222
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Sensitization Strategies of Lateral Flow Immunochromatography for Gold Modified Nanomaterials in Biosensor Development

, , , , , & show all
Pages 7847-7863 | Received 15 Sep 2023, Accepted 28 Nov 2023, Published online: 20 Dec 2023

References

  • Liu D, Wang J, Wu L, et al. Trends in miniaturized biosensors for point-of-care testing. Trends Anal Chem. 2020;2020:122.
  • Shrivastava S, Trung TQ, Lee NE. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem Soc Rev. 2020;49(6):1812–1866. doi:10.1039/c9cs00319c
  • Liu D, Zhang Y, Zhu M, et al. Microfluidic-integrated multicolor immunosensor for visual detection of HIV-1 p24 antigen with the naked eye. Anal Chem. 2020;92(17):11826–11833. doi:10.1021/acs.analchem.0c02091
  • Li F, You M, Li S, et al. Paper-based point-of-care immunoassays: recent advances and emerging trends. Biotechnol Adv. 2020;39:107442. doi:10.1016/j.biotechadv.2019.107442
  • Vidotti M, Carvalhal RF, Mendes RK, Ferreirab DCM, Kubota LT. Biosensors based on gold nanostructures. I Brazil Chem Soc. 2011;22(1):3–20. doi:10.1590/S0103-50532011000100002
  • Li Y, Zhou Y, Chen X, Huang X, Xiong Y. Comparison of three sample addition methods in competitive and sandwich colloidal gold immunochromatographic assay. Anal Chim Acta. 2020;1094:90–98. doi:10.1016/j.aca.2019.09.079
  • Mirica AC, Stan D, Chelcea IC, Mihailescu CM, Ofiteru A, Bocancia-Mateescu LA. Latest trends in lateral flow immunoassay (LFIA) detection labels and conjugation process. Front Bioeng Biotechnol. 2022;10:922772. doi:10.3389/fbioe.2022.922772
  • Huang X, Aguilar ZP, Xu H, Lai W, Xiong Y. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: a review. Biosens Bioelectron. 2016;75:166–180. doi:10.1016/j.bios.2015.08.032
  • Tanaka R, Yuhi T, Nagatani N, et al. A novel enhancement assay for immunochromatographic test strips using gold nanoparticles. Anal Bioanal Chem. 2006;385(8):1414–1420. doi:10.1007/s00216-006-0549-4
  • Huang SH. Gold nanoparticle-based immunochromatographic test for identification of Staphylococcus aureus from clinical specimens. Clin Chim Acta. 2006;373(1–2):139–143. doi:10.1016/j.cca.2006.05.026
  • Guo YR, Liu SY, Gui WJ, Zhu GN. Gold immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water samples. Anal Biochem. 2009;389(1):32–39. doi:10.1016/j.ab.2009.03.020
  • Cortie MB. The weird world of nanoscale gold. Gold Bulletin. 2004;37(1–2):12–19. doi:10.1007/BF03215512
  • Navya PN, Daima HK. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Converg. 2016;3(1):1. doi:10.1186/s40580-016-0064-z
  • Kamat PV. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B. 2002;106:7729–7744. doi:10.1021/jp0209289
  • Preechakasedkit P, Pinwattana K, Dungchai W, et al. Development of a one-step immunochromatographic strip test using gold nanoparticles for the rapid detection of Salmonella typhi in human serum. Biosens Bioelectron. 2012;31(1):562–566. doi:10.1016/j.bios.2011.10.031
  • Zhao Y, Zhang G, Liu Q, Teng M, Yang J, Wang J. Development of a lateral flow colloidal gold immunoassay strip for the rapid detection of enrofloxacin residues. J Agric Food Chem. 2008;56(24):12138–12142. doi:10.1021/jf802648z
  • Frohnmeyer E, Tuschel N, Sitz T, et al. Aptamer lateral flow assays for rapid and sensitive detection of cholera toxin. Analyst. 2019;144(5):1840–1849. doi:10.1039/C8AN01616J
