446
Views
6
CrossRef citations to date
0
Altmetric
REVIEW

Advances in Conductive Hydrogel for Spinal Cord Injury Repair and Regeneration

, , ORCID Icon, , , , ORCID Icon, ORCID Icon, , & show all
Pages 7305-7333 | Received 21 Aug 2023, Accepted 08 Nov 2023, Published online: 06 Dec 2023

References

  • Dietz V, Fouad K. Restoration of sensorimotor functions after spinal cord injury. Brain. 2014;137(3):654–667. doi:10.1093/brain/awt262
  • Anjum A, Yazid MD, Daud MF, et al Spinal Cord Injury: pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int J Mol Sci. 2020;21(20):7533. doi:10.3390/ijms21207533
  • Karsy M, Hawryluk G. Modern Medical Management of Spinal Cord Injury. Curr Neurol Neurosci. 2019;19(9):65. doi:10.1007/s11910-019-0984-1
  • Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol. 2014;114:25–57. doi:10.1016/j.pneurobio.2013.11.002
  • Lv ZS, Dong C, Zhang TJ, Zhang SK. Hydrogels in Spinal Cord Injury Repair: a Review. Front Bioeng Biotech. 2022;10:931800. doi:10.3389/fbioe.2022.931800
  • Llorens-Bobadilla E, Chell JM, Le Merre P, et al A latent lineage potential in resident neural stem cells enables spinal cord repair. Science. 2020;370:6512. doi:10.1126/science.abb8795
  • Tran AP, Warren PM, Silver J. The Biology of Regeneration Failure and Success After Spinal Cord Injury. Physiol Rev. 2018;98(2):881–917. doi:10.1152/physrev.00017.2017
  • Hong LTA, Kim YM, Park HH, et al An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling. Nat Commun. 2017;8(1):533. doi:10.1038/s41467-017-00583-8
  • Orr MB, Gensel JC. Spinal Cord Injury Scarring and Inflammation: therapies Targeting Glial and Inflammatory Responses. Neurotherapeutics. 2018;15(3):541–553. doi:10.1007/s13311-018-0631-6
  • Mohammed R, Opara K, Lall R, Ojha U, Xiang JP. Evaluating the effectiveness of anti-Nogo treatment in spinal cord injuries. Neural Dev. 2020;15(1):1. doi:10.1186/s13064-020-0138-9
  • Wang HY, Xia YL, Li BQ, Li YH, Fu CF. Reverse Adverse Immune Microenvironments by Biomaterials Enhance the Repair of Spinal Cord Injury. Front Bioeng Biotech. 2022;10:812340. doi:10.3389/fbioe.2022.812340
  • Zou JL, Liu S, Sun JH, et al Peripheral Nerve-Derived Matrix Hydrogel Promotes Remyelination and Inhibits Synapse Formation. Adv Funct Mater. 2018;28(13):1705739. doi:10.1002/adfm.201705739
  • Zou Y, Ma D, Shen H, et al Aligned collagen scaffold combination with human spinal cord-derived neural stem cells to improve spinal cord injury repair. Biomaterials sci. 2020;8(18):5145–5156. doi:10.1039/d0bm00431f
  • Mothe AJ, Tam RY, Zahir T, Tator CH, Shoichet MS. Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel. Biomaterials. 2013;34(15):3775–3783. doi:10.1016/j.biomaterials.2013.02.002
  • Zhang YS, Khademhosseini A. Advances in engineering hydrogels. Science. 2017;356(6337):eaaf3627. doi:10.1126/science.aaf3627
  • Hahn G, Ponce-Alvarez A, Deco G, Aertsen A, Kumar A. Portraits of communication in neuronal networks. Nat Rev Neurosci. 2019;20(2):117–127. doi:10.1038/s41583-018-0094-0
  • Bonizzato M, Pidpruzhnykova G, DiGiovanna J, et al Brain-controlled modulation of spinal circuits improves recovery from spinal cord injury. Nat Commun. 2018;9(1):3015. doi:10.1038/s41467-018-05282-6
  • Alves-Sampaio A, García-Rama C, Collazos-Castro JE. Biofunctionalized PEDOT-coated microfibers for the treatment of spinal cord injury. Biomaterials. 2016;89:98–113. doi:10.1016/j.biomaterials.2016.02.037
  • Xu C, Xu Y, Yang M, et al Black-Phosphorus-Incorporated Hydrogel as a Conductive and Biodegradable Platform for Enhancement of the Neural Differentiation of Mesenchymal Stem Cells. Adv Funct Mater. 2020;30(39):2000177. doi:10.1002/adfm.202000177
  • Ashammakhi N, Kim HJ, Ehsanipour A, et al Regenerative Therapies for Spinal Cord Injury. Tissue Eng Part B-Reviews. 2019;25(6):471–491. doi:10.1089/ten.teb.2019.0182
  • Yang B, Liang C, Chen D, et al A conductive supramolecular hydrogel creates ideal endogenous niches to promote spinal cord injury repair. Bioact Mater. 2022;15:103–119. doi:10.1016/j.bioactmat.2021.11.032
