2125-1
  • Lee HP, Gaharwar AK. Light-responsive inorganic biomaterials for biomedical applications. Adv Sci. 2020;7(17):2000863. doi:10.1002/advs.202000863
  • Wang HC, Wang DY, Huangfu HM, et al. Branched AuAg nanoparticles coated by metal-phenolic networks for treating bacteria-induced periodontitis via photothermal antibacterial and immunotherapy. Mater Design. 2022;224:111401. doi:10.1016/j.matdes.2022.111401
  • He YM, Liu KY, Guo S, et al. Multifunctional hydrogel with reactive oxygen species scavenging and photothermal antibacterial activity accelerates infected diabetic wound healing. Acta Biomaterialia. 2023;155:199–217. doi:10.1016/j.actbio.2022.11.023
  • Fu MM, Zhao YT, Wang Y, et al. On-demand removable self-healing and pH-responsive europium-releasing adhesive dressing enables inflammatory microenvironment modulation and angiogenesis for diabetic wound healing. Small. 2023;19(3):2205489. doi:10.1002/smll.202205489
  • Chang YF, Cui PF, Zhou SW, et al. Metal-phenolic network for cancer therapy. J Drug Deliv Sci Tec. 2023;81:104194. doi:10.1016/j.jddst.2023.104194
  • Zhang Z, Xie LS, Ju Y, Dai YL. Recent advances in metal-phenolic networks for cancer theranostics. Small. 2021;17(43):2100314. doi:10.1002/smll.202100314
  • Xie WS, Guo ZH, Zhao LY, Wei Y. Metal-phenolic networks: facile assembled complexes for cancer theranostics. Theranostics. 2021;11(13):6407–6426.
  • Xie Y, Chen SQ, Peng X, et al. Alloyed nanostructures integrated metal-phenolic nanoplatform for synergistic wound disinfection and revascularization. Bioact Mater. 2022;16:95–106. doi:10.1016/j.bioactmat.2022.03.004
  • Qiao YS, Zhang Q, Wang Q, et al. Synergistic anti-inflammatory coating “Zipped Up” on polypropylene hernia mesh. Acs Appl Mater Inter. 2021;13(30):35456–35468. doi:10.1021/acsami.1c09089
  • Qin Y, Wang JP, Qiu C, Hu Y, Xu XM, Jin ZY. Self-assembly of metal-phenolic networks as functional coatings for preparation of antioxidant, antimicrobial, and pH-sensitive-modified starch nanoparticles. Acs Sustain Chem Eng. 2019;7(20):17379–17389. doi:10.1021/acssuschemeng.9b04332
  • Li JJ, Han JN, Yu WQ, Wang KY, Liu Z, Liu Y. Alginate-modulated continuous assembly of iron/tannic acid composites as photothermally responsive wound dressings for hemostasis and drug resistant bacteria eradication. Int J Biol Macromol. 2023;242(2):124886. doi:10.1016/j.ijbiomac.2023.124886
  • Xu YY, Cai YJ, Xia Y, et al. Photothermal nanoagent for anti-inflammation through macrophage repolarization following antibacterial therapy. Eur Polym J. 2023;186:111840. doi:10.1016/j.eurpolymj.2023.111840
  • Zhang CY, Huang LJ, Sun DW, Pu HB. Interfacing metal-polyphenolic networks upon photothermal gold nanorods for triplex-evolved biocompatible bactericidal activity. J Hazard Mater. 2022;426:127824. doi:10.1016/j.jhazmat.2021.127824
  • Huang LJ, Sun DW, Wu ZH, Pu HB, Wei QY. Reproducible, shelf-stable, and bioaffinity SERS nanotags inspired by multivariate polyphenolic chemistry for bacterial identification. Anal Chim Acta. 2021;1167:338570. doi:10.1016/j.aca.2021.338570
  • Lin XH, Zhang H, Li SS, et al. Polyphenol-driving assembly for constructing chitin-polyphenol-metal hydrogel as wound dressing. Carbohyd Polym. 2022;290:119444. doi:10.1016/j.carbpol.2022.119444
  • Zeng ZW, Guo CP, Lu DH, Geng ZJ, Pei DT, Yu S. Polyphenol-metal functionalized hydrogel dressing with sustained release, antibacterial, and antioxidant properties for the potential treatment of chronic wounds. Macromol Mater Eng. 2022;307(10):2200262. doi:10.1002/mame.202200262