  • Fu X, Xie R, Wang J, et al. Development of colloidal gold-based lateral flow immunoassay for rapid qualitative and semi quantitative analysis of ustiloxins A and B in rice samples. Toxins. 2017;9(3):79. doi:10.3390/toxins9030079
  • Wu S, Liu L, Duan N, Li Q, Zhou Y, Wang Z. Aptamer-based lateral flow test strip for rapid detection of zearalenone in corn samples. J Agric Food Chem. 2018;66(8):1949–1954. doi:10.1021/acs.jafc.7b05326
  • Singh J, Sharma S, Nara S. Evaluation of gold nanoparticle based lateral flow assays for diagnosis of enterobacteriaceae members in food and water. Food Chem. 2015;170:470–483. doi:10.1016/j.foodchem.2014.08.092
  • Choi DH, Lee SK, Oh YK, et al. A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosens Bioelectron. 2010;25(8):1999–2002. doi:10.1016/j.bios.2010.01.019
  • Guo J, Chen S, Guo J, Ma X. Nanomaterial labels in lateral flow immunoassays for point-of-care-testing. J Mater Sci Technol. 2021;60:90–104. doi:10.1016/j.jmst.2020.06.003
  • Jacobs JM, Adkins JN, Qian WJ, et al. Utilizing human blood plasma for proteomic biomarker discovery. J Proteome Res. 2005;4(4):1073–1085. doi:10.1021/pr0500657
  • Zhang D, Wang Z, Wang L, et al. High-performance identification of human bladder cancer using a signal self-amplifiable photoacoustic nanoprobe. ACS Appl Mater Interfaces. 2018;10(34):28331–28339. doi:10.1021/acsami.8b08357
  • Link S, Wang ZL, El-Sayed MA. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B. 1999;103:3529–3533. doi:10.1021/jp990387w
  • Kim JE, Choi JH, Colas M, Kim DH, Lee H. Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications. Biosens Bioelectron. 2016;80:543–559. doi:10.1016/j.bios.2016.02.015
  • X-M M, Sun M, Lin Y, et al. Progress of visual biosensor based on gold nanoparticles. Chin J Anal Chem. 2018;46(1):1–10. doi:10.1016/S1872-2040(17)61061-2
  • Liu P, Han L, Wang F, Petrenko VA, Liu A. Gold nanoprobe functionalized with specific fusion protein selection from phage display and its application in rapid, selective and sensitive colorimetric biosensing of Staphylococcus aureus. Biosens Bioelectron. 2016;82:195–203. doi:10.1016/j.bios.2016.03.075
  • Nehl CL, Liao H, Hafner JH. Optical properties of star-shaped gold nanoparticles. Nano Lett. 2006;6(4):683–688. doi:10.1021/nl052409y
  • Guerrero-Martínez A, Barbosa S, Pastoriza-Santos I, Liz-Marzán LM. Nanostars shine bright for you. Curr Opin Colloid Interface Sci. 2011;16(2):118–127. doi:10.1016/j.cocis.2010.12.007
  • Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P. Gold nanorods: synthesis, characterization and applications. Coord Chem Rev. 2005;249(17–18):1870–1901. doi:10.1016/j.ccr.2005.01.030
  • Bai Y, Gao C, Yin Y. Fully alloyed Ag/Au nanorods with tunable surface plasmon resonance and high chemical stability. Nanoscale. 2017;9(39):14875–14880. doi:10.1039/C7NR06002E
  • Xu S, Ouyang W, Xie P, et al. Highly uniform gold nanobipyramids for ultrasensitive colorimetric detection of influenza virus. Anal Chem. 2017;89(3):1617–1623. doi:10.1021/acs.analchem.6b03711
  • Wu M, Wu Y, Liu C, et al. Development and comparison of immunochromatographic strips with four nanomaterial labels: colloidal gold, new colloidal gold, multi-branched gold nanoflowers and Luminol-reduced Au nanoparticles for visual detection of Vibrio parahaemolyticus in seafood. Aquaculture. 2021;2021:539.
