296
Views
4
CrossRef citations to date
0
Altmetric
REVIEW

3D Bioprinting: An Important Tool for Tumor Microenvironment Research

, , & ORCID Icon
Pages 8039-8057 | Received 17 Aug 2023, Accepted 16 Dec 2023, Published online: 27 Dec 2023

References

  • Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annual Rev Chem Biomol Engin. 2011;2:403–430. doi:10.1146/annurev-chembioeng-061010-114257
  • Klebe RJ. Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Experim Cell Res. 1988;179:362–373. doi:10.1016/0014-4827(88)90275-3
  • Matai I, Kaur G, Seyedsalehi A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536. doi:10.1016/j.biomaterials.2019.119536
  • Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Engin. 2020;4:370–380. doi:10.1038/s41551-019-0471-7
  • Correia Carreira S, Begum R, Perriman AW. 3D bioprinting: the emergence of programmable biodesign. Advan Health Mater. 2020;9:e1900554. doi:10.1002/adhm.201900554
  • Sharma R, Restan Perez M, da Silva VA, et al. 3D bioprinting complex models of cancer. Biomat Sci. 2023;11:3414–3430. doi:10.1039/D2BM02060B
  • Wang Z, Xiang L, Lin F, Tang Y, Cui W. 3D bioprinting of emulating homeostasis regulation for regenerative medicine applications. J Control Release. 2023;353:147–165. doi:10.1016/j.jconrel.2022.11.035
  • Chae S, Cho DW. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering. Acta biomaterialia. 2023;156:4–20. doi:10.1016/j.actbio.2022.08.004
  • McMillan A, McMillan N, Gupta N, Kanotra SP, Salem AK. 3D bioprinting in otolaryngology: a review. Advan Health Mater. 2023;12:e2203268. doi:10.1002/adhm.202203268
  • Pontiggia L, Van Hengel IA, Klar A, et al. Bioprinting and plastic compression of large pigmented and vascularized human dermo-epidermal skin substitutes by means of a new robotic platform. J Tissue Eng. 2022;13:20417314221088513. doi:10.1177/20417314221088513
  • Santos-Beato P, Midha S, Pitsillides AA, Miller A, Torii R, Kalaskar DM. Biofabrication of the osteochondral unit and its applications: current and future directions for 3D bioprinting. J Tissue Eng. 2022;13:20417314221133480. doi:10.1177/20417314221133480
  • Stocco E, Porzionato A, De Rose E, Barbon S, De Caro R, Macchi V. Meniscus regeneration by 3D printing technologies: current advances and future perspectives. J Tissue Eng. 2022;13:20417314211065860. doi:10.1177/20417314211065860
  • De S, Singh N. Advancements in three dimensional in-vitro cell culture models. Chem Record. 2022;22:e202200058. doi:10.1002/tcr.202200058
  • Knowlton S, Onal S, Yu CH, Zhao JJ, Tasoglu S. Bioprinting for cancer research. Trend Biotechnol. 2015;33:504–513. doi:10.1016/j.tibtech.2015.06.007
  • Lam EHY, Yu F, Zhu S, Wang Z. 3D bioprinting for next-generation personalized medicine. Int J Mol Sci. 2023;24:6357. doi:10.3390/ijms24076357
  • Lin M, Tang M, Duan W, Xia S, Liu W, Wang Q. 3D bioprinting for tumor metastasis research. ACS Biomat Sci Engin. 2023;9:3116–3133. doi:10.1021/acsbiomaterials.3c00239
  • Gao G, Kim BS, Jang J, Cho DW. Recent strategies in extrusion-based three-dimensional cell printing toward organ biofabrication. ACS Biomat Sci Enginee. 2019;5:1150–1169. doi:10.1021/acsbiomaterials.8b00691
  • Cui X, Li J, Hartanto Y, et al. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel-based bioinks. Advan Health Mater. 2020;9:e1901648. doi:10.1002/adhm.201901648
  • Skylar-Scott MA, Mueller J, Visser CW, Lewis JA. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature. 2019;575:330–335. doi:10.1038/s41586-019-1736-8