  • Tandon B, Magaz A, Balint R, Blaker JJ, Cartmell SH. Electroactive biomaterials: vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration. Adv Drug Deliv Rev. 2018;129:148–168. doi:10.1016/j.addr.2017.12.012
  • Zare EN, Makvandi P, Ashtari B, Rossi F, Motahari A, Perale G. Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: a Review. J Med Chem. 2020;63(1):1–22. doi:10.1021/acs.jmedchem.9b00803
  • Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P. Electrically conductive polymers and composites for biomedical applications. RSC Adv. 2015;5(47):37553–37567. doi:10.1039/c5ra01851j
  • Aleemardani M, Zare P, Seifalian A, Bagher Z, Seifalian AM. Graphene-Based Materials Prove to Be a Promising Candidate for Nerve Regeneration Following Peripheral Nerve Injury. Biomedicines. 2022;10(1):73. doi:10.3390/biomedicines10010073
  • Hu Y, Chen Z, Wang H, et al Conductive Nerve Guidance Conduits Based on Morpho Butterfly Wings for Peripheral Nerve Repair. ACS Nano. 2022;16(2):1868–1879. doi:10.1021/acsnano.1c11627
  • Liu XF, Miller AL, Park S, et al Functionalized Carbon Nanotube and Graphene Oxide Embedded Electrically Conductive Hydrogel Synergistically Stimulates Nerve Cell Differentiation. ACS Appl Mater Interfaces. 2017;9(17):14677–14690. doi:10.1021/acsami.7b02072
  • Yang BW, Yin JH, Chen Y, et al 2D-Black-Phosphorus-Reinforced 3D-Printed Scaffolds:A Stepwise Countermeasure for Osteosarcoma. Adv Mater. 2018;30(10):1705611. doi:10.1002/adma.201705611
  • Xie DM, Sun CW, Tu QQ, et al Modified black phosphorus quantum dots promotes spinal cord injury repair by targeting the AKT signaling pathway. J Tissue Eng. 2023:1420417314231180033. doi:10.1177/20417314231180033
  • Xu C, Chang YK, Wu P, et al Two-Dimensional-Germanium Phosphide-Reinforced Conductive and Biodegradable Hydrogel Scaffolds Enhance Spinal Cord Injury Repair. Adv Funct Mater. 2021;31(41):2104440. doi:10.1002/adfm.202104440
  • Maleki A, Ghomi M, Nikfarjam N, et al Biomedical Applications of MXene-Integrated Composites: regenerative Medicine, Infection Therapy, Cancer Treatment, and Biosensing. Adv Funct Mater. 2022;32(34):2203430. doi:10.1002/adfm.202203430
  • Zhang YZ, El-Demellawi JK, Jiang Q, et al MXene hydrogels: fundamentals and applications. Chem Soc Rev. 2020;49(20):7229–7251. doi:10.1039/d0cs00022a
  • Quadri SA, Farooqui M, Ikram A, et al Recent update on basic mechanisms of spinal cord injury. Neurosurg Rev. 2020;43(2):425–441. doi:10.1007/s10143-018-1008-3
  • Sterner RC, Sterner RM. Immune response following traumatic spinal cord injury: pathophysiology and therapies. Front Immunol. 2023;13:1084101. doi:10.3389/fimmu.2022.1084101
  • Choo AM, Liu J, Lam CK, Dvorak M, Tetzlaff W, Oxland TR. Contusion, dislocation, and distraction: primary hemorrhage and membrane permeability in distinct mechanisms of spinal cord injury. J Neurosurgery Spine. 2007;6(3):255–266. doi:10.3171/spi.2007.6.3.255
  • Li S, Mealing GA, Morley P. injury mechanism in anoxia and trauma of spinal cord white matter: glutamate release via reverse Na+-dependent glutamate transport. J Neurosci. 1999;19(14):RC16.
  • Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med. 2002;32(11):1102–1115. doi:10.1016/s0891-5849(02)00826-2
  • Schanne FA, Kane AB, Young EE, Farber JL. Calcium dependence of toxic cell death: a final common pathway. Science. 1979;206(4419):700–702. doi:10.1126/science.386513
  • Li SX, Stys PK. Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J Neurosci. 2000;20(3):1190–1198. doi:10.1523/jneurosci.20-03-01190.2000
  • Hellenbrand DJ, Quinn CM, Piper ZJ, Morehouse CN, Fixel JA, Hanna AS. Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration. J Neuroinflamm. 2021;18(1):284. doi:10.1186/s12974-021-02337-2
  • Shi ZJ, Yuan SY, Shi LL, et al Programmed cell death in spinal cord injury pathogenesis and therapy. Cell Proliferat. 2021;54(3):e12992. doi:10.1111/cpr.12992
  • Tator CH. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathology. 1995;5(4):407–413. doi:10.1111/j.1750-3639.1995.tb00619.x
  • Silver J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci. 1991;11(11):3398–3411.