  • Chen ZG, Duan JW, Diao YP, et al. ROS-responsive capsules engineered from EGCG-Zinc networks improve therapeutic angiogenesis in mouse limb ischemia. Bioact Mater. 2021;6(1):1–11. doi:10.1016/j.bioactmat.2020.07.013
  • Cheng S, Qi ML, Li W, et al. Dual-responsive nanocomposites for synergistic antibacterial therapies facilitating bacteria-infected wound healing. Adv Healthc Mater. 2023;12(6):2202652. doi:10.1002/adhm.202202652
  • Anh HTP, Huang CM, Huang CJ. Intelligent metal-phenolic metallogels as dressings for infected wounds. Sci Rep. 2019;9:11562. doi:10.1038/s41598-019-47978-9
  • Liu L, Xiao X, Li X, et al. Immobilization of ytterbium by plant polyphenols for antibiofilm materials with highly effective activity and long-term stability. Ind Eng Chem Res. 2020;59(41):18558–18566. doi:10.1021/acs.iecr.0c03534
  • Chen JW, Qiu LP, Li QL, Ai J, Liu HQ, Chen QH. Rapid hemostasis accompanied by antibacterial action of calcium crosslinking tannic acid-coated mesoporous silica/silver Janus nanoparticles. Mat Sci Eng C Mater. 2021;123:111958. doi:10.1016/j.msec.2021.111958
  • Xu G, Xu N, Ren TJ, et al. Multifunctional chitosan/silver/tannic acid cryogels for hemostasis and wound healing. Int J Biol Macromol. 2022;208:760–771. doi:10.1016/j.ijbiomac.2022.03.174
  • Hu QS, Nie Y, Xiang J, et al. Injectable sodium alginate hydrogel loaded with plant polyphenol-functionalized silver nanoparticles for bacteria-infected wound healing. Int J Biol Macromol. 2023;234:123691. doi:10.1016/j.ijbiomac.2023.123691
  • Esfahani AG, Lazazzera B, Draghi L, et al. Bactericidal activity of gallium-doped chitosan coatings against staphylococcal infection. J Appl Microbiol. 2019;126(1):87–101. doi:10.1111/jam.14133
  • Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver nanoparticles and their antibacterial applications. Int J Mol Sci. 2021;22(13):7202. doi:10.3390/ijms22137202
  • Kalantari K, Mostafavi E, Afifi AM, et al. Wound dressings functionalized with silver nanoparticles: promises and pitfalls. Nanoscale. 2020;12(4):2268–2291. doi:10.1039/C9NR08234D
  • Azharuddin M, Zhu GH, Das D, et al. A repertoire of biomedical applications of noble metal nanoparticles. Chem Commun. 2019;55(49):6964–6996.
  • Slavin YN, Asnis J, Hafeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol. 2017;15(1):65. doi:10.1186/s12951-017-0308-z
  • Dryden M. Reactive oxygen species: a novel antimicrobial. Int J Antimicrob Ag. 2018;51(3):299–303. doi:10.1016/j.ijantimicag.2017.08.029
  • Behzad F, Naghib SM, Kouhbanani MAJ, Tabatabaei SN, Zare Y, Rhee KY. An overview of the plant-mediated green synthesis of noble metal nanoparticles for antibacterial applications. J Ind Eng Chem. 2021;94:92–104. doi:10.1016/j.jiec.2020.12.005
  • Subramaniam T, Fauzi MB, Lokanathan Y, Law JX. The role of calcium in wound healing. Int J Mol Sci. 2021;22(12):6486. doi:10.3390/ijms22126486
  • Immler R, Simon SI, Sperandio M. Calcium signalling and related ion channels in neutrophil recruitment and function. Eur J Clin Invest. 2018;48(S2):e12964. doi:10.1111/eci.12964
  • Berridge MJ, Bootman MD, Lipp P. Calcium - a life and death signal. Nature. 1998;395(6703):645–648. doi:10.1038/27094
  • Salvo J, Sandoval C. Role of copper nanoparticles in wound healing for chronic wounds: literature review. Burns Trauma. 2022;10:tkab047. doi:10.1093/burnst/tkab047
