264
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

How Advancing is Peripheral Nerve Regeneration Using Nanofiber Scaffolds? A Comprehensive Review of the Literature

, & ORCID Icon
Pages 6763-6779 | Received 24 Aug 2023, Accepted 02 Nov 2023, Published online: 15 Nov 2023

References

  • Mahar M, Cavalli V. Intrinsic mechanisms of neuronal axon regeneration. Nat Rev Neurosci. 2018;19(6):323–337. doi:10.1038/s41583-018-0001-8
  • Pryce KD, Serafini RA, Ramakrishnan A, et al. Oxycodone withdrawal induces HDAC1/HDAC2-dependent transcriptional maladaptations in the reward pathway in a mouse model of peripheral nerve injury. Nat Neurosci. 2023;26(7):1229–1244. doi:10.1038/s41593-023-01350-3
  • Nagappan PG, Chen H, Wang DY. Neuroregeneration and plasticity: a review of the physiological mechanisms for achieving functional recovery postinjury. Mil Med Res. 2020;7(1):30. doi:10.1186/s40779-020-00259-3
  • Davies AJ, Kim HW, Gonzalez-Cano R, et al. Natural killer cells degenerate intact sensory afferents following nerve injury. Cell. 2019;176(4):716–28 e18. doi:10.1016/j.cell.2018.12.022
  • Ydens E, Amann L, Asselbergh B, et al. Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury. Nat Neurosci. 2020;23(5):676–689. doi:10.1038/s41593-020-0618-6
  • Welberg L. Commensals boost nerve regeneration. Nat Neurosci. 2023;26(2):175. doi:10.1038/s41593-023-01263-1
  • Jiang BC, Ding TY, Guo CY, et al. NFAT1 orchestrates spinal microglial transcription and promotes microglial proliferation via c-MYC contributing to nerve injury-induced neuropathic pain. Adv Sci. 2022;9(27):e2201300. doi:10.1002/advs.202201300
  • Li X, Zhang T, Li C, et al. Electrical stimulation accelerates Wallerian degeneration and promotes nerve regeneration after sciatic nerve injury. Glia. 2023;71(3):758–774. doi:10.1002/glia.24309
  • Al-Hadeethi Y, Nagarajan A, Hanuman S, et al. Schwann cell-matrix coated PCL-MWCNT multifunctional nanofibrous scaffolds for neural regeneration. RSC Adv. 2023;13(2):1392–1401. doi:10.1039/D2RA05368C
  • Rhode SC, Beier JP, Ruhl T. Adipose tissue stem cells in peripheral nerve regeneration-In vitro and in vivo. J Neurosci Res. 2021;99(2):545–560. doi:10.1002/jnr.24738
  • Jin F, Li T, Yuan T, et al. Physiologically self-regulated, fully implantable, battery-free system for peripheral nerve restoration. Adv Mater. 2021;33(48):e2104175. doi:10.1002/adma.202104175
  • Scheib J, Hoke A. Advances in peripheral nerve regeneration. Nat Rev Neurol. 2013;9(12):668–676. doi:10.1038/nrneurol.2013.227
  • Zhang M, An H, Gu Z, et al. Mimosa-inspired stimuli-responsive curling bioadhesive tape promotes peripheral nerve regeneration. Adv Mater. 2023;35:32.
