277
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Differential Detection of Amyloid Aggregates in Old Animals Using Gold Nanorods by Computerized Tomography: A Pharmacokinetic and Bioaccumulation Study

, , , , , , , & ORCID Icon show all
Pages 8169-8185 | Received 12 Sep 2023, Accepted 18 Dec 2023, Published online: 28 Dec 2023

References

  • Han X, Xu K, Taratula O, Farsad K. Applications of nanoparticles in biomedical imaging. Nanoscale. 2019;11(3):799–819. doi:10.1039/C8NR07769J
  • Pietrzak K, Czarnecka K, Mikiciuk-Olasik E, Szymanski P. New perspectives of Alzheimer disease diagnosis–The most popular and future methods. Med Chem. 2018;14:34–43. doi:10.2174/1573406413666171002120847
  • Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet. 2011;377(9770):1019–1031. doi:10.1016/S0140-6736(10)61349-9
  • Sharma H, Mishra PK, Talegaonkar S, Vaidya B. Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov Today. 2015;20(9):1143–1151. doi:10.1016/j.drudis.2015.05.009
  • Betzer O, Perets N, Angel A, et al. In Vivo Neuroimaging of Exosomes Using Gold Nanoparticles. ACS Nano. 2017;11(11):10883–10893. doi:10.1021/acsnano.7b04495
  • Perets N, Betzer O, Shapira R, et al. Golden Exosomes Selectively Target Brain Pathologies in Neurodegenerative and Neurodevelopmental Disorders. Nano Lett. 2019;19(6):3422–3431. doi:10.1021/acs.nanolett.8b04148
  • Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications☆. Adv Drug Deliv Rev. 2008;60(11):1307–1315. doi:10.1016/j.addr.2008.03.016
  • Cobley CM, Chen J, Cho EC, Wang LV, Xia Y. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev. 2011;40(1):44–56. doi:10.1039/B821763G
  • Murata S, Udono H, Tanahashi N. Immunoproteasome assembly and antigen presentation in mice lacking both PA28α and PA28β. The EMBO J. 2001;20(21):5898.
  • Cormode DP, Roessl E, Thran A, et al. Atherosclerotic Plaque Composition: analysis with Multicolor CT and Targeted Gold Nanoparticles. Radiology. 2010;256(3):774–782. doi:10.1148/radiol.10092473
  • Ghaghada KB, Badea CT, Karumbaiah L, et al. Evaluation of Tumor Microenvironment in an Animal Model using a Nanoparticle Contrast Agent in Computed Tomography Imaging. Acad Radiol. 2011;18(1):20–30. doi:10.1016/j.acra.2010.09.003
  • Betzer O, Shwartz A, Motiei M, et al. Nanoparticle-Based CT Imaging Technique for Longitudinal and Quantitative Stem Cell Tracking within the Brain: application in Neuropsychiatric Disorders. ACS Nano. 2014;8(9):9274–9285. doi:10.1021/nn503131h
  • Bhavane R, Badea C, Ghaghada KB, et al. Dual-energy computed tomography imaging of atherosclerotic plaques in a mouse model using a liposomal-iodine nanoparticle contrast agent. Circ Cardiovasc Imaging. 2013;6:285–294. doi:10.1161/CIRCIMAGING.112.000119
  • McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–269. doi:10.1016/j.jalz.2011.03.005
  • Velasco-Aguirre C, Morales F, Gallardo-Toledo E, et al. Peptides and proteins used to enhance gold nanoparticle delivery to the brain: preclinical approaches. Int J Nanomed. 2015;10:4919–4936. doi:10.2147/IJN.S82310
  • Velasco-Aguirre C, Morales-Zavala F. Improving gold nanorod delivery to the central nervous system by conjugation to the shuttle Angiopep-2. Nanomedicine, 2017, 12, 2503–2517
  • Morales-Zavala F, Arriagada H, Hassan N, et al. Peptide multifunctionalized gold nanorods decrease toxicity of β-amyloid peptide in a Caenorhabditis elegans model of Alzheimer’s disease. Nanomedicine: Nanotechnology, Biology and Medicine. Nanomedicine. 2017;13:2341–2350. doi:10.1016/j.nano.2017.06.013
  • Jara-Guajardo P, Cabrera P, Celis F, et al. Gold Nanoparticles Mediate Improved Detection of β-amyloid Aggregates by Fluorescence. Nanomaterials. 2020;10(4):690. doi:10.3390/nano10040690
  • van Groen T, Kadish I, Wiesehan K, Funke SA, Willbold D. In vitro and in vivo Staining Characteristics of Small, Fluorescent, Aβ42-Binding D -Enantiomeric Peptides in Transgenic AD Mouse Models. ChemMedChem. 2009;4(2):276–282. doi:10.1002/cmdc.200800289
  • Funke SA, Bartnik D, Glück JM, et al. Development of a Small D-Enantiomeric Alzheimer’s Amyloid-β Binding Peptide Ligand for Future In Vivo Imaging Applications. PLoS One. 2012;7(7):e41457. doi:10.1371/journal.pone.0041457
  • Wiesehan K, Buder K, Linke RP, et al. Selection of D -Amino-Acid Peptides That Bind to Alzheimer’s Disease Amyloid Peptide Aβ 1–42 by Mirror Image Phage Display. Chembiochem. 2003;4(8):748–753. doi:10.1002/cbic.200300631