  • Gu Z, Fu J, Lin H, He Y. Development of 3D bioprinting: from printing methods to biomedical applications. Asian J Pharm Sci. 2020;15:529–557. doi:10.1016/j.ajps.2019.11.003
  • Naghieh S, Chen X. Printability-A key issue in extrusion-based bioprinting. J Pharm Anal. 2021;11:564–579. doi:10.1016/j.jpha.2021.02.001
  • Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Advan Drug Deliv Rev. 2018;132:296–332. doi:10.1016/j.addr.2018.07.004
  • Xu C, Chai W, Huang Y, Markwald RR. Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol Bioenginee. 2012;109:3152–3160. doi:10.1002/bit.24591
  • Faulkner-Jones A, Greenhough S, King JA, Gardner J, Courtney A, Shu W. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication. 2013;5:015013. doi:10.1088/1758-5082/5/1/015013
  • Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773–785. doi:10.1038/nbt.2958
  • Tasoglu S, Demirci U. Bioprinting for stem cell research. Trend Biotechnol. 2013;31:10–19. doi:10.1016/j.tibtech.2012.10.005
  • Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120:10793–10833. doi:10.1021/acs.chemrev.0c00008
  • Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20–42. doi:10.1016/j.biomaterials.2016.06.012
  • Jentsch S, Nasehi R, Kuckelkorn C, Gundert B, Aveic S, Fischer H. Multiscale 3D bioprinting by nozzle-free acoustic droplet ejection. Small Methods. 2021;5:e2000971. doi:10.1002/smtd.202000971
  • Faulkner-Jones A, Fyfe C, Cornelissen DJ, et al. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication. 2015;7:044102. doi:10.1088/1758-5090/7/4/044102
  • Bakhshi H, Kuang G, Wieland F, Meyer W. Photo-curing kinetics of 3D-printing photo-inks based on urethane-acrylates. Polymers. 2022;14. doi:10.3390/polym14152974
  • Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5:110–115. doi:10.1016/j.bioactmat.2019.12.003
  • Xiaorui L, Fuyin Z, Xudong W, et al. 1Biomaterial inks for extrusion-based 3D bioprinting: property, classification, modification, and selection. Internat J Bioprint. 2023;9:649. doi:10.18063/ijb.v9i2.649
  • Hsu L, Jiang X. ‘Living’ Inks for 3D Bioprinting. Trend Biotechnol. 2019;37:795–796. doi:10.1016/j.tibtech.2019.04.014
  • Catalano V, Turdo A, Di Franco S, Dieli F, Todaro M, Stassi G. Tumor and its microenvironment: a synergistic interplay. Semin Can Biol. 2013;23:522–532. doi:10.1016/j.semcancer.2013.08.007
  • Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–322. doi:10.1016/j.ccr.2012.02.022
  • Cheng K, Cai N, Zhu J, Yang X, Liang H, Zhang W. Tumor-associated macrophages in liver cancer: from mechanisms to therapy. Cancer Communications. 2022;42:1112–1140. doi:10.1002/cac2.12345
  • DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 2019;19:369–382. doi:10.1038/s41577-019-0127-6
  • Güç E, Pollard JW. Redefining macrophage and neutrophil biology in the metastatic cascade. Immunity. 2021;54:885–902. doi:10.1016/j.immuni.2021.03.022
  • Pittet MJ, Michielin O, Migliorini D. Author Correction: clinical relevance of tumour-associated macrophages. Nat Rev Clin Oncol. 2022;19:424. doi:10.1038/s41571-022-00632-2
  • Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: ”N1” versus ”N2. TAN, Cancer Cell. 2009;16:183–194. doi:10.1016/j.ccr.2009.06.017
  • Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R, Mantovani A. Neutrophil diversity and plasticity in tumour progression and therapy, Nature reviews. Cancer. 2020;20:485–503.
  • Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. 2019;12:76. doi:10.1186/s13045-019-0760-3
  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trend Immunol. 2002;23:549–555. doi:10.1016/S1471-4906(02)02302-5
  • Achen MG, McColl BK, Stacker SA. Focus on lymphangiogenesis in tumor metastasis. Cancer Cell. 2005;7:121–127. doi:10.1016/j.ccr.2005.01.017
  • Biffi G, Tuveson DA. Diversity and biology of cancer-associated fibroblasts. Physiol Rev. 2021;101:147–176. doi:10.1152/physrev.00048.2019
  • Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications, Cellular and molecular life sciences. CMLS. 2019;76:3323–3348. doi:10.1007/s00018-019-03125-1
  • Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–1219. doi:10.1126/science.1176009
  • Karamanos NK, Piperigkou Z, Passi A, Götte M, Rousselle P, Vlodavsky I. Extracellular matrix-based cancer targeting. Trend Molecul Med. 2021;27:1000–1013. doi:10.1016/j.molmed.2021.07.009
  • Hynes RO, Naba A. Overview of the matrisome--an inventory of extracellular matrix constituents and functions. Cold Spring Harbor Perspect Biol. 2012;4:a004903. doi:10.1101/cshperspect.a004903
  • Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Advan Drug Deliv Rev. 2016;97:4–27. doi:10.1016/j.addr.2015.11.001
  • Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. 2020;11:5120. doi:10.1038/s41467-020-18794-x
  • Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176:1248–1264. doi:10.1016/j.cell.2019.01.021
  • Giantonio BJ, Catalano PJ, Meropol NJ, et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the eastern cooperative oncology group study E3200. J Clin Oncol. 2007;25:1539–1544. doi:10.1200/JCO.2006.09.6305
  • Wiig H, Keskin D, Kalluri R. Interaction between the extracellular matrix and lymphatics: consequences for lymphangiogenesis and lymphatic function. Matrix Biol. 2010;29(8):645–656. doi:10.1016/j.matbio.2010.08.001
  • Germain N, Dhayer M, Dekiouk S, Marchetti P. Current advances in 3D bioprinting for cancer modeling and personalized medicine. Inter J Molec Sci. 2022;23:3432. doi:10.3390/ijms23073432
  • Shukla P, Yeleswarapu S, Heinrich MA, Prakash J, Pati F. Mimicking tumor microenvironment by 3D bioprinting: 3D cancer modeling. Biofabrication. 2022;14:032002. doi:10.1088/1758-5090/ac6d11
  • Zhou X, Zhu W, Nowicki M, et al. 3D bioprinting a cell-laden bone matrix for breast cancer metastasis study. ACS Appl Mater Interf. 2016;8:30017–30026. doi:10.1021/acsami.6b10673
  • Horder H, Guaza Lasheras M, Grummel N, et al. Bioprinting and differentiation of adipose-derived stromal cell spheroids for a 3D breast cancer-adipose tissue model. Cells. 2021;10:803. doi:10.3390/cells10040803
  • Chaji S, Al-Saleh J, Gomillion CT. Bioprinted three-dimensional cell-laden hydrogels to evaluate adipocyte-breast cancer cell interactions. Gels. 2020;6:6. doi:10.3390/gels6010006
  • Xu J, Yang S, Su Y, et al. A 3D bioprinted tumor model fabricated with gelatin/sodium alginate/decellularized extracellular matrix bioink. Internat J Bioprin. 2023;9:630. doi:10.18063/ijb.v9i1.630
  • Wang Y, Shi W, Kuss M, et al. 3D bioprinting of breast cancer models for drug resistance study. ACS Biomater Sci Enginee. 2018;4:4401–4411. doi:10.1021/acsbiomaterials.8b01277
  • Dankó T, Petővári G, Raffay R, et al. Characterisation of 3D bioprinted human breast cancer model for in vitro drug and metabolic targeting. Int J Mol Sci. 2022;23:7444. doi:10.3390/ijms23137444
  • Hong S, Song JM. 3D bioprinted drug-resistant breast cancer spheroids for quantitative in situ evaluation of drug resistance. Acta Biomater. 2022;138:228–239. doi:10.1016/j.actbio.2021.10.031
  • Müller M, Bird TG, Nault JC. The landscape of gene mutations in cirrhosis and hepatocellular carcinoma. J Hepatol. 2020;72:990–1002. doi:10.1016/j.jhep.2020.01.019
  • Friedman SL, Pinzani M. Hepatic fibrosis 2022: unmet needs and a blueprint for the future. Hepatology. 2022;75:473–488. doi:10.1002/hep.32285
  • Ma X, Yu C, Wang P, et al. Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture. Biomaterials. 2018;185:310–321. doi:10.1016/j.biomaterials.2018.09.026
  • Sun L, Yang H, Wang Y, et al. Application of a 3D bioprinted hepatocellular carcinoma cell model in antitumor drug research. Front Oncol. 2020;10:878. doi:10.3389/fonc.2020.00878
