81
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Gold Nanocage-Based Multifunctional Nanosensitizers for Programmed Photothermal /Radiation/Chemical Coordinated Therapy Guided by FL/MR/PA Multimodal Imaging

, , , , , , & ORCID Icon show all
Pages 7237-7255 | Received 17 Sep 2023, Accepted 23 Nov 2023, Published online: 26 Feb 2024

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Smyth EC, Lagergren J, Fitzgerald RC, et al. Oesophageal cancer. Nat Rev Dis Primers. 2017;3:17048. doi:10.1038/nrdp.2017.48
  • Luan SY, Xie R, Yang YS, et al. Acid-responsive aggregated gold nanoparticles for radiosensitization and synergistic chemoradiotherapy in the treatment of esophageal cancer. Small. 2022;18(19). doi:10.1002/smll.202200115
  • Xie J, Gong L, Zhu S, Yong Y, Gu Z, Zhao Y. Emerging strategies of nanomaterial-mediated tumor radiosensitization. Adv Mater. 2019;31(3):e1802244. doi:10.1002/adma.201802244
  • Yang S, Han GH, Chen Q, et al. Au-Pt nanoparticle formulation as a radiosensitizer for radiotherapy with dual effects. Int J Nanomed. 2021;16:239–248. doi:10.2147/IJN.S287523
  • Hu P, Hou X, Yu XJ, et al. Folic acid-conjugated gold nanostars for computed tomography imaging and photothermal/radiation combined therapy. ACS Appl. Bio Mater. 2021;4(6):4862–4871. doi:10.1021/acsabm.1c00171
  • Liu Q, Shi Y, Chong Y, Ge CC. Pharmacological ascorbate promotes the tumor radiosensitization of Au@Pd nanoparticles with simultaneous protection of normal tissues. ACS Appl Bio Mater. 2021;4(2):1843–1851. doi:10.1021/acsabm.0c01537
  • Liu X, Zhang X, Zhu M, et al. PEGylated Au@Pt nanodendrites as novel theranostic agents for computed tomography imaging and photothermal/radiation synergistic therapy. ACS Appl Mater Inter. 2017;9(1):279–285. doi:10.1021/acsami.6b15183
  • Du Y, Sun H, Lux F, et al. Radiosensitization effect of AGuIX, a gadolinium-based nanoparticle, in nonsmall cell lung cancer. ACS Appl Mater Inter. 2020;12(51):56874–56885. doi:10.1021/acsami.0c16548
  • Wang X, Zhang CY, Du JF, et al. Enhanced generation of non-oxygen dependent free radicals by schottky-type heterostructures of Au-Bi2S3 nanoparticles via X-ray-induced catalytic reaction for radiosensitization. Acs Nano. 2019;13(5):5947–5958. doi:10.1021/acsnano.9b01818
  • Liu R, Zhang X, Zhang Q, et al. Adjuvant radiotherapy of involved field versus elective lymph node in patients with operable esophageal squamous cell cancer: a single institution prospective randomized controlled study. J Cancer. 2021;12(11):3180–3189. doi:10.7150/jca.50108
  • Yang LT, Zhou L, Chen L, Liang SX, Huang JQ, Zhu XD. Establishment and verification of a prediction model for symptomatic radiation pneumonitis in patients with esophageal cancer receiving radiotherapy. Med Sci Monit. 2021;27:e930515.
  • Alhussan A, Bozdogan EPD, Chithrani DB. Combining gold nanoparticles with other radiosensitizing agents for unlocking the full potential of cancer radiotherapy. Pharmaceutics. 2021;13(4):442. doi:10.3390/pharmaceutics13040442
  • Ma NN, Jiang YW, Zhang XD, et al. Enhanced radiosensitization of gold nanospikes via hyperthermia in combined cancer radiation and photothermal therapy. ACS Appl Mater Inter. 2016;8(42):28480–28494. doi:10.1021/acsami.6b10132
  • Kuang Y, Zhang Y, Zhao Y, et al. Dual-stimuli-responsive multifunctional Gd(2)Hf(2)O(7) nanoparticles for MRI-guided combined chemo-/photothermal-/radiotherapy of resistant tumors. ACS Appl Mater Inter. 2020;12(32):35928–35939. doi:10.1021/acsami.0c09422
  • Rajani C, Patel V, Borisa P, et al. Photothermal therapy as emerging combinatorial therapeutic approach. Future Pharma Prod Develop Res. 2020;2020:297–339.