  • Li N, Zhao P, Astruc D. Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew Chem Int Ed Engl. 2014;53(7):1756–1789. doi:10.1002/anie.201300441
  • Dondapati SK, Sau TK, Hrelescu C, Klar TA, Stefani FD, Feldmann J. Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano. 2010;4(11):6318–6322. doi:10.1021/nn100760f
  • Hao F, Nehl CL, Hafner JH, Nordlander P. Plasmon resonances of a gold nanostar. Nano Lett. 2007;7(3):729–732. doi:10.1021/nl062969c
  • Truong PL, Kim BW, Sim SJ. Rational aspect ratio and suitable antibody coverage of gold nanorod for ultra-sensitive detection of a cancer biomarker. Lab Chip. 2012;12(6):1102–1109. doi:10.1039/c2lc20588b
  • Xie JP, Zhang QB, Lee JY, Wang DI. The synthesis of SERS-active gold nanoflower tags for in vivo applications. ACS nano. 2008;2(12):2473–2480. doi:10.1021/nn800442q
  • Li J, Wu J, Zhang X, et al. Controllable synthesis of stable urchin-like gold nanoparticles using hydroquinone to tune the reactivity of gold chloride. J Phy Chem C. 2011;115(9):3630–3637. doi:10.1021/jp1119074
  • Ji Y, Ren M, Li Y, et al. Detection of aflatoxin B(1) with immunochromatographic test strips: enhanced signal sensitivity using gold nanoflowers. Talanta. 2015;142:206–212. doi:10.1016/j.talanta.2015.04.048
  • Ren W, Huang Z, Xu Y, Li Y, Ji Y, Su B. Urchin-like gold nanoparticle-based immunochromatographic strip test for rapid detection of fumonisin B1 in grains. Anal Bioanal Chem. 2015;407(24):7341–7348. doi:10.1007/s00216-015-8896-7
  • Zhang W, Duan H, Chen R, et al. Effect of different-sized gold nanoflowers on the detection performance of immunochromatographic assay for human chorionic gonadotropin detection. Talanta. 2019;194:604–610. doi:10.1016/j.talanta.2018.10.080
  • Zhou Y, Chen Y, Liu W, et al. Development of a rapid and sensitive quantum dot nanobead-based double-antigen sandwich lateral flow immunoassay and its clinical performance for the detection of SARS-CoV-2 total antibodies. Sens Actuators B Chem. 2021;343:130139. doi:10.1016/j.snb.2021.130139
  • Chen H, Shao L, Li Q, Wang J. Gold nanorods and their plasmonic properties. Chem Soc Rev. 2013;42(7):2679–2724. doi:10.1039/c2cs35367a
  • Pang R, Zhu Q, Wei J, et al. Development of a gold-nanorod-based lateral flow immunoassay for a fast and dual-modal detection of C-reactive protein in clinical plasma samples. RSC Adv. 2021;11(45):28388–28394. doi:10.1039/D1RA04404D
  • Pan M, Ma T, Yang J, Li S, Liu S, Wang S. Development of lateral flow immunochromatographic assays using colloidal au sphere and nanorods as signal marker for the determination of zearalenone in cereals. Foods. 2020;9(3). doi:10.3390/foods9030281
  • Yu Q, Zhang J, Qiu W, et al. Gold nanorods-based lateral flow biosensors for sensitive detection of nucleic acids. Mikrochim Acta. 2021;188(4):133. doi:10.1007/s00604-021-04788-z
  • Tao Y, Yang J, Chen L, et al. Dialysis assisted ligand exchange on gold nanorods: amplification of the performance of a lateral flow immunoassay for E. coli O157:H7. Mikrochim Acta. 2018;185(7):350. doi:10.1007/s00604-018-2897-0
  • Tao Y, Luo F, Lin Y, Dong N, Li C, Lin Z. Quantitative gold nanorods based photothermal biosensor for glucose using a thermometer as readout. Talanta. 2021;230:122364. doi:10.1016/j.talanta.2021.122364
  • Bu T, Jia P, Sun X, Liu Y, Wang Q, Wang L. Hierarchical molybdenum disulfide nanosheets based lateral flow immunoassay for highly sensitive detection of tetracycline in food samples. Sensors and Actuat B Chem. 2020;2020:320.