  • Yang R, Zhang Y, Kang J, Zhang C, Ning B. Chondroitin Sulfate Proteoglycans Revisited: its Mechanism of Generation and Action for Spinal Cord Injury. Aging Dis. 2023. doi:10.14336/AD.2023.0512
  • Okada S, Hara M, Kobayakawa K, Matsumoto Y, Nakashima Y. Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci Res. 2018;126:39–43. doi:10.1016/j.neures.2017.10.004
  • Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci. 2004;5(2):146–156. doi:10.1038/nrn1326
  • Kiyotake EA, Martin MD, Detamore MS. Regenerative rehabilitation with conductive biomaterials for spinal cord injury. Acta biomaterialia. 2022;139:43–64. doi:10.1016/j.actbio.2020.12.021
  • Fujita Y, Yamashita T. Axon growth inhibition by RhoA/ROCK in the central nervous system. Front Neurosci. 2014;8:338. doi:10.3389/fnins.2014.00338
  • Filbin MT. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci. 2003;4(9):703–713. doi:10.1038/nrn1195
  • Forgione N, Fehlings MG. Rho-ROCK Inhibition in the Treatment of Spinal Cord Injury. World Neurosurg. 2014;82(3–4):E535–E539. doi:10.1016/j.wneu.2013.01.009
  • Baldwin KT, Giger RJ. Insights into the physiological role of CNS regeneration inhibitors. Front Mol Neurosci. 2015;8:23. doi:10.3389/fnmol.2015.00023
  • Boghdadi AG, Teo L, Bourne JA. The Involvement of the Myelin-Associated Inhibitors and Their Receptors in CNS Plasticity and Injury. Mol Neurobiol. 2018;55(3):1831–1846. doi:10.1007/s12035-017-0433-6
  • Geoffroy CG, Zheng BH. Myelin-associated inhibitors in axonal growth after CNS injury. Curr Opin Neurobiol. 2014;27:31–38. doi:10.1016/j.conb.2014.02.012
  • Fawcett J. Repair of spinal cord injuries: where are we, where are we going?. Spinal Cord. 2002;40(12):615–623. doi:10.1038/sj.sc.3101328
  • Nash M, Pribiag H, Fournier AE, Jacobson C. Central Nervous System Regeneration Inhibitors and their Intracellular Substrates. Mol Neurobiol. 2009;40(3):224–235. doi:10.1007/s12035-009-8083-y
  • Fan BY, Wei ZJ, Yao X, et al Microenvironment Imbalance of Spinal Cord Injury. Cell Transplant. 2018;27(6):853–866. doi:10.1177/0963689718755778
  • Levin M. Bioelectric mechanisms in regeneration: unique aspects and future perspectives. Semin Cell Dev Biol. 2009;20(5):543–556. doi:10.1016/j.semcdb.2009.04.013
  • Bertucci C, Koppes R, Dumont C, Koppes A. Neural responses to electrical stimulation in 2D and 3D in vitro environments. Brain Res Bull. 2019;152:265–284. doi:10.1016/j.brainresbull.2019.07.016
  • Arocena M, Zhao M, Collinson JM, Song B. A Time-Lapse and Quantitative Modelling Analysis of Neural Stem Cell Motion in the Absence of Directional Cues and in Electric Fields. J Neurosci Res. 2010;88(15):3267–3274. doi:10.1002/jnr.22502
  • Ye H, Steiger A. Neuron matters: electric activation of neuronal tissue is dependent on the interaction between the neuron and the electric field. J Neuroeng Rehabil. 2015;12:65. doi:10.1186/s12984-015-0061-1
  • Levin M. Large-scale biophysics: ion flows and regeneration. Trends Cell Biol. 2007;17(6):261–270. doi:10.1016/j.tcb.2007.04.007
  • Goganau I, Sandner B, Weidner N, Fouad K, Blesch A. Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury. Exp Neurol. 2018;300:247–258. doi:10.1016/j.expneurol.2017.11.011
  • Ming GL, Henley J, Tessier-Lavigne M, Song HJ, Poo MM. Electrical activity modulates growth cone guidance by diffusible factors. Neuron. 2001;29(2):441–452. doi:10.1016/S0896-6273(01)00217-3
  • Liu ZR, Wan XY, Wang ZL, Li LL. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: design and Applications. Adv Mater. 2021;33(32):2007429. doi:10.1002/adma.202007429
  • Song YQ, Li D, Farrelly O, et al The Mechanosensitive Ion Channel Piezo Inhibits Axon Regeneration. Neuron. 2019;102(2):373. doi:10.1016/j.neuron.2019.01.050
  • Murillo G, Blanquer A, Vargas-Estevez C, et al Electromechanical Nanogenerator-Cell Interaction Modulates Cell Activity. Adv Mater. 2017;29(24):1605048. doi:10.1002/adma.201605048
  • Zeng Q, Zhou Z, Qin S, et al Rapamycin inhibits B-cell activating factor (BAFF)-stimulated cell proliferation and survival by suppressing Ca(2+)-CaMKII-dependent PTEN/Akt-Erk1/2 signaling pathway in normal and neoplastic B-lymphoid cells. Cell Calcium. 2020;87:102171. doi:10.1016/j.ceca.2020.102171
  • Ohtake Y, Hayat U, Li SX. PTEN inhibition and axon regeneration and neural repair. Neural Regeneration Res. 2015;10(9):1363–1368. doi:10.4103/1673-5374.165496