  • Dou Y, Yang X, Yang WT, et al. PB@Au core-satellite multifunctional nanotheranostics for magnetic resonance and computed tomography imaging in vivo and synergetic photothermal and radiosensitive therapy. ACS Appl Mater Inter. 2017;9(2):1263–1272. doi:10.1021/acsami.6b13493
  • Wang J, Tan X, Pang X, Liu L, Tan F, Li N. MoS2 quantum Dot@polyaniline inorganic-organic nanohybrids for in vivo dual-modal imaging guided synergistic photothermal/radiation therapy. ACS Appl Mater Inter. 2016;8(37):24331–24338. doi:10.1021/acsami.6b08391
  • Yin M, Chen X, Guo Q, et al. Ultrasmall zirconium carbide nanodots for synergistic photothermal-radiotherapy of glioma. Nanoscale. 2022;14(40):14935–14949. doi:10.1039/D2NR04239H
  • Zhang C, Men D, Zhang T, et al. Nanoplatforms with remarkably enhanced absorption in the second biological window for effective tumor thermoradiotherapy. ACS Appl Mater Inter. 2020;12(2):2152–2161. doi:10.1021/acsami.9b20677
  • Bao J, Zu X, Wang X, et al. Multifunctional Hf/Mn-TCPP Metal-organic framework nanoparticles for triple-modality imaging-guided PTT/RT synergistic cancer therapy. Int J Nanomed. 2020;15:7687–7702. doi:10.2147/IJN.S267321
  • Li E, Cheng X, Deng Y, et al. Fabrication of PEGylated Fe@Bi(2)S(3) nanocomposites for dual-mode imaging and synergistic thermoradiotherapy. Biomater Sci. 2018;6(7):1892–1898. doi:10.1039/C8BM00336J
  • Li Y, Sun Y, Cao T, et al. A cation-exchange controlled core-shell MnS@Bi(2)S(3) theranostic platform for multimodal imaging guided radiation therapy with hyperthermia boost. Nanoscale. 2017;9(38):14364–14375. doi:10.1039/C7NR02384G
  • Li A, Li X, Yu X, et al. Synergistic thermoradiotherapy based on PEGylated Cu(3)BiS(3) ternary semiconductor nanorods with strong absorption in the second near-infrared window. Biomaterials. 2017;112:164–175. doi:10.1016/j.biomaterials.2016.10.024
  • Cheng L, Shen S, Shi S, et al. FeSe(2)-Decorated Bi(2)Se(3) nanosheets fabricated via cation exchange for chelator-free (64)Cu-labeling and multimodal image-guided photothermal-radiation therapy. Adv Funct Mater. 2016;26(13):2185–2197. doi:10.1002/adfm.201504810
  • Frantellizzi V, Verrina V, Raso C, et al. 99mTc-labeled keratin gold-nanoparticles in a nephron-like microfluidic chip for photo-thermal therapy applications. Mat Today Adv. 2022;16:100286. doi:10.1016/j.mtadv.2022.100286
  • Lee SB, Ahn SB, Lee S-W, et al. Radionuclide-embedded gold nanoparticles for enhanced dendritic cell-based cancer immunotherapy, sensitive and quantitative tracking of dendritic cells with PET and Cerenkov luminescence. NPG Asia Materials. 2016;8(6):e281–e281. doi:10.1038/am.2016.80
  • Daems N, Michiels C, Lucas S, Baatout S, Aerts A. Gold nanoparticles meet medical radionuclides. Nucl Med Biol. 2021;100–101:61–90. doi:10.1016/j.nucmedbio.2021.06.001
  • Yoshida A, Kitayama Y, Hayakawa N, et al. Biocompatible polymer-modified gold nanocomposites of different shapes as radiation sensitizers. Biomater Sci. 2022;10(10):2665–2672. doi:10.1039/D2BM00174H
  • Yang ZB, Huang S, Liu Y, et al. Biotin-Targeted Au(I) radiosensitizer for cancer synergistic therapy by intervening with redox homeostasis and inducing ferroptosis. J Med Chem. 2022;65(12):8401–8415. doi:10.1021/acs.jmedchem.2c00300
  • Tudda A, Donzelli E, Nicolini G, et al. Breast radiotherapy with kilovoltage photons and gold nanoparticles as radiosensitizer: an in vitro study. Med Phys. 2022;49(1):568–578. doi:10.1002/mp.15348
  • Piccolo O, Lincoln JD, Melong N, et al. Radiation dose enhancement using gold nanoparticles with a diamond linear accelerator target: a multiple cell type analysis. Sci Rep. 2022;12(1). doi:10.1038/s41598-022-05339-z
  • Marques A, Belchior A, Silva F, et al. Dose rate effects on the selective radiosensitization of prostate cells by GRPR-targeted gold nanoparticles. Int J Mol Sci. 2022;23(9):5279. doi:10.3390/ijms23095279
  • Li DD, Zhao J, Ma J, et al. GMT8 aptamer conjugated PEGylated Ag@Au core-shell nanoparticles as a novel radiosensitizer for targeted radiotherapy of glioma. Colloids Surfaces B Biointer. 2022;2022:211.
  • Kamalabadi MA, Neshastehriz A, Ghaznavi H, Amini SM. Folate functionalized gold-coated magnetic nanoparticles effect in combined electroporation and radiation treatment of HPV-positive oropharyngeal cancer. Med Oncol. 2022;39:12.
  • Guerra DB, Oliveira EMN, Sonntag AR, et al. Intercomparison of radiosensitization induced by gold and iron oxide nanoparticles in human glioblastoma cells irradiated by 6 MV photons. Sci Rep. 2022;12(1). doi:10.1038/s41598-022-13368-x
  • Goubault C, Jarry U, Bostoen M, et al. Radiosensitizing Fe-Au nanocapsules (hybridosomes (R)) increase survival of GL261 brain tumor-bearing mice treated by radiotherapy. Nanomed Nanotechnol Biol Med. 2022;2:40.