  • Su L, Wang L, Yao X, et al. Small size nanoparticles-Co(3)O(4) based lateral flow immunoassay biosensor for highly sensitive and rapid detection of furazolidone. Talanta. 2020;211:120729. doi:10.1016/j.talanta.2020.120729
  • Huang Q, Bu T, Zhang W, et al. An improved clenbuterol detection by immunochromatographic assay with bacteria@Au composite as signal amplifier. Food Chem. 2018;262:48–55. doi:10.1016/j.foodchem.2018.04.085
  • Yuan J, Chen X, Duan H, et al. Gold nanoparticle-decorated metal organic frameworks on immunochromatographic assay for human chorionic gonadotropin detection. Mikrochim Acta. 2020;187(12):640. doi:10.1007/s00604-020-04617-9
  • Yao X, Wang Z, Zhao M, et al. Graphite-like carbon nitride-laden gold nanoparticles as signal amplification label for highly sensitive lateral flow immunoassay of 17beta-estradiol. Food Chem. 2021;347:129001. doi:10.1016/j.foodchem.2021.129001
  • Hao L, Chen J, Chen X, et al. A novel magneto-gold nanohybrid-enhanced lateral flow immunoassay for ultrasensitive and rapid detection of ochratoxin A in grape juice. Food Chem. 2021;336:127710. doi:10.1016/j.foodchem.2020.127710
  • Zhang M, Bu T, Bai F, et al. Gold nanoparticles-functionalized three-dimensional flower-like manganese dioxide: a high-sensitivity thermal analysis immunochromatographic sensor. Food Chem. 2021;341(Pt 1):128231. doi:10.1016/j.foodchem.2020.128231
  • Liu X, Yang J, Li Q, et al. A strip test for the optical determination of influenza virus H3 subtype using gold nanoparticle coated polystyrene latex microspheres. Mikrochim Acta. 2020;187(5):306. doi:10.1007/s00604-020-04255-1
  • Chen M, Yu Z, Liu D, et al. Dual gold nanoparticle lateflow immunoassay for sensitive detection of Escherichia coli O157:H7. Anal Chim Acta. 2015;876:71–76. doi:10.1016/j.aca.2015.03.023
  • Yan L, Dou L, Bu T, et al. Highly sensitive furazolidone monitoring in milk by a signal amplified lateral flow assay based on magnetite nanoparticles labeled dual-probe. Food Chem. 2018;261:131–138. doi:10.1016/j.foodchem.2018.04.016
  • Fang Q, Wang L, Cheng Q, et al. A bare-eye based one-step signal amplified semiquantitative immunochromatographic assay for the detection of imidacloprid in Chinese cabbage samples. Anal Chim Acta. 2015;881:82–89. doi:10.1016/j.aca.2015.04.047
  • Prodan E, Radloff C, Halas NJ, Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science. 2003;302(5644):419–422. doi:10.1126/science.1089171
  • Su L, Wang L, Xu J, et al. Competitive lateral flow immunoassay relying on Au-SiO(2) janus nanoparticles with an asymmetric structure and function for furazolidone residue monitoring. J Agric Food Chem. 2021;69(1):511–519. doi:10.1021/acs.jafc.0c06016
  • Preechakasedkit P, Osada K, Katayama Y, et al. Gold nanoparticle core-europium(iii) chelate fluorophore-doped silica shell hybrid nanocomposites for the lateral flow immunoassay of human thyroid stimulating hormone with a dual signal readout. Analyst. 2018;143(2):564–570. doi:10.1039/C7AN01799E