  • Fan L, Liu C, Chen X, et al Exosomes-Loaded Electroconductive Hydrogel Synergistically Promotes Tissue Repair after Spinal Cord Injury via Immunoregulation and Enhancement of Myelinated Axon Growth. Adv Sci. 2022:e2105586. doi:10.1002/advs.202105586
  • Park KK, Liu K, Hu Y, et al Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science. 2008;322(5903):963–6. doi:10.1126/science.1161566
  • Zhu R, Sun ZQ, Li CP, Ramakrishna S, Chiu K, He LM. Electrical stimulation affects neural stem cell fate and function in vitro. Exp Neurol. 2019;319:112963. doi:10.1016/j.expneurol.2019.112963
  • Feng JF, Liu J, Zhang L, et al Electrical Guidance of Human Stem Cells in the Rat Brain. Stem Cell Rep. 2017;9(1):177–189. doi:10.1016/j.stemcr.2017.05.035
  • Batty NJ, Fenrich KK, Fouad K. The role of cAMP and its downstream targets in neurite growth in the adult nervous system. Neurosci Lett. 2017;652:56–63. doi:10.1016/j.neulet.2016.12.033
  • He XG, Li Y, Deng B, et al The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: mechanisms and therapeutic opportunities. Cell Proliferat. 2022;55(9):e13275. doi:10.1111/cpr.13275
  • Dong ZY, Pei Z, Wang YL, Li Z, Khan A, Meng XT. Ascl1 Regulates Electric Field-Induced Neuronal Differentiation Through PI3K/Akt Pathway. Neuroscience. 2019;404:141–152. doi:10.1016/j.neuroscience.2019.02.004
  • Huang HT, Liu HW, Yan RZ, Hu M. PI3K/Akt and ERK/MAPK Signaling Promote Different Aspects of Neuron Survival and Axonal Regrowth Following Rat Facial Nerve Axotomy. Neurochem Res. 2017;42(12):3515–3524. doi:10.1007/s11064-017-2399-1
  • Joo MC, Jang CH, Park JT, et al Effect of electrical stimulation on neural regeneration via the p38-RhoA and ERK1/2-Bcl-2 pathways in spinal cord-injured rats. Neural Regen Res. 2018;13(2):340–346. doi:10.4103/1673-5374.226404
  • Chang LF, Jones Y, Ellisman MH, Goldstein LSB, Karin M. JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev Cell. 2003;4(4):521–533. doi:10.1016/S1534-5807(03)00094-7
  • Coulon P, Landisman CE. The Potential Role of Gap Junctional Plasticity in the Regulation of State. Neuron. 2017;93(6):1275–1295. doi:10.1016/j.neuron.2017.02.041
  • Pereda AE. Electrical synapses and their functional interactions with chemical synapses. Nat Rev Neurosci. 2014;15(4):250–263. doi:10.1038/nrn3708
  • Curti S, O’Brien J. Characteristics and plasticity of electrical synaptic transmission. Bmc Cell Biol. 2016;17:13. doi:10.1186/s12860-016-0091-y
  • Gordon T. Electrical Stimulation to Enhance Axon Regeneration After Peripheral Nerve Injuries in Animal Models and Humans. Neurotherapeutics. 2016;13(2):295–310. doi:10.1007/s13311-015-0415-1
  • Kotwal A, Schmidt CE. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials. 2001;22(10):1055–1064. doi:10.1016/S0142-9612(00)00344-6
  • Thrivikraman G, Boda SK, Basu B. Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: a tissue engineering perspective. Biomaterials. 2018;150:60–86. doi:10.1016/j.biomaterials.2017.10.003
  • Karamian BA, Siegel N, Nourie B, et al The role of electrical stimulation for rehabilitation and regeneration after spinal cord injury. J Orthop Traumatol. 2022;23(1):2. doi:10.1186/s10195-021-00623-6
  • McLaughlin KA, Levin M. Bioelectric signaling in regeneration: mechanisms of ionic controls of growth and form. Dev Biol. 2018;433(2):177–189. doi:10.1016/j.ydbio.2017.08.032
  • Hillen BK, Abbas JJ, Jung R. Accelerating locomotor recovery after incomplete spinal injury. Ann Ny Acad Sci. 2013;1279:164–174. doi:10.1111/nyas.12061
  • Eisdorfer JT, Smit RD, Keefe KM, Lemay MA, Smith GM, Spence AJ. Epidural Electrical Stimulation: a Review of Plasticity Mechanisms That Are Hypothesized to Underlie Enhanced Recovery From Spinal Cord Injury With Stimulation. Front Mol Neurosci. 2020;13:163. doi:10.3389/fnmol.2020.00163
  • Kapadia N, Moineau B, Popovic MR. Functional Electrical Stimulation Therapy for Retraining Reaching and Grasping After Spinal Cord Injury and Stroke. Front Neurosci. 2020;14:718. doi:10.3389/fnins.2020.00718
  • Gill ML, Grahn P, Calvert JS, et al Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med. 2018;24(11):1677. doi:10.1038/s41591-018-0175-7
  • Luo SY, Xu HN, Zuo Y, Liu XG, All AH. A Review of Functional Electrical Stimulation Treatment in Spinal Cord Injury. Neuromol Med. 2020;22(4):447–463. doi:10.1007/s12017-019-08589-9
  • Wagner FB, Mignardot JB, Le goff-mignardot CG, et al Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563:65. doi:10.1038/s41586-018-0649-2