  • Zhang ZH, Li XJ, Sang SY, et al. Polyphenols as plant-based nutraceuticals: health effects, encapsulation, nano-delivery, and application. Foods. 2022;11(15):2189. doi:10.3390/foods11152189
  • Wang H, Wang CP, Zou Y, Hu JJ, Li YW, Cheng YY. Natural polyphenols in drug delivery systems: current status and future challenges. Giant-Amsterdam. 2020;3:100022. doi:10.1016/j.giant.2020.100022
  • Li L, Peng PL, Ding N, Jia WH, Huang CH, Tang Y. Oxidative stress, inflammation, gut dysbiosis: what can polyphenols do in inflammatory bowel disease? Antioxidants. 2023;12(4):967. doi:10.3390/antiox12040967
  • Kim KH, Ki MR, Min KH, Pack SP. Advanced delivery system of polyphenols for effective cancer prevention and therapy. Antioxidants. 2023;12(5):1048. doi:10.3390/antiox12051048
  • Liu W, Cui X, Zhong Y, Ma R, Liu B, Xia Y. Phenolic metabolites as therapeutic in inflammation and neoplasms: molecular pathways explaining their efficacy. Pharmacol Res. 2023;193:106812. doi:10.1016/j.phrs.2023.106812
  • Rana A, Samtiya M, Dhewa T, Mishra V, Aluko RE. Health benefits of polyphenols: a concise review. J Food Biochem. 2022;46(10):e14264. doi:10.1111/jfbc.14264
  • Meccariello R, D’Angelo S. Impact of polyphenolic-food on longevity: an Elixir of life. An overview. Antioxidants. 2021;10(4):507. doi:10.3390/antiox10040507
  • Li AN, Li S, Zhang YJ, Xu XR, Chen YM, Li HB. Resources and biological activities of natural polyphenols. Nutrients. 2014;6(12):6020–6047. doi:10.3390/nu6126020
  • Jafari H, Ghaffari-Bohlouli P, Niknezhad SV, et al. Tannic acid: a versatile polyphenol for design of biomedical hydrogels. J Mater Chem B. 2022;10(31):5873–5912. doi:10.1039/d2tb01056a
  • Kim S, Philippot S, Fontanay S, et al. pH- and glutathione-responsive release of curcumin from mesoporous silica nanoparticles coated using tannic acid-Fe(III) complex. Rsc Adv. 2015;5(110):90550–90558. doi:10.1039/C5RA16004A
  • Shen GZ, Xing RR, Zhang N, Chen CJ, Ma GH, Yan XH. Interfacial cohesion and assembly of bioadhesive molecules for design of long term stable hydrophobic nanodrugs toward effective anticancer therapy. Acs Nano. 2016;10(6):5720–5729. doi:10.1021/acsnano.5b07276
  • Mihai MM, Preda M, Lungu I, Gestal MC, Popa MI, Holban AM. Nanocoatings for chronic wound repair-modulation of microbial colonization and biofilm formation. Int J Mol Sci. 2018;19(4):1179. doi:10.3390/ijms19041179
  • Falanga V, Isseroff RR, Soulika AM, et al. Chronic wounds. Nat Rev Dis Primers. 2022;8(1):50. doi:10.1038/s41572-022-00377-3
  • Singer AJ. Healing mechanisms in cutaneous wounds: tipping the balance. Tissue Eng Part B. 2022;28(5):0114.
  • Liang YP, He JH, Guo BL. Functional hydrogels as wound dressing to enhance wound healing. Acs Nano. 2021;15(8):12687–12722. doi:10.1021/acsnano.1c04206
  • Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665–706. doi:10.1152/physrev.00067.2017
  • Nour S, Imani R, Chaudhry GR, Sharifi AM. Skin wound healing assisted by angiogenic targeted tissue engineering: a comprehensive review of bioengineered approaches. J Biomed Mater Res A. 2021;109(4):453–478. doi:10.1002/jbm.a.37105
  • Huang JW, Heng SJ, Zhang WL, et al. Dermal extracellular matrix molecules in skin development, homeostasis, wound regeneration and diseases. Semin Cell Dev Biol. 2022;128:137–144. doi:10.1016/j.semcdb.2022.02.027
  • Potekaev NN, Borzykh OB, Medvedev GV, et al. The role of extracellular matrix in skin wound healing. J Clin Med. 2021;10(24):5947. doi:10.3390/jcm10245947