  • Dong X, Yang Y, Bao Z, et al. Micro-nanofiber composite biomimetic conduits promote long-gap peripheral nerve regeneration in canine models. Bioact Mater. 2023;30:98–115. doi:10.1016/j.bioactmat.2023.06.015
  • Jia Y, Yang W, Zhang K, et al. Nanofiber arrangement regulates peripheral nerve regeneration through differential modulation of macrophage phenotypes. Acta Biomater. 2019;83:291–301. doi:10.1016/j.actbio.2018.10.040
  • Wang J, Cheng Y, Chen L, et al. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomater. 2019;84:98–113. doi:10.1016/j.actbio.2018.11.032
  • Zheng C, Yang Z, Chen S, et al. Nanofibrous nerve guidance conduits decorated with decellularized matrix hydrogel facilitate peripheral nerve injury repair. Theranostics. 2021;11(6):2917–2931. doi:10.7150/thno.50825
  • Achenbach P, Hambeukers I, Pierling AL, et al. A novel in vitro assay for peripheral nerve-related cell migration that preserves both extracellular matrix-derived molecular cues and nanofiber-derived topography. J Neurosci Methods. 2021;361:109289. doi:10.1016/j.jneumeth.2021.109289
  • Chang YC, Chen MH, Liao SY, et al. Multichanneled nerve guidance conduit with spatial gradients of neurotrophic factors and oriented nanotopography for repairing the peripheral nervous system. ACS Appl Mater Interfaces. 2017;9(43):37623–37636. doi:10.1021/acsami.7b12567
  • Wang J, Xiong H, Zhu T, et al. Bioinspired multichannel nerve guidance conduit based on shape memory nanofibers for potential application in peripheral nerve repair. ACS Nano. 2020;14(10):12579–12595. doi:10.1021/acsnano.0c03570
  • Rao F, Wang Y, Zhang D, et al. Aligned chitosan nanofiber hydrogel grafted with peptides mimicking bioactive brain-derived neurotrophic factor and vascular endothelial growth factor repair long-distance sciatic nerve defects in rats. Theranostics. 2020;10(4):1590–1603. doi:10.7150/thno.36272
  • Yen CM, Shen CC, Yang YC, et al. Novel electrospun poly(epsilon-caprolactone)/type I collagen nanofiber conduits for repair of peripheral nerve injury. Neural Regen Res. 2019;14(9):1617–1625. doi:10.4103/1673-5374.255997
  • Zhou ZF, Zhang F, Wang JG, et al. Electrospinning of PELA/PPY fibrous conduits: promoting peripheral nerve regeneration in rats by self-originated electrical stimulation. ACS Biomater Sci Eng. 2016;2(9):1572–1581. doi:10.1021/acsbiomaterials.6b00335
  • Gnavi S, Fornasari BE, Tonda-Turo C, et al. The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth. Mater Sci Eng C Mater Biol Appl. 2015;48:620–631. doi:10.1016/j.msec.2014.12.055
  • Huang C, Ouyang Y, Niu H, et al. Nerve guidance conduits from aligned nanofibers: improvement of nerve regeneration through longitudinal nanogrooves on a fiber surface. ACS Appl Mater Interfaces. 2015;7(13):7189–7196. doi:10.1021/am509227t
  • Chen L, Song X, Yao Z, et al. Gelatin nanofiber-reinforced decellularized amniotic membrane promotes axon regeneration and functional recovery in the surgical treatment of peripheral nerve injury. Biomaterials. 2023;300:122207. doi:10.1016/j.biomaterials.2023.122207
  • Solomevich SO, Oranges CM, Kalbermatten DF, Schwendeman A, Madduri S. Natural polysaccharides and their derivatives as potential medical materials and drug delivery systems for the treatment of peripheral nerve injuries. Carbohydr Polym. 2023;315:120934. doi:10.1016/j.carbpol.2023.120934
  • Biazar E, Khorasani MT, Montazeri N, et al. Types of neural guides and using nanotechnology for peripheral nerve reconstruction. Int J Nanomedicine. 2010;5:839–852. doi:10.2147/IJN.S11883
