328
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Zeolitic Imidazolate Framework (ZIF-8) Decorated Iron Oxide Nanoparticles Loaded Doxorubicin Hydrochloride for Osteosarcoma Treatment - in vitro and in vivo Preclinical Studies

ORCID Icon, ORCID Icon, , , , , , & show all
Pages 7985-7999 | Received 03 Oct 2023, Accepted 20 Dec 2023, Published online: 27 Dec 2023

References

  • Marchandet L, Lallier M, Charrier C, Baud’huin M, Ory B, Lamoureux F. Mechanisms of Resistance to Conventional Therapies for Osteosarcoma. Cancers. 2021;13(4):683. doi:10.3390/cancers13040683
  • Smrke A, Anderson PM, Gulia A, Gennatas S, Huang PH, Jones RL. Future Directions in the Treatment of Osteosarcoma. Cells. 2021;10(1):172. doi:10.3390/cells10010172
  • Gill J, Ahluwalia MK, Geller D, Gorlick R. New targets and approaches in osteosarcoma. Pharmacol Ther. 2013;137(1):89–99. doi:10.1016/j.pharmthera.2012.09.003
  • Chou AJ, Gorlick R. Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev Anticancer Ther. 2006;6(7):1075–1085. doi:10.1586/14737140.6.7.1075
  • Gorlick R. Current concepts on the molecular biology of osteosarcoma. Cancer Treatment Res. 2009;152:467–478.
  • Harrison DJ, Geller DS, Gill JD, Lewis VO, Gorlick R. Current and future therapeutic approaches for osteosarcoma. Expert Rev Anticancer Ther. 2018;18(1):39–50. doi:10.1080/14737140.2018.1413939
  • Ferrari S, Serra M. An update on chemotherapy for osteosarcoma. Exp Opinion Pharmacother. 2015;16(18):2727–2736. doi:10.1517/14656566.2015.1102226
  • Carvalho C, Santos RX, Cardoso S, et al. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem 2009;16(25):3267–3285. doi:10.2174/092986709788803312
  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. doi:10.1038/s41573-020-0090-8
  • Zhang Y, Wang F, Li M, et al. Self-Stabilized Hyaluronate Nanogel for Intracellular Codelivery of Doxorubicin and Cisplatin to Osteosarcoma. Adv Sci. 2018;5(5):1700821. doi:10.1002/advs.201700821
  • Rahmani E, Pourmadadi M, Ghorbanian SA, Yazdian F, Rashedi H, Navaee M. Preparation of a pH-responsive chitosan-montmorillonite-nitrogen-doped carbon quantum dots nanocarrier for attenuating doxorubicin limitations in cancer therapy. Eng Life Sci. 2022;22(10):634–649. doi:10.1002/elsc.202200016
  • Wei H, Chen J, Wang S, et al. A Nanodrug Consisting Of Doxorubicin And Exosome Derived From Mesenchymal Stem Cells For Osteosarcoma Treatment In Vitro. Int J Nanomed. 2019;14:8603–8610. doi:10.2147/IJN.S218988
  • Feng Y, Gao Y, Wang D, Xu Z, Sun W, Ren P. Autophagy Inhibitor (LY294002) and 5-fluorouracil (5-FU) Combination-Based Nanoliposome for Enhanced Efficacy Against Esophageal Squamous Cell Carcinoma. Nanoscale Res Lett. 2018;13(1):325. doi:10.1186/s11671-018-2716-x
  • Wang X, Yang FF, Zhang LP, Huang YP, Liu ZS. A polyhedral oligomeric silsesquioxane/molecular sieve codoped molecularly imprinted polymer for gastroretentive drug-controlled release in vivo. Biomater Sci. 2018;6(12):3170–3177. doi:10.1039/C8BM01124A
  • Zhou ZF, Sun TW, Chen F, et al. Calcium phosphate-phosphorylated adenosine hybrid microspheres for anti-osteosarcoma drug delivery and osteogenic differentiation. Biomaterials. 2017;121:1–14. doi:10.1016/j.biomaterials.2016.12.031
  • Liu Y, Jiang Z, Tong S, et al. Acidity-Triggered Transformable Polypeptide Self-Assembly to Initiate Tumor-Specific Biomineralization. Adv Materials. 2023;35(15):56.