  • Diller RB, Tabor AJ. The role of the Extracellular Matrix (ECM) in wound healing: a review. Biomimetics. 2022;7(3):87. doi:10.3390/biomimetics7030087
  • Lanau Roig A, Fabrellas N, Sáez Rubio G, Wilson K. Tiempo de cicatrización de las heridas crónicas, a propósito de un estudio de prevalencia e incidencia. Enfermería Global. 2017;16(46):445–463. doi:10.6018/eglobal.16.2.251311
  • Monika P, Chandraprabha MN, Rangarajan A, Waiker PV, Murthy KCN. Challenges in healing wound: role of complementary and alternative medicine. Front Nutr. 2022;8:791899. doi:10.3389/fnut.2021.791899
  • Berthiaume F, Hsia HC. Regenerative approaches for chronic wounds. Annu Rev Biomed Eng. 2022;24(1):61–83. doi:10.1146/annurev-bioeng-010220-113008
  • Tao Y, Ju EG, Ren JS, Qu XG. Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv Mater. 2015;27(6):1097–1104. doi:10.1002/adma.201405105
  • Fang G, Li WF, Shen XM, et al. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nat Commun. 2018;9(1):129. doi:10.1038/s41467-017-02502-3
  • Hu WC, Younis MR, Zhou Y, Wang C, Xia XH. In situ fabrication of ultrasmall gold nanoparticles/2D MOFs hybrid as nanozyme for antibacterial therapy. Small. 2020;16(23):2000553. doi:10.1002/smll.202000553
  • Wang ZZ, Dong K, Liu Z, et al. Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials. 2017;113:145–157. doi:10.1016/j.biomaterials.2016.10.041
  • Guo JL, Ping Y, Ejima H, et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew Chem Int Edit. 2014;53(22):5546–5551. doi:10.1002/anie.201311136
  • Pires F, Santos JF, Bitoque D, et al. Polycaprolactone/Gelatin nanofiber membranes containing EGCG-loaded liposomes and their potential use for skin regeneration. Acs Appl Bio Mater. 2019;2(11):4790–4800. doi:10.1021/acsabm.9b00524
  • Cherepanov PV, Rahim MA, Bertleff-Zieschang N, et al. Electrochemical behavior and redox-dependent disassembly of gallic Acid/Fe metal-phenolic networks. Acs Appl Mater Inter. 2018;10(6):5828–5834. doi:10.1021/acsami.7b19322
  • Arakawa H, Maeda M, Okubo S, Shimamura T. Role of hydrogen peroxide in bactericidal action of catechin. Biol Pharm Bull. 2004;27(3):277–281. doi:10.1248/bpb.27.277
  • Huang TW, Lu HT, Ho YC, Lu KY, Wang P, Mi FL. A smart and active film with tunable drug release and color change abilities for detection and inhibition of bacterial growth. Mat Sci Eng C Mater. 2021;118:111396. doi:10.1016/j.msec.2020.111396
  • Chen S, Yan Y, Yu Y, et al. Ferric ions as a catalytic mediator in metal-EGCG network for bactericidal effect and pathogenic biofilm eradication at physiological pH. Adv Mater Interfaces. 2021;8(23):2101605. doi:10.1002/admi.202101605
  • Kelson AB, Carnevali M, Truong-Le V. Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms. Curr Opin Pharmacol. 2013;13(5):707–716. doi:10.1016/j.coph.2013.07.001
  • Li FP, Liu FX, Huang K, Yang SB. Advancement of gallium and gallium-based compounds as antimicrobial agents. Front Bioeng Biotech. 2022;10(10):827960. doi:10.3389/fbioe.2022.827960
  • Zhao RL, Liang HLN, Clarke E, Jackson C, Xue ML. Inflammation in chronic wounds. Int J Mol Sci. 2016;17(12):2085. doi:10.3390/ijms17122085
  • Kharaziha M, Baidya A, Annabi N. Rational design of immunomodulatory hydrogels for chronic wound healing. Adv Mater. 2021;33(39):2100176. doi:10.1002/adma.202100176
  • Sim SL, Kumari S, Kaur S, Khosrotehrani K. Macrophages in skin wounds: functions and therapeutic potential. Biomolecules. 2022;12(11):1659. doi:10.3390/biom12111659