  • Titushkin I, Cho M. Regulation of Cell Cytoskeleton and Membrane Mechanics by Electric Field: role of Linker Proteins. Biophys J. 2009;96(2):717–728. doi:10.1016/j.bpj.2008.09.035
  • Jack AS, Hurd C, Martin J, Fouad K. Electrical Stimulation as a Tool to Promote Plasticity of the Injured Spinal Cord. J Neurotrauma. 2020;37(18):1933–1953. doi:10.1089/neu.2020.7033
  • Song S, Amores D, Chen C, et al Controlling properties of human neural progenitor cells using 2D and 3D conductive polymer scaffolds. Sci Rep. 2019;9:19565. doi:10.1038/s41598-019-56021-w
  • Wenjin W, Wenchao L, Hao Z, et al Electrical stimulation promotes BDNF expression in spinal cord neurons through Ca(2+)- and Erk-dependent signaling pathways. Cell Mol Neurobiol. 2011;31(3):459–467. doi:10.1007/s10571-010-9639-0
  • Wang Y, Lv HQ, Chao X, et al Multimodal therapy strategies based on hydrogels for the repair of spinal cord injury. Military Med Res. 2022;9(1):16. doi:10.1186/s40779-022-00376-1
  • Cornelison RC, Gonzalez-Rothi EJ, Porvasnik SL, et al Injectable hydrogels of optimized acellular nerve for injection in the injured spinal cord. Biomed Mater. 2018;13(3):034110. doi:10.1088/1748-605X/aaab82
  • Zhu TX, Ni YM, Biesold GM, et al Recent advances in conductive hydrogels: classifications, properties, and applications. Chem Soc Rev. 2023;52(2):473–509. doi:10.1039/d2cs00173j
  • Shi Z, Gao X, Ullah MW, Li S, Wang Q, Yang G. Electroconductive natural polymer-based hydrogels. Biomaterials. 2016;111:40–54. doi:10.1016/j.biomaterials.2016.09.020
  • Yuk H, Lu BY, Zhao XH. Hydrogel bioelectronics. Chem Soc Rev. 2019;48(6):1642–1667. doi:10.1039/c8cs00595h
  • Guo YH, Bae J, Fang ZW, Li PP, Zhao F, Yu GH. Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chem Rev. 2020;120(15):7642–7707. doi:10.1021/acs.chemrev.0c00345
  • Agarwal G, Kumar N, Srivastava A. Highly elastic, electroconductive, immunomodulatory graphene crosslinked collagen cryogel for spinal cord regeneration. Materials Sci Eng C. 2021;118111518. doi:10.1016/j.msec.2020.111518
  • Gao C, Li YX, Liu XY, Huang J, Zhang ZJ. 3D bioprinted conductive spinal cord biomimetic scaffolds for promoting neuronal differentiation of neural stem cells and repairing of spinal cord injury. Chem Eng J. 2023;451:138788. doi:10.1016/j.cej.2022.138788
  • Yu QN, Jin SC, Wang SC, Xiao HN, Zhao YT. Injectable, adhesive, self-healing and conductive hydrogels based on MXene nanosheets for spinal cord injury repair. Chem Eng J. 2023;452:139252. doi:10.1016/j.cej.2022.139252
  • Chen LL, Wang WS, Lin ZF, et al Conducting molybdenum sulfide/graphene oxide/polyvinyl alcohol nanocomposite hydrogel for repairing spinal cord injury. J Nanobiotechnology. 2022;20(1):210. doi:10.1186/s12951-022-01396-8
  • Chedly J, Soares S, Montembault A, et al Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration. Biomaterials. 2017;138:91–107. doi:10.1016/j.biomaterials.2017.05.024
  • Liu S, Xie YY, Wang B. Role and prospects of regenerative biomaterials in the repair of spinal cord injury. Neural Regeneration Res. 2019;14(8):1352–1363. doi:Pmid 30964053. doi:10.4103/1673-5374.253512
  • Ghane N, Beigi MH, Labbaf S, Nasr-Esfahani MH, Kiani A. Design of hydrogel-based scaffolds for the treatment of spinal cord injuries. Review. J Materials Chem B. 2020;8(47):10712–10738. doi:10.1039/d0tb01842b
  • Mozhdehbakhsh Mofrad Y, Shamloo A. The effect of conductive aligned fibers in an injectable hydrogel on nerve tissue regeneration. Int J Pharm. 2023;645:123419. doi:10.1016/j.ijpharm.2023.123419
  • Serafin A, Culebras M, Oliveira JM, Koffler J, Collins MN. 3D printable electroconductive gelatin-hyaluronic acid materials containing polypyrrole nanoparticles for electroactive tissue engineering. Article. Adv Compos Hybrid Mater. 2023;6(3):14. 109. doi:10.1007/s42114-023-00665-w
  • Wu C, Liu A, Chen S, et al Cell-Laden Electroconductive Hydrogel Simulating Nerve Matrix To Deliver Electrical Cues and Promote Neurogenesis. ACS Appl Mater Interfaces. 2019;11(25):22152–22163. doi:10.1021/acsami.9b05520
  • Yucel D, Kose GT, Hasirci V. Tissue Engineered, Guided Nerve Tube Consisting of Aligned Neural Stem Cells and Astrocytes. Biomacromolecules. 2010;11(12):3584–3591. doi:10.1021/bm1010323
  • Yang Y, Sun J, Liu X, et al Wet-spinning fabrication of shear-patterned alginate hydrogel microfibers and the guidance of cell alignment. Regen Biomater. 2017;4(5):299–307. doi:10.1093/rb/rbx017