  • Jia X, Wang K, Li X, et al. Highly sensitive detection of three protein toxins via SERS-lateral flow immunoassay based on SiO(2)@Au nanoparticles. Nanomedicine. 2022;41:102522. doi:10.1016/j.nano.2022.102522
  • Yang H, He Q, Lin M, et al. Multifunctional Au@Pt@Ag NPs with color-photothermal-Raman properties for multimodal lateral flow immunoassay. J Hazard Mater. 2022;435:129082. doi:10.1016/j.jhazmat.2022.129082
  • Huang X, Chen L, Zhi W, et al. Urchin-Shaped Au-Ag@Pt sensor integrated lateral flow immunoassay for multimodal detection and specific discrimination of clinical multiple bacterial infections. Anal Chem. 2023;95:13101–13112. doi:10.1021/acs.analchem.3c01631
  • Peng T, Jiao X, Liang Z, et al. Lateral flow immunoassay coupled with copper enhancement for rapid and sensitive SARS-CoV-2 nucleocapsid protein detection. Biosensors. 2021;12(1). doi:10.3390/bios12010013
  • Gupta Y, Ghrera AS. Recent advances in gold nanoparticle-based lateral flow immunoassay for the detection of bacterial infection. Arch Microbiol. 2021;203(7):3767–3784. doi:10.1007/s00203-021-02357-9
  • Moyano A, Serrano-Pertierra E, Salvador M, Martinez-Garcia JC, Rivas M, Blanco-Lopez MC. Magnetic lateral flow immunoassays. Diagnostics. 2020;10(5). doi:10.3390/diagnostics10050288
  • Razo SC, Panferov VG, Safenkova IV, Varitsev YA, Zherdev AV, Dzantiev BB. Double-enhanced lateral flow immunoassay for potato virus X based on a combination of magnetic and gold nanoparticles. Anal Chim Acta. 2018;1007:50–60. doi:10.1016/j.aca.2017.12.023
  • Zhang G, Deng S, Fang B, et al. Lateral flow immunoassay based on polydopamine-coated metal-organic framework for the visual detection of enrofloxacin in milk. Anal Bioanal Chem. 2022;414(24):7315–7323. doi:10.1007/s00216-022-04283-1
  • Ojeda I, Barrejon M, Arellano LM, et al. Grafted-double walled carbon nanotubes as electrochemical platforms for immobilization of antibodies using a metallic-complex chelating polymer: application to the determination of adiponectin cytokine in serum. Biosens Bioelectron. 2015;74:24–29. doi:10.1016/j.bios.2015.06.001
  • Song M, Zhang Y, Li S, et al. A sensitive and rapid immunoassay for Mycoplasma pneumoniae in children with pneumonia based on single-walled carbon nanotubes. Sci Rep. 2017;7(1):16442. doi:10.1038/s41598-017-16652-3
  • Jia X, Song T, Liu Y, Meng L, Mao X. An immunochromatographic assay for carcinoembryonic antigen on cotton thread using a composite of carbon nanotubes and gold nanoparticles as reporters. Anal Chim Acta. 2017;969:57–62. doi:10.1016/j.aca.2017.02.040
  • Xu H, Chen J, Birrenkott J, et al. Gold-nanoparticle-decorated silica nanorods for sensitive visual detection of proteins. Anal Chem. 2014;86(15):7351–7359. doi:10.1021/ac502249f
  • Yu Q, Li H, Li C, Zhang S, Shen J, Wang Z. Gold nanoparticles-based lateral flow immunoassay with silver staining for simultaneous detection of fumonisin B1 and deoxynivalenol. Food Control. 2015;54:347–352. doi:10.1016/j.foodcont.2015.02.019
  • Liao J-Y, Li H. Lateral flow immunodipstick for visual detection of aflatoxin B1 in food using immuno-nanoparticles composed of a silver core and a gold shell. Microchimica Acta. 2010;1713–4.