  • Chang M, Nguyen TT. Strategy for treatment of infected diabetic foot ulcers. Accounts Chem Res. 2021;54(5):1080–1093. doi:10.1021/acs.accounts.0c00864
  • Chen C, Liu TF, Tang YY, Luo GX, Liang GP, He WF. Epigenetic regulation of macrophage polarization in wound healing. Burns Trauma. 2023;11:tkac057. doi:10.1093/burnst/tkac057
  • Sousa AB, Aguas AP, Barbosa MA, Barbosa JN. Immunomodulatory biomaterial-based wound dressings advance the healing of chronic wounds via regulating macrophage behavior. Regen Biomater. 2022;9:rbac065. doi:10.1093/rb/rbac065
  • Li MR, Hou Q, Zhong LZ, Zhao YL, Fu XB. Macrophage related chronic inflammation in non-healing wounds. Front Immunol. 2021;12:681710. doi:10.3389/fimmu.2021.681710
  • Liu YC, Zou XB, Chai YF, Yao YM. Macrophage polarization in inflammatory diseases. Int J Biol Sci. 2014;10(5):520–529. doi:10.7150/ijbs.8879
  • Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018;10(11):1618. doi:10.3390/nu10111618
  • Corrêa FRS, Schanuel FS, Moura-Nunes N, Monte-Alto-Costa A, Daleprane JB. Brazilian red propolis improves cutaneous wound healing suppressing inflammation-associated transcription factor NFκB. Biomed Pharmacother. 2017;86:162–171. doi:10.1016/j.biopha.2016.12.018
  • He QQ, Yuan S, Tang H, et al. Safeguarding osteointegration in diabetic patients: a potent “Chain Armor” coating for scavenging ROS and macrophage reprogramming in a microenvironment-responsive manner. Adv Funct Mater. 2021;31(31). doi:10.1002/adfm.202101611
  • Li DY, Li JR, Wang SW, Wang QM, Teng W. Dually crosslinked Copper-Poly (tannic acid) nanoparticles with microenvironment-responsiveness for infected wound treatment. Adv Healthc Mater. 2023;12(17):2203063. doi:10.1002/adhm.202203063
  • Zhao XD, Pei DN, Yang YX, et al. Green tea derivative driven smart hydrogels with desired functions for chronic diabetic wound treatment. Adv Funct Mater. 2021;31(18):2009442. doi:10.1002/adfm.202009442
  • van der Vliet A, Janssen-Heininger YMW. Hydrogen peroxide as a damage signal in tissue injury and inflammation: murderer, mediator, or messenger? J Cell Biochem. 2014;115(3):427–435. doi:10.1002/jcb.24683
  • Wagener FADTG, Carels CE, Lundvig DMS. Targeting the redox balance in inflammatory skin conditions. Int J Mol Sci. 2013;14(5):9126–9167. doi:10.3390/ijms14059126
  • He ZC, Luo HT, Wang ZT, Chen DF, Feng Q, Cao XD. Injectable and tissue adhesive EGCG-laden hyaluronic acid hydrogel depot for treating oxidative stress and inflammation. Carbohyd Polym. 2023;299:120180. doi:10.1016/j.carbpol.2022.120180
  • Li WQ, Li W, Wan YL, Wang LF, Zhou T. Preparation, characterization and releasing property of antibacterial nano-capsules composed of e-PL-EGCG and sodium alginate-chitosan. Int J Biol Macromol. 2022;204:652–660. doi:10.1016/j.ijbiomac.2022.01.123
  • Chakraborty R, Borah P, Dutta PP, Sen S. Evolving spectrum of diabetic wound: mechanistic insights and therapeutic targets. World J Diabetes. 2022;13(9):696–716. doi:10.4239/wjd.v13.i9.696
  • Rai V, Moellmer R, Agrawal DK. Stem cells and angiogenesis: implications and limitations in enhancing chronic diabetic foot ulcer healing. Cells. 2022;11(15):2287. doi:10.3390/cells11152287
  • Liu E, Gao HJ, Zhao YJ, et al. The potential application of natural products in cutaneous wound healing: a review of preclinical evidence. Front Pharmacol. 2022;13:900439. doi:10.3389/fphar.2022.900439
  • Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliver Rev. 2019;146:97–125.