  • Jin J, Limburg S, Joshi SK, et al. Peripheral nerve repair in rats using composite hydrogel-filled aligned nanofiber conduits with incorporated nerve growth factor. Tissue Eng Part A. 2013;19(19–20):2138–2146. doi:10.1089/ten.tea.2012.0575
  • Nune M, Krishnan UM, Sethuraman S. PLGA nanofibers blended with designer self-assembling peptides for peripheral neural regeneration. Mater Sci Eng C Mater Biol Appl. 2016;62:329–337. doi:10.1016/j.msec.2016.01.057
  • Debski T, Kijenska-Gawronska E, Zolocinska A, et al. Bioactive nanofiber-based conduits in a peripheral nerve gap management-an animal model study. Int J Mol Sci. 2021;22(11). doi:10.3390/ijms22115588
  • Du J, Liu J, Yao S, et al. Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. Acta Biomater. 2017;55:296–309. doi:10.1016/j.actbio.2017.04.010
  • Samadian H, Ehterami A, Sarrafzadeh A, et al. Sophisticated polycaprolactone/gelatin nanofibrous nerve guided conduit containing platelet-rich plasma and citicoline for peripheral nerve regeneration: in vitro and in vivo study. Int J Biol Macromol. 2020;150:380–388. doi:10.1016/j.ijbiomac.2020.02.102
  • Xie J, Macewan MR, Schwartz AG, Xia Y. Electrospun nanofibers for neural tissue engineering. Nanoscale. 2010;2(1):35–44. doi:10.1039/B9NR00243J
  • Entekhabi E, Haghbin Nazarpak M, Shafieian M, Mohammadi H, Firouzi M, Hassannejad Z. Fabrication and in vitro evaluation of 3D composite scaffold based on collagen/hyaluronic acid sponge and electrospun polycaprolactone nanofibers for peripheral nerve regeneration. J Biomed Mater Res A. 2021;109(3):300–312. doi:10.1002/jbm.a.37023
  • Orkwis JA, Wolf AK, Shahid SM, Smith C, Esfandiari L, Harris GM. Development of a Piezoelectric PVDF-TrFE fibrous scaffold to guide cell adhesion, proliferation, and alignment. Macromol Biosci. 2020;20(9):e2000197. doi:10.1002/mabi.202000197
  • Chang B, Ma C, Liu X. Nanofibers regulate single bone marrow stem cell osteogenesis via FAK/RhoA/YAP1 pathway. ACS Appl Mater Interfaces. 2018;10(39):33022–33031. doi:10.1021/acsami.8b11449
  • Zhang RR, Chen SL, Cheng ZC, Shen YY, Yi S, Xu H. Characteristics of cytokines in the sciatic nerve stumps and DRGs after rat sciatic nerve crush injury. Mil Med Res. 2020;7(1):57. doi:10.1186/s40779-020-00286-0
  • Heidari M, Bahrami SH, Ranjbar-Mohammadi M, Milan PB. Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019;103:109768. doi:10.1016/j.msec.2019.109768
  • Jang CH, Lee H, Kim M, Kim G. Effect of polycaprolactone/collagen/hUCS microfiber nerve conduit on facial nerve regeneration. Int J Biol Macromol. 2016;93(Pt B):1575–1582. doi:10.1016/j.ijbiomac.2016.04.031
  • Manto KM, Govindappa PK, Martinazzi B, et al. Erythropoietin-PLGA-PEG as a local treatment to promote functional recovery and neurovascular regeneration after peripheral nerve injury. J Nanobiotechnology. 2022;20(1):461. doi:10.1186/s12951-022-01666-5
  • Mohseni M, SA AR, Shirazi FH, Nemati NH. Preparation and characterization of self-electrical stimuli conductive gellan based nano scaffold for nerve regeneration containing chopped short spun nanofibers of PVDF/MCM41 and polyaniline/graphene nanoparticles: physical, mechanical and morphological studies. Int J Biol Macromol. 2021;167:881–893. doi:10.1016/j.ijbiomac.2020.11.045
  • Li D, Pan X, Sun B, et al. Nerve conduits constructed by electrospun P(LLA-CL) nanofibers and PLLA nanofiber yarns. J Mater Chem B. 2015;3(45):8823–8831. doi:10.1039/C5TB01402F