  • Deng D, Yang H, Liu C, Zhao K, Li J, Deng A. Ultrasensitive detection of Sudan I in food samples by a quantitative immunochromatographic assay. Food Chem. 2019;277:595–603. doi:10.1016/j.foodchem.2018.10.129
  • Kim HM, Kim J, An J, et al. Au-Ag assembled on silica nanoprobes for visual semiquantitative detection of prostate-specific antigen. J Nanobiotechnology. 2021;19(1):73. doi:10.1186/s12951-021-00817-4
  • Hwang J, Kwon D, Lee S, Jeon S. Detection of Salmonella bacteria in milk using gold-coated magnetic nanoparticle clusters and lateral flow filters. RSC Advances. 2016;6(54):48445–48448. doi:10.1039/C6RA05446C
  • Bao J, Chen W, Liu T, et al. Bifunctional Au-Fe3O4 nanoparticles for protein separation. ACS Nano. 2007;1(4):293–298. doi:10.1021/nn700189h
  • Huang J, Xie Z, Xie L, et al. Au/Fe(3)O(4) core-shell nanoparticles are an efficient immunochromatography test strip performance enhancer-a comparative study with Au and Fe(3)O(4) nanoparticles. RSC Adv. 2018;8(25):14064–14071. doi:10.1039/C8RA00185E
  • Karamipour S, Sadjadi MS, Farhadyar N. Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core-shell for targeted drug delivery application. Spectrochim Acta A Mol Biomol Spectrosc. 2015;148:146–155. doi:10.1016/j.saa.2015.03.078
  • Tang D, Sauceda JC, Lin Z, et al. Magnetic nanogold microspheres-based lateral-flow immunodipstick for rapid detection of aflatoxin B2 in food. Biosens Bioelectron. 2009;25(2):514–518. doi:10.1016/j.bios.2009.07.030
  • Li X, Zhang Q, Hou P, et al. Gold magnetic nanoparticle conjugate-based lateral flow assay for the detection of IgM class antibodies related to TORCH infections. Int J Mol Med. 2015;36(5):1319–1326. doi:10.3892/ijmm.2015.2333
  • Yang D, Ma J, Zhang Q, et al. Polyelectrolyte-coated gold magnetic nanoparticles for immunoassay development: toward point of care diagnostics for syphilis screening. Anal Chem. 2013;85(14):6688–6695. doi:10.1021/ac400517e
  • Shao Y, Xu W, Zheng Y, et al. Controlled PAH-mediated method with enhanced optical properties for simple, stable immunochromatographic assays. Biosens Bioelectron. 2022;206:114150. doi:10.1016/j.bios.2022.114150
  • Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W. Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev. 2019;48(14):3683–3704. doi:10.1039/C8CS00718G
  • Panferov VG, Safenkova IV, Zherdev AV, Dzantiev BB. The steadfast Au@Pt soldier: peroxide-tolerant nanozyme for signal enhancement in lateral flow immunoassay of peroxidase-containing samples. Talanta. 2021;225:121961. doi:10.1016/j.talanta.2020.121961
  • Yang H, He Q, Chen Y, et al. Platinum nanoflowers with peroxidase-like property in a dual immunoassay for dehydroepiandrosterone. Mikrochim Acta. 2020;187(11):592. doi:10.1007/s00604-020-04528-9
  • Gao Z, Ye H, Tang D, et al. Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett. 2017;17(9):5572–5579. doi:10.1021/acs.nanolett.7b02385
  • Panferov VG, Byzova NA, Zherdev AV, Dzantiev BB. Peroxidase-mimicking nanozyme with surface-dispersed Pt atoms for the colorimetric lateral flow immunoassay of C-reactive protein. Mikrochim Acta. 2021;188(9):309. doi:10.1007/s00604-021-04968-x
  • Bai T, Wang L, Wang M, et al. Strategic synthesis of trimetallic Au@Ag-Pt nanorattles for ultrasensitive colorimetric detection in lateral flow immunoassay. Biosens Bioelectron. 2022;208:114218. doi:10.1016/j.bios.2022.114218
  • Fu Z, Zeng W, Cai S, et al. Porous Au@Pt nanoparticles with superior peroxidase-like activity for colorimetric detection of spike protein of SARS-CoV-2. J Colloid Interface Sci. 2021;604:113–121. doi:10.1016/j.jcis.2021.06.170
  • Lin LS, Cong ZX, Cao JB, et al. Multifunctional Fe3O4@Polydopamine core–shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano. 2014;8:3876–3883.