  • Yan L, Zhao B, Liu X, et al Aligned Nanofibers from Polypyrrole/Graphene as Electrodes for Regeneration of Optic Nerve via Electrical Stimulation. ACS Appl Mater Interfaces. 2016;8(11):6834–6840. doi:10.1021/acsami.5b12843
  • Jeong HJ, Yun Y, Lee SJ, Ha Y, Gwak SJ. Biomaterials and strategies for repairing spinal cord lesions. Neurochem Int. 2021;144:104973. doi:10.1016/j.neuint.2021.104973
  • Uz M, Mallapragada SK. Conductive Polymers and Hydrogels for Neural Tissue Engineering. J Indian Inst Sci. 2019;99(3):489–510. doi:10.1007/s41745-019-00126-8
  • Peressotti S, Koehl GE, Goding JA, Green RA. Self-Assembling Hydrogel Structures for Neural Tissue Repair. ACS Biomat Sci Eng. 2021;7(9):4136–4163. doi:10.1021/acsbiomaterials.1c00030
  • Shao JD, Ruan CS, Xie HH, et al Black-Phosphorus-Incorporated Hydrogel as a Sprayable and Biodegradable Photothermal Platform for Postsurgical Treatment of Cancer. Adv Sci. 2018;5(5):1700848. doi:10.1002/advs.201700848
  • Xu Y, Xu C, Yang K, et al Copper Ion-Modified Germanium Phosphorus Nanosheets Integrated with an Electroactive and Biodegradable Hydrogel for Neuro-Vascularized Bone Regeneration. Adv Healthcare Mater. 2023. doi:10.1002/adhm.202301151
  • Wang QH, Pan XF, Lin CM, et al Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics. Ar Chem Eng J. 2020;401:10. 126129. doi:10.1016/j.cej.2020.126129
  • Mahmud ST, Hasan MM, Bain S, et al Multilayer MXene Heterostructures and Nanohybrids for Multifunctional Applications: a Review. Acs Materials Lett. 2022;4(6):1174–1206. doi:10.1021/acsmaterialslett.2c00175
  • Zhang L, Stauffer WR, Jane EP, Sammak PJ, Cui XT. Enhanced differentiation of embryonic and neural stem cells to neuronal fates on laminin peptides doped polypyrrole. Macromol Biosci. 2010;10(12):1456–1464. doi:10.1002/mabi.201000176
  • Xu JP, Wong CW, Hsu SH. An Injectable, Electroconductive Hydrogel/Scaffold for Neural Repair and Motion Sensing. Chem Materials. 2020;32(24):10407–10422. doi:10.1021/acs.chemmater.0c02906
  • Xu XZ, Wang L, Jing JH, et al Conductive Collagen-Based Hydrogel Combined With Electrical Stimulation to Promote Neural Stem Cell Proliferation and Differentiation. Front Bioeng Biotech. 2022;10:912497. doi:10.3389/fbioe.2022.912497
  • Fan CX, Yang W, Zhang LL, et al Restoration of spinal cord biophysical microenvironment for enhancing tissue repair by injury-responsive smart hydrogel. Biomaterials. 2022;288:121689. doi:10.1016/j.biomaterials.2022.121689
  • Wu CH, Chen SP, Zhou T, et al Antioxidative and Conductive Nanoparticles-Embedded Cell Niche for Neural Differentiation and Spinal Cord Injury Repair. ACS Appl Mater Interfaces. 2021;13(44):52346–52361. doi:10.1021/acsami.1c14679
  • Zhou L, Fan L, Yi X, et al Soft Conducting Polymer Hydrogels Cross-Linked and Doped by Tannic Acid for Spinal Cord Injury Repair. Acs Nano. 2018;12(11):10957–10967. doi:10.1021/acsnano.8b04609
  • Rai R, Roether JA, Boccaccini AR. Polyaniline based polymers in tissue engineering applications: a review. Prog Biomed Eng. 2022;4(4):042004. doi:10.1088/2516-1091/ac93d3
  • Liu W, Luo Y, Ning C, et al Thermo-sensitive electroactive hydrogel combined with electrical stimulation for repair of spinal cord injury. J Nanobiotechnology. 2021;19(1). doi:10.1186/s12951-021-01031-y
  • Serafin A, Rubio MC, Carsi M, et al Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair. Biomater Res. 2022;26(1):63. doi:10.1186/s40824-022-00310-5
  • Song S, Li Y, Huang J, Cheng S, Zhang Z. Inhibited astrocytic differentiation in neural stem cell-laden 3D bioprinted conductive composite hydrogel scaffolds for repair of spinal cord injury. Biomater Adv. 2023;148:213385. doi:10.1016/j.bioadv.2023.213385
  • Geim AK. Graphene: status and prospects. Science. 2009;324(5934):1530–1534. doi:10.1126/science.1158877
  • Silva GA, Czeisler C, Niece KL, et al Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science. 2004;303(5662):1352–1355. doi:10.1126/science.1093783
  • Orive G, Anitua E, Pedraz JL, Emerich DF. Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci. 2009;10(9):682–692. doi:10.1038/nrn2685
  • Tang ML, Song Q, Li N, Jiang ZY, Huang R, Cheng GS. Enhancement of electrical signaling in neural networks on graphene films. Biomaterials. 2013;34(27):6402–6411. doi:10.1016/j.biomaterials.2013.05.024
  • Bozkurt A, Lassner F, O’Dey D, et al The role of microstructured and interconnected pore channels in a collagen-based nerve guide on axonal regeneration in peripheral nerves. Biomaterials. 2012;33(5):1363–1375. doi:10.1016/j.biomaterials.2011.10.069
  • Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos K. Prospects and challenges of graphene in biomedical applications. Adv Mater. 2013;25(16):2258–2268. doi:10.1002/adma.201203700
  • Thompson BC, Murray E, Wallace GG. Graphite Oxide to Graphene. Biomaterials to Bionics. Adv Mater. 2015;27(46):7563–7582. doi:10.1002/adma.201500411
  • Ding X, Liu H, Fan Y. Graphene-Based Materials in Regenerative Medicine. Adv Healthcare Mater. 2015;4(10):1451–1468. doi:10.1002/adhm.201500203
  • Zhang K, Li J, Jin J, et al Injectable, anti-in fl ammatory and conductive hydrogels based on graphene oxide and diacerein-terminated four-armed polyethylene glycol for spinal cord injury repair. Mater Des. 2020:196109092. doi:10.1016/j.matdes.2020.109092
  • Liu SB, Zeng TH, Hofmann M, et al Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: membrane and Oxidative Stress. Acs Nano. 2011;5(9):6971–6980. doi:10.1021/nn202451x
  • Yao XY, Yan ZW, Wang X, Jiang HQ, Qian Y, Fan CY. The influence of reduced graphene oxide on stem cells: a perspective in peripheral nerve regeneration. Regenerative Biomaterials. 2021;8(4):rbab032. doi:10.1093/rb/rbab032
  • Gonzalez-Mayorga A, Lopez-Dolado E, Gutierrez MC, et al Favorable Biological Responses of Neural Cells and Tissue Interacting with Graphene Oxide Microfibers. Acs Omega. 2017;2(11):8253–8263. doi:10.1021/acsomega.7b01354
  • Lopez-Dolado E, Gonzalez-Mayorga A, Gutierrez MC, Serrano MC. Immunomodulatory and angiogenic responses induced by graphene oxide scaffolds in chronic spinal hemisected rats. Biomaterials. 2016;99:72–81. doi:10.1016/j.biomaterials.2016.05.012
  • Xue F, Liu TY, Liu X, Chen KX, Duan LJ, Gao GH. Electroconductive and porous graphene-xanthan gum gel scaffold for spinal cord regeneration. Eur Polym J. 2022;173:111225. doi:10.1016/j.eurpolymj.2022.111225
  • Mattson MP, Haddon RC, Rao AM. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci. 2000;14(3):175–182. doi:10.1385/jmn:14:3:
  • Hu H, Ni YC, Montana V, Haddon RC, Parpura V. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett. 2004;4(3):507–511. doi:10.1021/nl035193d
  • Fabbro A, Toma FM, Cellot G, Prato M, Ballerini L. Carbon nanotubes and neuronal performance. Nanomed Nervous System. 2012:183–206.
  • Lovat V, Pantarotto D, Lagostena L, et al Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett. 2005;5(6):1107–1110. doi:10.1021/nl050637m
  • Cellot G, Toma FM, Varley ZK, et al Carbon Nanotube Scaffolds Tune Synaptic Strength in Cultured Neural Circuits: novel Frontiers in Nanomaterial-Tissue Interactions. J Neurosci. 2011;31(36):12945–12953. doi:10.1523/jneurosci.1332-11.2011
  • Fabbro A, Villari A, Laishram J, et al Spinal Cord Explants Use Carbon Nanotube Interfaces To Enhance Neurite Outgrowth and To Fortify Synaptic Inputs. Acs Nano. 2012;6(3):2041–2055. doi:10.1021/nn203519r
  • Sang LL, Liu YQ, Hua WX, et al Thermally sensitive conductive hydrogel using amphiphilic crosslinker self-assembled carbon nanotube to enhance neurite outgrowth and promote spinal cord regeneration. RSC Adv. 2016;6(31):26341–26351. doi:10.1039/c5ra20780k
  • Koppes AN, Keating KW, McGregor AL, et al Robust neurite extension following exogenous electrical stimulation within single walled carbon nanotube-composite hydrogels. Acta biomaterialia. 2016;39:34–43. doi:10.1016/j.actbio.2016.05.014
  • Fujigaya T, Nakashima N. Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci Tech Adv Materials. 2015;16(2):024802. doi:10.1088/1468-6996/16/2/024802
  • Hong S, Yang K, Kang B, et al Hyaluronic Acid Catechol: a Biopolymer Exhibiting a pH-Dependent Adhesive or Cohesive Property for Human Neural Stem Cell Engineering. Adv Funct Mater. 2013;23(14):1774–1780. doi:10.1002/adfm.201202365
  • Shin J, Lee JS, Lee C, et al Tissue Adhesive Catechol-Modified Hyaluronic Acid Hydrogel for Effective, Minimally Invasive Cell Therapy. Adv Funct Mater. 2015;25(25):3814–3824. doi:10.1002/adfm.201500006
  • Shin J, Choi EJ, Cho JH, et al Three-Dimensional Electroconductive Hyaluronic Acid Hydrogels Incorporated with Carbon Nanotubes and Polypyrrole by Catechol-Mediated Dispersion Enhance Neurogenesis of Human Neural Stem Cells. Biomacromolecules. 2017;18(10):3060–3072. doi:10.1021/acs.biomac.7b00568
  • Tang ZM, Kong N, Ouyang J, et al Phosphorus Science-Oriented Design and Synthesis of Multifunctional Nanomaterials for Biomedical Applications. Matter-Us. 2020;2(2):297–322. doi:10.1016/j.matt.2019.12.007