  • Xie F, Sun L, Pang Y, et al. Three-dimensional bio-printing of primary human hepatocellular carcinoma for personalized medicine. Biomaterials. 2021;265:120416. doi:10.1016/j.biomaterials.2020.120416
  • Li Y, Zhang T, Pang Y, Li L, Chen ZN, Sun W. 3D bioprinting of hepatoma cells and application with microfluidics for pharmacodynamic test of Metuzumab. Biofabrication. 2019;11:034102. doi:10.1088/1758-5090/ab256c
  • Mao S, He J, Zhao Y, et al. Bioprinting of patient-derived in vitro intrahepatic cholangiocarcinoma tumor model: establishment, evaluation and anti-cancer drug testing. Biofabrication. 2020;12:045014. doi:10.1088/1758-5090/aba0c3
  • Han QF, Li WJ, Hu KS, et al. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer. 2022;21:207. doi:10.1186/s12943-022-01671-0
  • Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 2018;15:95–111. doi:10.1038/nrclinonc.2017.157
  • Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer. A Review. JAMA. 2021;325:669–685. doi:10.1001/jama.2021.0106
  • Kuipers EJ, Grady WM, Lieberman D, et al. Colorectal cancer. Nat Rev Dis Primers. 2015;1:15065. doi:10.1038/nrdp.2015.65
  • Chen H, Cheng Y, Wang X, et al. 3D printed in vitro tumor tissue model of colorectal cancer. Theranostics. 2020;10:12127–12143. doi:10.7150/thno.52450
  • Batlle E, Clevers H. Cancer stem cells revisited. Nature Medicine. 2017;23:1124–1134. doi:10.1038/nm.4409
  • Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611–629. doi:10.1038/nrclinonc.2017.44
  • Zhang Y, Wang Z, Hu Q, et al. 3D Bioprinted GelMA-nanoclay hydrogels induce colorectal cancer stem cells through activating wnt/β-catenin signaling. Small. 2022;18:e2200364. doi:10.1002/smll.202200364
  • Oliveira-Ferrer L, Legler K, Milde-Langosch K. Role of protein glycosylation in cancer metastasis. Semin Can Biol. 2017;44:141–152. doi:10.1016/j.semcancer.2017.03.002
  • Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer. 2015;15:540–555. doi:10.1038/nrc3982
  • Cadamuro F, Marongiu L, Marino M, et al. 3D bioprinted colorectal cancer models based on hyaluronic acid and signalling glycans. Carbohyd Polym. 2023;302:120395. doi:10.1016/j.carbpol.2022.120395
  • Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394:1467–1480. doi:10.1016/S0140-6736(19)32319-0
  • Johnson PA, Menegatti S, Chambers AC, et al. A rapid high throughput bioprinted colorectal cancer spheroid platform for in vitro drug- and radiation-response. Biofabrication. 2022;15:1.
  • Sbirkov Y, Molander D, Milet C, et al. A colorectal cancer 3D bioprinting workflow as a platform for disease modeling and chemotherapeutic screening. Front Bioenginee Biotechnol. 2021;9:755563. doi:10.3389/fbioe.2021.755563
  • Wang P, Sun L, Li C, et al. Study on drug screening multicellular model for colorectal cancer constructed by three-dimensional bioprinting technology. Internat J Bioprint. 2023;9:694. doi:10.18063/ijb.694
  • Burd EM. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003;16:1–17. doi:10.1128/CMR.16.1.1-17.2003
  • Zhao Y, Yao R, Ouyang L, et al. Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication. 2014;6:035001. doi:10.1088/1758-5082/6/3/035001
  • Pang Y, Mao SS, Yao R, et al. TGF-β induced epithelial-mesenchymal transition in an advanced cervical tumor model by 3D printing. Biofabrication. 2018;10:044102. doi:10.1088/1758-5090/aadbde
  • Becconi M, De Zio S, Falciani F, Santamaria M, Malferrari M, Rapino S. Nano-electrochemical characterization of a 3D bioprinted cervical tumor model. Cancers. 2023;15. doi:10.3390/cancers15041327
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–249. doi:10.3322/caac.21660
  • Arai K, Eguchi T, Rahman MM, et al. A novel high-throughput 3D screening system for EMT Inhibitors: a pilot screening discovered the EMT inhibitory activity of CDK2 inhibitor SU9516. PLoS One. 2016;11:e0162394. doi:10.1371/journal.pone.0162394
  • Mondal A, Gebeyehu A, Miranda M, et al. Characterization and printability of sodium alginate -gelatin hydrogel for bioprinting NSCLC co-culture. Scientific Reports. 2019;9:19914. doi:10.1038/s41598-019-55034-9
  • Wang X, Zhang X, Dai X, et al. Tumor-like lung cancer model based on 3D bioprinting, 3. Biotech. 2018;8:501.