  • Liu M, Jiang W, Chen Q, et al. A facile one-step method to synthesize SiO2@polydopamine core–shell nanospheres for shear thickening fluid. RSC Advances. 2016;6(35):29279–29287. doi:10.1039/C5RA25759J
  • Xu S, Zhang G, Fang B, Xiong Q, Duan H, Lai W. Lateral flow immunoassay based on polydopamine-coated gold nanoparticles for the sensitive detection of zearalenone in maize. ACS Appl Mater Interfaces. 2019;11(34):31283–31290. doi:10.1021/acsami.9b08789
  • Guo H, Zheng Z, Zhang Y, Lin H, Xu Q. Highly selective detection of Pb2+ by a nanoscale Ni-based metal–organic framework fabricated through one-pot hydrothermal reaction. Sensors and Actuat B Chem. 2017;248:430–436. doi:10.1016/j.snb.2017.03.147
  • Elsaidi SK, Mohamed MH, Banerjee D, Thallapally PK. Flexibility in Metal–Organic Frameworks: a fundamental understanding. Coord Chem Rev. 2018;358:125–152. doi:10.1016/j.ccr.2017.11.022
  • Huang X, He Z, Guo D, et al. “Three-in-one” nanohybrids as synergistic nanoquenchers to enhance no-wash fluorescence biosensors for ratiometric detection of cancer biomarkers. Theranostics. 2018;8(13):3461–3473. doi:10.7150/thno.25179
  • Choi JR, Tang R, Wang S, Wan Abas WA, Pingguan-Murphy B, Xu F. Paper-based sample-to-answer molecular diagnostic platform for point-of-care diagnostics. Biosens Bioelectron. 2015;74:427–439. doi:10.1016/j.bios.2015.06.065
  • Ge X, Asiri AM, Du D, Wen W, Wang S, Lin Y. Nanomaterial-enhanced paper-based biosensors. TrAC Trends Anal Chem. 2014;58:31–39. doi:10.1016/j.trac.2014.03.008
  • Parolo C, Merkoci A. Paper-based nanobiosensors for diagnostics. Chem Soc Rev. 2013;42(2):450–457. doi:10.1039/C2CS35255A
  • Martinez AW, Phillips ST, Carrilho E, Thomas SW, Sindi H, Whitesides GM. Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem. 2008;80(10):3699–3707. doi:10.1021/ac800112r
  • Yang Q, Gong X, Song T, et al. Quantum dot-based immunochromatography test strip for rapid, quantitative and sensitive detection of alpha fetoprotein. Biosens Bioelectron. 2011;30(1):145–150. doi:10.1016/j.bios.2011.09.002
  • Fu G, Sanjay ST, Dou M, Li X. Nanoparticle-mediated photothermal effect enables a new method for quantitative biochemical analysis using a thermometer. Nanoscale. 2016;8(10):5422–5427. doi:10.1039/C5NR09051B
  • Fu G, Sanjay ST, Zhou W, Brekken RA, Kirken RA, Li X. Exploration of nanoparticle-mediated photothermal effect of TMB-H(2)O(2) colorimetric system and its application in a visual quantitative photothermal immunoassay. Anal Chem. 2018;90(9):5930–5937. doi:10.1021/acs.analchem.8b00842
  • Zhang JJ, Duan XH, Wu Y, Yang JC, Guo LN. Transition-metal free C-C bond cleavage/borylation of cycloketone oxime esters. Chem Sci. 2019;10(1):161–166. doi:10.1039/C8SC03315C