  • Xue D, Zhao M, Wang YJ, et al. A multifunctional peptide rescues memory deficits in Alzheimer’s disease transgenic mice by inhibiting Aβ42-induced cytotoxicity and increasing microglial phagocytosis. Neurobiol Dis. 2012;46:701–709. doi:10.1016/j.nbd.2012.03.013
  • Demeule M, Currie JC, Bertrand Y, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector Angiopep-2. J Neurochem. 2008;106(4):1534–1544. doi:10.1111/j.1471-4159.2008.05492.x
  • Morales-Zavala F, Jara-Guajardo P, Chamorro D, et al. In vivo micro computed tomography detection and decrease in amyloid load by using multifunctionalized gold nanorods: a neurotheranostic platform for Alzheimer’s disease. Biomaterials Sci. 2021;4178.
  • Adura C, Guerrero S, Salas E, et al. Stable Conjugates of Peptides with Gold Nanorods for Biomedical Applications with Reduced Effects on Cell Viability. ACS Appl. Mater. Interfaces. 2013;5(10):4076–4085. doi:10.1021/am3028537
  • Nikoobakht B, El-Sayed MA. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem. Mater. 2003;15(10):1957–1962. doi:10.1021/cm020732l
  • Huang X, Peng X, Wang Y, et al. A Reexamination of Active and Passive Tumor Targeting by Using Rod-Shaped Gold Nanocrystals and Covalently Conjugated Peptide Ligands. ACS Nano. 2010;4(10):5887–5896. doi:10.1021/nn102055s
  • Tapia-Arellano A, Gallardo-Toledo E, Ortiz C, et al. Functionalization with PEG/Angiopep-2 peptide to improve the delivery of gold nanoprisms to central nervous system: in vitro and in vivo studies. Mater Sci Eng C. 2021;121:111785. doi:10.1016/j.msec.2020.111785
  • Wang J-L, Du X-J, Yang J-X, et al. The effect of surface poly(ethylene glycol) length on in vivo drug delivery behaviors of polymeric nanoparticles. Biomaterials. 2018;182:104–113. doi:10.1016/j.biomaterials.2018.08.022
  • Lankveld DPK, Rayavarapu RG, Krystek P, et al. Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats. Nanomedicine. 2011;6(2):339–349. doi:10.2217/nnm.10.122
  • Naz F, Koul V, Srivastava A, Gupta YK, Dinda AK. Biokinetics of ultrafine gold nanoparticles (AuNPs) relating to redistribution and urinary excretion: a long-term in vivo study. J Drug Targeting. 2016;24(8):720–729. doi:10.3109/1061186X.2016.1144758
  • Pieper-Fürst U, Lammert F, Emes RD, Mitchison HM. Bioinformatic perspectives in the neuronal ceroid lipofuscinoses. BBA. 2013;1832(11):1831. doi:10.1016/j.bbadis.2012.12.010
  • Zhang JZ. Biomedical Applications of Shape-Controlled Plasmonic Nanostructures: a Case Study of Hollow Gold Nanospheres for Photothermal Ablation Therapy of Cancer. J Phys Chem Lett. 2010;1(4):686–695. doi:10.1021/jz900366c
  • Pérez A, Rodríguez A, Sanchez-Carpintero M, Liberato C, García C. Cyclooxygenase‐2‐positive macrophages infiltrate the Alzheimer’s disease brain and damage the blood–brain barrier. European journal of clinical investigation. Seram. 1994.
  • Velasco Aguirre C, Disponible en; 2017. Available from:https://repositorio.uchile.cl/handle/2250/169790. Accessed December 20, 2023.
  • Floerl S, Kuehne A, Hagos Y. Functional characterization and comparison of human and mouse organic anion transporter 1 as drugs and pesticides uptake carrier. Int J Mol Sci. 2022;175:106217
  • Fiala M, Liu J, Qn F, et al. Cyclooxygenase‐2‐positive macrophages infiltrate the Alzheimer’s disease brain and damage the blood–brain barrier. Eur J Clin Invest 2002:360.
  • Hultman K, Strickland EH, S Fau N, Norris EH. Metabolic syndrome in New Zealand Obese mice promotes microglial-vascular interactions and reduces microglial plasticity. J Cereb Blood Flow and Metab. 2013;2023.
  • Montagne A, Barnes SR, Sweeney MD, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85:296.
  • Sengillo JD, Winkler CT, Ea F, et al. Deficiency in Mural Vascular Cells Coincides with Blood–Brain Barrier Disruption in A lzheimer’s Disease. Brain Pathol. 2013:23(3);303.
  • Ordonez-Gutierrez L, Fernandez-Perez I, Herrera JL, Anton M, Benito-Cuesta I, Wandosell F. AβPP/PS1 Transgenic Mice Show Sex Differences in the Cerebellum Associated with Aging. J Alzheimers Dis. 2016;54(2):645–656. doi:10.3233/JAD-160572
  • Garcia-Alloza M, Em R, Zhang-Nunes SX, et al. Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. B J Bacskai and M P Frosch. 2006;516.