  • Li P, Ruan L, Jiang G, et al. Design of 3D polycaprolactone/epsilon-polylysine-modified chitosan fibrous scaffolds with incorporation of bioactive factors for accelerating wound healing. Acta Biomater. 2022;152:197–209. doi:10.1016/j.actbio.2022.08.075
  • Mammadov B, Mammadov R, Guler MO, Tekinay AB. Cooperative effect of heparan sulfate and laminin mimetic peptide nanofibers on the promotion of neurite outgrowth. Acta Biomater. 2012;8(6):2077–2086. doi:10.1016/j.actbio.2012.02.006
  • Wang X, Salick MR, Wang X, et al. Poly(epsilon-caprolactone) nanofibers with a self-induced nanohybrid shish-kebab structure mimicking collagen fibrils. Biomacromolecules. 2013;14(10):3557–3569. doi:10.1021/bm400928b
  • Xie J, Shen H, Yuan G, Lin K, Su J. The effects of alignment and diameter of electrospun fibers on the cellular behaviors and osteogenesis of BMSCs. Mater Sci Eng C Mater Biol Appl. 2021;120:111787. doi:10.1016/j.msec.2020.111787
  • Ahmadi Z, Yadav S, Kar AK, et al. An injectable self-assembling hydrogel based on RGD peptidomimetic beta-sheets as multifunctional biomaterials. Biomater Adv. 2022;133:112633. doi:10.1016/j.msec.2021.112633
  • Fan L, Li JL, Cai Z, Wang X. Creating biomimetic anisotropic architectures with co-aligned nanofibers and macrochannels by manipulating ice crystallization. ACS Nano. 2018;12(6):5780–5790. doi:10.1021/acsnano.8b01648
  • Cristofaro F, Gigli M, Bloise N, et al. Influence of the nanofiber chemistry and orientation of biodegradable poly(butylene succinate)-based scaffolds on osteoblast differentiation for bone tissue regeneration. Nanoscale. 2018;10(18):8689–8703. doi:10.1039/C8NR00677F
  • Sun Q, Pei F, Zhang M, et al. Curved nanofiber network induces cellular bridge formation to promote stem cell mechanotransduction. Adv Sci. 2023;10(3).
  • Zhang K, Bai X, Yuan Z, et al. Cellular nanofiber structure with secretory activity-promoting characteristics for multicellular spheroid formation and hair follicle regeneration. ACS Appl Mater Interfaces. 2020;12(7):7931–7941. doi:10.1021/acsami.9b21125
  • Arioz I, Erol O, Bakan G, et al. Biocompatible electroactive tetra(aniline)-conjugated peptide nanofibers for neural differentiation. ACS Appl Mater Interfaces. 2018;10(1):308–317. doi:10.1021/acsami.7b16509
  • Guo B, Ma PX. Conducting polymers for tissue engineering. Biomacromolecules. 2018;19(6):1764–1782. doi:10.1021/acs.biomac.8b00276
  • Sun W, Taylor CS, Zhang Y, et al. Cell guidance on peptide micropatterned silk fibroin scaffolds. J Colloid Interface Sci. 2021;603:380–390. doi:10.1016/j.jcis.2021.06.086
  • Cao H, Liu T, Chew SY. The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev. 2009;61(12):1055–1064. doi:10.1016/j.addr.2009.07.009
  • Mukhatyar VJ, Salmeron-Sanchez M, Rudra S, et al. Role of fibronectin in topographical guidance of neurite extension on electrospun fibers. Biomaterials. 2011;32(16):3958–3968. doi:10.1016/j.biomaterials.2011.02.015
  • Achenbach P, Hillerbrand L, Gerardo-Nava JL, et al. Function follows form: oriented substrate nanotopography overrides neurite-repulsive Schwann cell-astrocyte barrier formation in an in vitro model of glial scarring. Nano Lett. 2023;23(14):6337–6346. doi:10.1021/acs.nanolett.3c00873
  • Kuppan P, Sethuraman S, Krishnan UM. Interaction of human smooth muscle cells with nanofibrous scaffolds: effect of fiber orientation on cell adhesion, proliferation, and functional gene expression. J Biomed Mater Res A. 2015;103(7):2236–2250. doi:10.1002/jbm.a.35360
  • Rao SS, Nelson MT, Xue R, et al. Mimicking white matter tract topography using core-shell electrospun nanofibers to examine migration of malignant brain tumors. Biomaterials. 2013;34(21):5181–5190. doi:10.1016/j.biomaterials.2013.03.069