  • Utama RH, Atapattu L, O’Mahony AP, et al. A 3D bioprinter specifically designed for the high-throughput production of matrix-embedded multicellular spheroids. iScience. 2020;23:101621. doi:10.1016/j.isci.2020.101621
  • Gebeyehu A, Surapaneni SK, Huang J, et al. Polysaccharide hydrogel based 3D printed tumor models for chemotherapeutic drug screening. Scientific Reports. 2021;11:372. doi:10.1038/s41598-020-79325-8
  • Choi YM, Lee H, Ann M, Song M, Rheey J, Jang J. 3D bioprinted vascularized lung cancer organoid models with underlying disease capable of more precise drug evaluation. Biofabrication. 2023;15. doi:10.1088/1758-5090/acd95f
  • Jeong YM, Bang C, Park M, et al. 3D-printed collagen scaffolds promote maintenance of cryopreserved patients-derived melanoma explants. Cells. 2021;10:589. doi:10.3390/cells10030589
  • Wang X, Li X, Dai X, et al. Bioprinting of glioma stem cells improves their endotheliogenic potential, Colloids and surfaces. B, Biointerfaces. 2018;171:629–637. doi:10.1016/j.colsurfb.2018.08.006
  • Dai X, Ma C, Lan Q, Xu T. 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility. Biofabrication. 2016;8:045005.
  • Tang M, Xie Q, Gimple RC, et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Res. 2020;30:833–853. doi:10.1038/s41422-020-0338-1
  • Marino A, Tricinci O, Battaglini M, et al. A 3D real-scale, biomimetic, and biohybrid model of the blood-brain barrier fabricated through two-photon lithography. Small. 2018;14:1.
  • Sanchez JA, Robinson WA. Malignant melanoma. Annu Rev Med. 1993;44:335–342. doi:10.1146/annurev.me.44.020193.002003
  • Albanna M, Binder KW, Murphy SV, et al. In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Scientific Reports. 2019;9:1856. doi:10.1038/s41598-018-38366-w
  • Weng T, Zhang W, Xia Y, et al. 3D bioprinting for skin tissue engineering: current status and perspectives. J Tissue Eng. 2021;12:20417314211028574. doi:10.1177/20417314211028574
  • Ostrom QT, Cioffi G, Gittleman H, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United states in 2012–2016. Neuro Oncol. 2019;21:v1–v100. doi:10.1093/neuonc/noz150
  • Goodarzi Hosseinabadi H, Dogan E, Miri AK, Ionov L. Digital light processing bioprinting advances for microtissue models. ACS Biomater Sci Enginee. 2022;8:1381–1395. doi:10.1021/acsbiomaterials.1c01509
  • Wang YI, Abaci HE, Shuler ML. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioenginee. 2017;114:184–194. doi:10.1002/bit.26045
  • Faramarzi N, Yazdi IK, Nabavinia M, et al. Patient-specific bioinks for 3D bioprinting of tissue engineering scaffolds. Advan Health Mater. 2018;7:e1701347. doi:10.1002/adhm.201701347
  • Mahmud MAP, Tat T, Xiao X, Adhikary P, Chen J. Advances in 4D-printed physiological monitoring sensors. Exploration. 2021;1:20210033. doi:10.1002/EXP.20210033
  • Zhou W, Qiao Z, Nazarzadeh Zare E, et al. 4D-printed dynamic materials in biomedical applications: chemistry, challenges, and their future perspectives in the clinical sector. J Med Chem. 2020;63:8003–8024. doi:10.1021/acs.jmedchem.9b02115