  • Li RT, Chen M, Yang ZC, et al. AIE-based gold nanostar-berberine dimer nanocomposites for PDT and PTT combination therapy toward breast cancer. Nanoscale. 2022;14(27):9818–9831. doi:10.1039/D2NR03408E
  • D’Acunto M, Cioni P, Gabellieri E, Presciuttini G. Exploiting gold nanoparticles for diagnosis and cancer treatments. Nanotechnology. 2021;32(19):192001. doi:10.1088/1361-6528/abe1ed
  • Riley RS, Day ES. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(4). doi:10.1002/wnan.1449
  • Gong LJ, Xie JN, Zhu S, Gu ZJ, Zhao YL. Application of multifunctional nanomaterials in tumor radiosensitization. Acta Phys Chim Sin. 2018;34(2):140–167.
  • Her S, Jaffray DA, Allen C. Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev. 2017;109:84–101. doi:10.1016/j.addr.2015.12.012
  • Goswami N, Luo Z, Yuan X, Leong DT, Xie J. Engineering gold-based radiosensitizers for cancer radiotherapy. Mater Horizons. 2017;4(5):817–831. doi:10.1039/C7MH00451F
  • Li W, Brown PK, Wang LV, Xia Y. Gold nanocages as contrast agents for photoacoustic imaging. Contrast Media Mol Image. 2011;6(5):370–377. doi:10.1002/cmmi.439
  • Li W, Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine. 2015;10(2):299–320. doi:10.2217/nnm.14.169
  • Fan S, Zhang Y, Tan H, et al. Manganese/iron-based nanoprobes for photodynamic/chemotherapy combination therapy of tumor guided by multimodal imaging. Nanoscale. 2021;13(10):5383–5399. doi:10.1039/D0NR08831E
  • Liu Y, Yang J, Liu B, et al. Human iPS cells loaded with MnO(2)-based nanoprobes for photodynamic and simultaneous enhanced immunotherapy against cancer. Nanomicro Lett. 2020;12(1):127. doi:10.1007/s40820-020-00452-y
  • Liu J, Gao J, Zhang A, et al. Carbon nanocage-based nanozyme as an endogenous H(2)O(2)-activated oxygenerator for real-time bimodal imaging and enhanced phototherapy of esophageal cancer. Nanoscale. 2020;12(42):21674–21686. doi:10.1039/D0NR05945E
  • Cao W, Liu B, Xia F, et al. MnO(2)@Ce6-loaded mesenchymal stem cells as an “oxygen-laden guided-missile” for the enhanced photodynamic therapy on lung cancer. Nanoscale. 2020;12(5):3090–3102. doi:10.1039/C9NR07947E
  • Cui F, Liu J, Pang S, Li B. Recent advance in tumor microenvironment-based stimuli-responsive nanoscale drug delivery and imaging platform. Front Pharmacol. 2022;13:929854. doi:10.3389/fphar.2022.929854
  • Yang G, Ji J, Liu Z. Multifunctional MnO(2) nanoparticles for tumor microenvironment modulation and cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13(6):e1720. doi:10.1002/wnan.1720
  • Liu Z, Zhang S, Lin H, et al. Theranostic 2D ultrathin MnO(2) nanosheets with fast responsibility to endogenous tumor microenvironment and exogenous NIR irradiation. Biomaterials. 2018;155:54–63. doi:10.1016/j.biomaterials.2017.11.015
  • Li X, Chen L, Luan S, et al. The development and progress of nanomedicine for esophageal cancer diagnosis and treatment. Semin Cancer Biol. 2022;86(Pt 2):873–885. doi:10.1016/j.semcancer.2022.01.007
  • Skrabalak SE, Au L, Li X, Xia Y. Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc. 2007;2(9):2182–2190. doi:10.1038/nprot.2007.326
  • Zhan C, Huang Y, Lin G, Huang S, Zeng F, Wu S. A gold nanocage/cluster hybrid structure for whole-body multispectral optoacoustic tomography imaging, EGFR inhibitor delivery, and photothermal therapy. Small. 2019;15(33):e1900309. doi:10.1002/smll.201900309
  • Liu Y, Pan Y, Cao W, et al. A tumor microenvironment responsive biodegradable CaCO(3)/MnO(2)- based nanoplatform for the enhanced photodynamic therapy and improved PD-L1 immunotherapy. Theranostics. 2019;9(23):6867–6884. doi:10.7150/thno.37586
  • Liu Y, Ai K, Liu J, Deng M, He Y, Lu L. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater. 2013;25(9):1353–1359. doi:10.1002/adma.201204683
  • Zelepukin IV, Griaznova OY, Shevchenko KG, et al. Flash drug release from nanoparticles accumulated in the targeted blood vessels facilitates the tumour treatment. Nat Commun. 2022;13(1). doi:10.1038/s41467-022-34718-3