  • Meng J, Han Z, Kong H, et al. Electrospun aligned nanofibrous composite of MWCNT/polyurethane to enhance vascular endothelium cells proliferation and function. J Biomed Mater Res A. 2010;95(1):312–320. doi:10.1002/jbm.a.32845
  • Li Y, Guo F, Hao Y, et al. Helical nanofiber yarn enabling highly stretchable engineered microtissue. Proc Natl Acad Sci U S A. 2019;116(19):9245–9250. doi:10.1073/pnas.1821617116
  • Liu J, Wei Q, Man K, et al. Nanofibrous membrane promotes and sustains vascular endothelial barrier function. ACS Appl Bio Mater. 2023. doi:10.1021/acsabm.3c00668
  • Lam HJ, Patel S, Wang A, Chu J, Li S. In vitro regulation of neural differentiation and axon growth by growth factors and bioactive nanofibers. Tissue Eng Part A. 2010;16(8):2641–2648. doi:10.1089/ten.tea.2009.0414
  • Li R, Li DH, Zhang HY, Wang J, Li XK, Xiao J. Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration. Acta Pharmacol Sin. 2020;41(10):1289–1300. doi:10.1038/s41401-019-0338-1
  • Zhou G, Chang W, Zhou X, et al. Nanofibrous nerve conduits with nerve growth factors and bone marrow stromal cells pre-cultured in bioreactors for peripheral nerve regeneration. ACS Appl Mater Interfaces. 2020;12(14):16168–16177. doi:10.1021/acsami.0c04191
  • Lu Q, Zhang F, Cheng W, et al. Nerve guidance conduits with hierarchical anisotropic architecture for peripheral nerve regeneration. Adv Healthc Mater. 2021;10(14):e2100427. doi:10.1002/adhm.202100427
  • Ding Z, Jiang M, Qian J, et al. Role of transforming growth factor-beta in peripheral nerve regeneration. Neural Regen Res. 2024;19(2):380–386. doi:10.4103/1673-5374.377588
  • Jin B, Yu Y, Lou C, et al. Combining a density gradient of biomacromolecular nanoparticles with biological effectors in an electrospun fiber-based nerve guidance conduit to promote peripheral nerve repair. Adv Sci. 2023;10:4.
  • Wang J, Liu Y, Lv M, et al. Regulation of nerve cells using conductive nanofibrous scaffolds for controlled release of Lycium barbarum polysaccharides and nerve growth factor. Regen Biomater. 2023;10:rbad038.
  • Fallah-Darrehchi M, Zahedi P, Safarian S, Ghaffari-Bohlouli P, Aeinehvand R. Conductive conduit based on electrospun poly (l-lactide-co-D, l-lactide) nanofibers containing 4-aminopyridine-loaded molecularly imprinted poly (methacrylic acid) nanoparticles used for peripheral nerve regeneration. Int J Biol Macromol. 2021;190:499–507. doi:10.1016/j.ijbiomac.2021.09.009
  • Bianchini M, Micera S, Redolfi Riva E. Recent advances in polymeric drug delivery systems for peripheral nerve regeneration. Pharmaceutics. 2023;15(2):640. doi:10.3390/pharmaceutics15020640
  • Kuihua Z, Chunyang W, Cunyi F, Xiumei M. Aligned SF/P(LLA-CL)-blended nanofibers encapsulating nerve growth factor for peripheral nerve regeneration. J Biomed Mater Res A. 2014;102(8):2680–2691. doi:10.1002/jbm.a.34922
  • Yang S, Wang C, Zhu J, et al. Self-assembling peptide hydrogels functionalized with LN- and BDNF- mimicking epitopes synergistically enhance peripheral nerve regeneration. Theranostics. 2020;10(18):8227–8249. doi:10.7150/thno.44276
  • Dong X, Liu S, Yang Y, et al. Aligned microfiber-induced macrophage polarization to guide Schwann-cell-enabled peripheral nerve regeneration. Biomaterials. 2021;272:120767. doi:10.1016/j.biomaterials.2021.120767
  • Fang Y, Wang C, Liu Z, et al. 3D printed conductive multiscale nerve guidance conduit with hierarchical fibers for peripheral nerve regeneration. Adv Sci. 2023;10:12.