  • Tao Y, Luo F, Guo L, Qiu B, Lin Z. Target-triggered aggregation of gold nanoparticles for photothermal quantitative detection of adenosine using a thermometer as readout. Anal. Chim. Acta. 2020;1110:151–157. doi:10.1016/j.aca.2020.03.023
  • Zhou W, Hu K, Kwee S, et al. Gold nanoparticle aggregation-induced quantitative photothermal biosensing using a thermometer: a simple and universal biosensing platform. Anal Chem. 2020;92(3):2739–2747. doi:10.1021/acs.analchem.9b04996
  • Su LH, Chen YQ, Wang LL, et al. Dual-signal based immunoassay for colorimetric and photothermal detection of furazolidone. Sens Actuators B Chem. 2021;2021:331.
  • Wang R, Kim K, Choi N, et al. Highly sensitive detection of high-risk bacterial pathogens using SERS-based lateral flow assay strips. Sensors and Actuat B Chem. 2018;270:72–79. doi:10.1016/j.snb.2018.04.162
  • Sheng E, Lu Y, Xiao Y, Li Z, Wang H, Dai Z. Simultaneous and ultrasensitive detection of three pesticides using a surface-enhanced Raman scattering-based lateral flow assay test strip. Biosens Bioelectron. 2021;181:113149. doi:10.1016/j.bios.2021.113149
  • Li Y, Tang S, Zhang W, et al. A surface-enhanced Raman scattering-based lateral flow immunosensor for colistin in raw milk. Sensors and Actuat B Chem. 2019;282:703–711. doi:10.1016/j.snb.2018.11.050
  • Lin LK, Stanciu LA. Bisphenol A detection using gold nanostars in a SERS improved lateral flow immunochromatographic assay. Sens Actuators B Chem. 2018;276:222–229. doi:10.1016/j.snb.2018.08.068
  • Peng T, Wang J, Zhao S, et al. Highly luminescent green-emitting Au nanocluster-based multiplex lateral flow immunoassay for ultrasensitive detection of clenbuterol and ractopamine. Anal Chim Acta. 2018;1040:143–149. doi:10.1016/j.aca.2018.08.014
  • Zheng P, Peng T, Wang J, et al. Fluorescent lateral flow immunoassay based on gold nanocluster for detection of pyrrolizidine alkaloids. Mikrochim Acta. 2021;188(1):11. doi:10.1007/s00604-020-04672-2
  • Deng -H-H, Shi X-Q, Wang -F-F, et al. Fabrication of water-soluble, green-emitting gold nanoclusters with a 65% photoluminescence quantum yield via host–guest recognition. Chem Mater. 2017;29(3):1362–1369. doi:10.1021/acs.chemmater.6b05141
  • Liu Y, Zhang Z, Wang Y, et al. A highly sensitive and flexible magnetic nanoprobe labeled immunochromatographic assay platform for pathogen Vibrio parahaemolyticus. Int J Food Microbiol. 2015;211:109–116. doi:10.1016/j.ijfoodmicro.2015.07.005
  • Wang Y, Xu H, Wei M, Gu H, Xu Q, Zhu W. Study of superparamagnetic nanoparticles as labels in the quantitative lateral flow immunoassay. Mater Sci Eng C. 2009;29(3):714–718. doi:10.1016/j.msec.2009.01.011