  • Barrientos S, Brem H, Stojadinovic O, Tomic-Canic M. Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen. 2014;22(5):569–578. doi:10.1111/wrr.12205
  • Liu NB, Zhu SJ, Deng YZ, et al. Construction of multifunctional hydrogel with metal-polyphenol capsules for infected full-thickness skin wound healing. Bioact Mater. 2023;24:69–80. doi:10.1016/j.bioactmat.2022.12.009
  • Li XY, Gao P, Tan JY, et al. Assembly of metal phenolic/catecholamine networks for synergistically anti-inflammatory, antimicrobial, and anticoagulant coatings. Acs Appl Mater Inter. 2018;10(47):40844–40853. doi:10.1021/acsami.8b14409
  • Choi J, Sun IC, Hwang HS, Yoon HY, Kim K. Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment. Adv Drug Deliver Rev. 2022;186:114344. doi:10.1016/j.addr.2022.114344
  • Zhao PR, Li HY, Bu WB. A forward vision for chemodynamic therapy: issues and opportunities. Angew Chem Int Edit. 2023;62(7):e202210415. doi:10.1002/anie.202210415
  • Fan LH, Muhammad AI, Ismail BB, Liu DH. Sonodynamic antimicrobial chemotherapy: an emerging alternative strategy for microbial inactivation. Ultrason Sonochem. 2021;75:105591. doi:10.1016/j.ultsonch.2021.105591
  • Chen Y, Gao YJ, Chen Y, Liu L, Mo AC, Peng Q. Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J Control Release. 2020;328:251–262. doi:10.1016/j.jconrel.2020.08.055
  • Xie G, Wang X, Mo M, Zhang LB, Zhu JT. Photothermal hydrogels for promoting infected wound healing. Macromol Biosci. 2023;23(2):2200378. doi:10.1002/mabi.202200378
  • Zhou YF, Fan SY, Feng LL, Huang XL, Chen XY. Manipulating intratumoral Fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy. Adv Mater. 2021;33(48):2104223. doi:10.1002/adma.202104223
  • Tian QW, Xue FF, Wang YR, et al. Recent advances in enhanced chemodynamic therapy strategies. Nano Today. 2021;39:101162. doi:10.1016/j.nantod.2021.101162
  • Liu ZY, Xie ZJ, Li WT, et al. Photodynamic immunotherapy of cancers based on nanotechnology: recent advances and future challenges. J Nanobiotechnol. 2021;19(1):160. doi:10.1186/s12951-021-00903-7
  • Xiong K, Wei FM, Chen Y, Ji LN, Chao H. Recent progress in photodynamic immunotherapy with metal-based photosensitizers. Small Methods. 2022;7(5):2201403. doi:10.1002/smtd.202201403
  • Awad M, Thomas N, Barnes TJ, Prestidge CA. Nanomaterials enabling clinical translation of antimicrobial photodynamic therapy. J Control Release. 2022;346:300–316. doi:10.1016/j.jconrel.2022.04.035
  • Son S, Kim JH, Wang XW, et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem Soc Rev. 2020;49(11):3244–3261. doi:10.1039/C9CS00648F
  • Zhang Z, Li B, Xie LS, et al. Metal-phenolic network-enabled lactic acid consumption reverses immunosuppressive tumor microenvironment for sonodynamic therapy. Acs Nano. 2021;15(10):16934–16945. doi:10.1021/acsnano.1c08026
  • Han ZH, Gao MJ, Wang ZH, Peng LC, Zhao YB, Sun L. pH/NIR-responsive nanocarriers based on mesoporous polydopamine encapsulated gold nanorods for drug delivery and thermo-chemotherapy. J Drug Deliv Sci Tec. 2022;75:103610. doi:10.1016/j.jddst.2022.103610
  • Zhang CT, Li J, Yang CX, et al. A pH-sensitive coordination polymer network-based nanoplatform for magnetic resonance imaging-guided cancer chemo-photothermal synergistic therapy. Nanomed-Nanotechnol. 2020;23:102071. doi:10.1016/j.nano.2019.102071
  • Liu P, Shi XY, Zhong SH, et al. Metal-phenolic networks for cancer theranostics. Biomater Sci. 2021;9(8):2825–2849. doi:10.1039/D0BM02064H
  • Dai Q, Geng HM, Yu Q, Hao JC, Cui JW. Polyphenol-based particles for theranostics. Theranostics. 2019;9(11):3170–3190. doi:10.7150/thno.31847
  • Fan JX, Zheng DW, Mei WW, et al. A metal-polyphenol network coated nanotheranostic system for metastatic tumor treatments. Small. 2017;13(48):1702714. doi:10.1002/smll.201702714
  • Du XC, Jia BQ, Wang WJ, et al. pH-switchable nanozyme cascade catalysis: a strategy for spatial-temporal modulation of pathological wound microenvironment to rescue stalled healing in diabetic ulcer. J Nanobiotechnol. 2022;20(1):12. doi:10.1186/s12951-021-01215-6
  • Ding XY, Li G, Zhang P, Jin E, Xiao CS, Chen XS. Injectable Self-healing hydrogel wound dressing with cysteine-specific on-demand dissolution property based on tandem dynamic covalent bonds. Adv Funct Mater. 2021;31(19):2011230. doi:10.1002/adfm.202011230