  • Chai Z, Hu X, Wei X, et al. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J Controlled Release. 2017;264:102–111. doi:10.1016/j.jconrel.2017.08.027
  • Wu MX, Yang YW. Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv Materials. 2017;29(23). doi:10.1002/adma.201606134
  • Ahmadi M, Ebrahimnia M, Shahbazi MA, Kecili R, Ghorbani-Bidkorbeh F. Microporous metal-organic frameworks: synthesis and applications. J Ind Eng Chem. 2022;115:1–11. doi:10.1016/j.jiec.2022.07.047
  • Yin M, Wu J, Deng M, et al. Multifunctional Magnesium Organic Framework-Based Microneedle Patch for Accelerating Diabetic Wound Healing. ACS nano. 2021;15(11):17842–17853. doi:10.1021/acsnano.1c06036
  • Qiao C, Zhang R, Wang Y, et al. Rabies Virus-Inspired Metal-Organic Frameworks (MOFs) for Targeted Imaging and Chemotherapy of Glioma. Angewandte Chemie. 2020;59(39):16982–16988. doi:10.1002/anie.202007474
  • Qiang S, Hu X, Li R, et al. CuS Nanoparticles-Loaded and Cisplatin Prodrug Conjugated Fe(III)-MOFs for MRI-Guided Combination of Chemotherapy and NIR-II Photothermal Therapy. ACS Appl. Mater. Interfaces. 2022;14(32):36503–36514. doi:10.1021/acsami.2c12727
  • Guo L, Zhong S, Liu P, Guo M, Ding J, Zhou W. Radicals Scavenging MOFs Enabling Targeting Delivery of siRNA for Rheumatoid Arthritis Therapy. Small. 2022;18(27):e2202604. doi:10.1002/smll.202202604
  • Huo Q, Liang Y, Lu W, et al. Integrated Metalloproteinase, pH and Glutathione Responsive Prodrug-Based Nanomedicine for Efficient Target Chemotherapy. J Biomed Nanotechnol. 2019;15(8):1673–1687. doi:10.1166/jbn.2019.2801
  • Cai W, Zhang W, Chen Z. Magnetic Fe(3)O(4)@ZIF-8 nanoparticles as a drug release vehicle: pH-sensitive release of norfloxacin and its antibacterial activity. Colloids Surf B. 2023;223:113170. doi:10.1016/j.colsurfb.2023.113170
  • Abdelhamid HN. Zeolitic Imidazolate Frameworks (ZIF-8) for Biomedical Applications: a Review. Curr Med Chem. 2021;28(34):7023–7075. doi:10.2174/0929867328666210608143703
  • Wang Q, Zhang Z, Qiu D, et al. LnNP@ZIF8 Smart System for In Situ NIR-II Ratiometric Imaging-Based Tumor Drug Resistance Evaluation. Nanomaterials. 2022;12(24):4478. doi:10.3390/nano12244478
  • Liang Z, Yang Z, Yuan H, et al. A protein@metal-organic framework nanocomposite for pH-triggered anticancer drug delivery. Dalton Trans 2018;47(30):10223–10228. doi:10.1039/C8DT01789A
  • Xuan S, Wang Y-XJ, Yu JC, Leung KC-F. Tuning the Grain Size and Particle Size of Superparamagnetic Fe3O4 Microparticles. Chem Mater 2009;21(21):5079–5087. doi:10.1021/cm901618m
  • Chen GH, Yu B, Lu CH, Zhang HH, Shen YQ, Cong HL. Controlled synthesis of Fe3O4@ZIF-8 nanoparticles for drug delivery. Crystengcomm. 2018;20(46):7486–7491. doi:10.1039/C8CE01302K
  • Wu Q, Wang D, Chen C, Peng C, Cai D, Wu Z. Fabrication of Fe3O4/ZIF-8 nanocomposite for simultaneous removal of copper and arsenic from water/soil/swine urine. J Environ Manage. 2021;290:112626. doi:10.1016/j.jenvman.2021.112626
  • Jiang X, Su S, Rao JT, et al. Magnetic metal-organic framework (Fe3O4@ZIF-8) core-shell composite for the efficient removal of Pb(II) and Cu(II) from water. J Environ Chem Eng. 2021;9(5):105959. doi:10.1016/j.jece.2021.105959
  • Huang X, Liu Y, Wang X, et al. Removal of Arsenic from Wastewater by Using Nano Fe(3)O(4)/Zinc Organic Frameworks. Int J Environ Res Public Health. 2022;19(17):85.