  • Habibizadeh M, Nadri S, Fattahi A, et al. Surface modification of neurotrophin-3 loaded PCL/chitosan nanofiber/net by alginate hydrogel microlayer for enhanced biocompatibility in neural tissue engineering. J Biomed Mater Res A. 2021;109(11):2237–2254. doi:10.1002/jbm.a.37208
  • Lategan M, Kumar P, Choonara YE. Functionalizing nanofibrous platforms for neural tissue engineering applications. Drug Discov Today. 2022;27(5):1381–1403. doi:10.1016/j.drudis.2022.01.005
  • El-Seedi HR, Said NS, Yosri N, et al. Gelatin nanofibers: recent insights in synthesis, bio-medical applications and limitations. Heliyon. 2023;9(5):e16228. doi:10.1016/j.heliyon.2023.e16228
  • Zhang K, Zheng H, Liang S, Gao C. Aligned PLLA nanofibrous scaffolds coated with graphene oxide for promoting neural cell growth. Acta Biomater. 2016;37:131–142. doi:10.1016/j.actbio.2016.04.008
  • Hu F, Zhang X, Liu H, et al. Neuronally differentiated adipose-derived stem cells and aligned PHBV nanofiber nerve scaffolds promote sciatic nerve regeneration. Biochem Biophys Res Commun. 2017;489(2):171–178. doi:10.1016/j.bbrc.2017.05.119
  • Zhou JF, Wang YG, Cheng L, Wu Z, Sun XD, Peng J. Preparation of polypyrrole-embedded electrospun poly(lactic acid) nanofibrous scaffolds for nerve tissue engineering. Neural Regen Res. 2016;11(10):1644–1652. doi:10.4103/1673-5374.193245
  • Houshyar S, Pillai MM, Saha T, et al. Three-dimensional directional nerve guide conduits fabricated by dopamine-functionalized conductive carbon nanofibre-based nanocomposite ink printing. RSC Adv. 2020;10(66):40351–40364. doi:10.1039/D0RA06556K
  • Uz M, Buyukoz M, Sharma AD, Sakaguchi DS, Altinkaya SA, Mallapragada SK. Gelatin-based 3D conduits for transdifferentiation of mesenchymal stem cells into Schwann cell-like phenotypes. Acta Biomater. 2017;53:293–306. doi:10.1016/j.actbio.2017.02.018
  • Wu J, Xie L, Lin WZY, Chen Q. Biomimetic nanofibrous scaffolds for neural tissue engineering and drug development. Drug Discov Today. 2017;22(9):1375–1384. doi:10.1016/j.drudis.2017.03.007
  • Wang L, Wu Y, Hu T, Ma PX, Guo B. Aligned conductive core-shell biomimetic scaffolds based on nanofiber yarns/hydrogel for enhanced 3D neurite outgrowth alignment and elongation. Acta Biomater. 2019;96:175–187. doi:10.1016/j.actbio.2019.06.035
  • Ashraf R, Sofi HS, Beigh MA, Sheikh FA. Recent trends in peripheral nervous regeneration using 3D biomaterials. Tissue Cell. 2019;59:70–81. doi:10.1016/j.tice.2019.06.003
  • Sivolella S, Brunello G, Ferrarese N, et al. Nanostructured guidance for peripheral nerve injuries: a review with a perspective in the oral and maxillofacial area. Int J Mol Sci. 2014;15(2):3088–3117. doi:10.3390/ijms15023088
  • Meamar R, Chegini S, Varshosaz J, Aminorroaya A, Amini M, Siavosh M. Alleviating neuropathy of diabetic foot ulcer by co-delivery of venlafaxine and matrix metalloproteinase drug-loaded cellulose nanofiber sheets: production, in vitro characterization and clinical trial. Pharmacol Rep. 2021;73(3):806–819. doi:10.1007/s43440-021-00220-8
  • Alhosseini SN, Moztarzadeh F, Mozafari M, et al. Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int J Nanomedicine. 2012;7:25–34. doi:10.2147/IJN.S25376