  • Guo J, Huang DZ, Zhang Y, et al 2D GeP as a Novel Broadband Nonlinear Optical Material for Ultrafast Photonics. Laser Photonics Rev. 2019;13(9):1900123. doi:10.1002/lpor.201900123
  • Shao JD, Xie HH, Huang H, et al Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat Commun. 2021;12(1):3923. doi:10.1038/s41467-021-23210-z
  • Zeng GD, Chen YP. Surface modification of black phosphorus-based nanomaterials in biomedical applications: strategies and recent advances. Acta biomaterialia. 2020;118:1–17. doi:10.1016/j.actbio.2020.10.004
  • Liu XF, Miller AL, Park S, et al Two-Dimensional Black Phosphorus and Graphene Oxide Nanosheets Synergistically Enhance Cell Proliferation and Osteogenesis on 3D Printed Scaffolds. ACS Appl Mater Interfaces. 2019;11(26):23558–23572. doi:10.1021/acsami.9b04121
  • Yu TT, Nie HK, Wang SP, et al Two-Dimensional GeP-Based Broad-Band Optical Switches and Photodetectors. Adv Opt Mater. 2020;8(2):1901490. doi:10.1002/adom.201901490
  • Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. Anniversary Article: mXenes: a New Family of Two-Dimensional Materials. Adv Mater. 2014;26(7):992–1005. doi:10.1002/adma.201304138
  • Lin H, Chen Y, Shi JL. Insights into 2D MXenes for Versatile Biomedical Applications: current Advances and Challenges Ahead. Adv Sci. 2018;5(10):1800518. doi:10.1002/advs.201800518
  • Huang K, Li ZJ, Lin J, Han G, Huang P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev. 2018;47(14):5109–5124. doi:10.1039/c7cs00838d
  • Guo JH, Yu YR, Zhang DG, Zhang H, Zhao YJ. Morphological Hydrogel Microfibers with MXene Encapsulation for Electronic Skin. Research-China. 2021;2021:7065907. doi:10.34133/2021/7065907
  • Wang LF, Li Y, Zhao L, et al Recent advances in ultrathin two-dimensional materials and biomedical applications for reactive oxygen species generation and scavenging. Nanoscale. 2020;12(38):19516–19535. doi:10.1039/d0nr05746k
  • Wychowaniec JK, Litowczenko J, Tadyszak K, et al Unique cellular network formation guided by heterostructures based on reduced graphene oxide - Ti3C2Tx MXene hydrogels. Acta biomaterialia. 2020;115:104–115. doi:10.1016/j.actbio.2020.08.010
  • Li XB, He LZ, Li YF, et al Healable, Degradable, and Conductive MXene Nanocomposite Hydrogel for Multifunctional Epidermal Sensors. Acs Nano. 2021;15(4):7765–7773. doi:10.1021/acsnano.1c01751
  • Zheng H, Wang SQ, Cheng F, et al Bioactive anti-inflammatory, antibacterial, conductive multifunctional scaffold based on MXene@CeO2 nanocomposites for infection-impaired skin multimodal therapy. Chem Eng J. 2021;424:130148. doi:10.1016/j.cej.2021.130148
  • Karahan HE, Goh K, Zhang CF, et al MXene Materials for Designing Advanced Separation Membranes. Adv Mater. 2020;32(29):1906697. doi:10.1002/adma.201906697
  • Sun LY, Fan L, Bian FK, Chen GP, Wang YT, Zhao YJ. MXene-Integrated Microneedle Patches with Innate Molecule Encapsulation for Wound Healing. Research-China. 2021;2021:9838490. doi:10.34133/2021/9838490
  • Cai JY, Zhang H, Hu YN, et al GelMA-MXene hydrogel nerve conduits with microgrooves for spinal cord injury repair. J Nanobiotechnology. 2022;20(1):460. doi:10.1186/s12951-022-01669-2
  • Zarepour A, Ahmadi S, Rabiee N, Zarrabi A, Iravani S. Self-Healing MXene- and Graphene-Based Composites: properties and Applications. Nanomicro Lett. 2023;15(1):100. doi:10.1007/s40820-023-01074-w
  • Kong WJ, Zhao YL, Yang XY, et al Combined treatment using novel multifunctional MAu-GelMA hydrogel loaded with neural stem cells and electrical stimulation promotes functional recovery from spinal cord injury. Ceram Int. 2023;49(12):20623–20636. doi:10.1016/j.ceramint.2023.03.193
  • Zhou C, Zhao XH, Xiong YS, et al A review of etching methods of MXene and applications of MXene conductive hydrogels. Eur Polym J. 2022;167:111063. doi:10.1016/j.eurpolymj.2022.111063
  • Hashimoto S, Nagoshi N, Nakamura M, Okano H. Regenerative medicine strategies for chronic complete spinal cord injury. Neural Regen Res. 2024;19(4):818–824. doi:10.4103/1673-5374.382230
  • Haeri N, Hashamdar S, Hamblin MR, Ranezani F. Effects of electrospun nanofibers on motor function recovery after spinal cord injury; a systematic review and meta-analysis. World Neurosurg. 2023. doi:10.1016/j.wneu.2023.10.065
  • Li X, Liu D, Xiao Z, et al Scaffold-facilitated locomotor improvement post complete spinal cord injury: motor axon regeneration versus endogenous neuronal relay formation. Biomaterials. 2019;197:20–31. doi:10.1016/j.biomaterials.2019.01.012