  • Al-Hazmi GH, Adam AMA, El-Desouky MG, El-Bindary AA, Alsuhaibani AM, Refat MS. Efficient Adsorption Of Rhodamine B Using A Composite Of Fe3o4@Zif-8: synthesis, Characterization, Modeling Analysis, Statistical Physics And Mechanism Of Interaction. Bull Chem Soc Ethiop 2023;37(1):211–229. doi:10.4314/bcse.v37i1.17
  • Esfahanian M, Ghasemzadeh MA, Razavian SMH. Synthesis, identification and application of the novel metal-organic framework Fe(3)O(4)@PAA@ZIF-8 for the drug delivery of ciprofloxacin and investigation of antibacterial activity. Artif Cells Nanomed Biotechnol 2019;47(1):2024–2030. doi:10.1080/21691401.2019.1617729
  • Wang P, Wang GY, Tang HW, et al. Preparation of Ropivacaine Encapsulated by Zeolite Imidazole Framework Microspheres as Sustained-Release System and Efficacy Evaluation. Chemistry. 2023.
  • Zhang M, Gao YY, Han LM, Zhu N, Gao XC. The construction of a multifunctional metal-organic framework for targeting tumors and bioimaging. New J Chem. 2020;44(42):18303–18307. doi:10.1039/D0NJ04463F
  • Schejn A, Mazet T, Falk V, et al. Fe3O4@ZIF-8: magnetically recoverable catalysts by loading Fe3O4 nanoparticles inside a zinc imidazolate framework. Dalton Trans. 2015;44(22):10136–10140. doi:10.1039/C5DT01191D
  • Sun CY, Qin C, Wang XL, et al. Zeolitic Imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans. 2012;41(23):6906–6909. doi:10.1039/c2dt30357d
  • Zhang XM, Jiang JH, Yu QH, et al. ZIF-based carbon dots with lysosome-Golgi transport property as visualization platform for deep tumour therapy via hierarchical size/charge dual-transform and transcytosis. Nanoscale. 2022;14(23):8510–8524. doi:10.1039/D2NR02134J
  • Li M, Yue XF, Wang Y, Zhang J, Kan LW, Jing ZW. Remodeling the tumor microenvironment to improve drug permeation and antitumor effects by co-delivering quercetin and doxorubicin. J Mat Chem B. 2019;7(47):7619–7626. doi:10.1039/C9TB02131K
  • Xie RH, Yang P, Peng SJ, et al. A phosphorylcholine-based zwitterionic copolymer coated ZIF-8 nanodrug with a long circulation time and charged conversion for enhanced chemotherapy. J Mat Chem B. 2020;8(28):6128–6138. doi:10.1039/D0TB00193G
  • Lin Y, Zhong Y, Chen Y, et al. Ligand-Modified Erythrocyte Membrane-Cloaked Metal-Organic Framework Nanoparticles for Targeted Antitumor Therapy. Mol Pharmaceut. 2020;17(9):3328–3341. doi:10.1021/acs.molpharmaceut.0c00421
  • Li JH, Zhu DM, Ma WJ, et al. Rapid synthesis of a Bi@ZIF-8 composite nanomaterial as a near-infrared-II (NIR-II) photothermal agent for the low-temperature photothermal therapy of hepatocellular carcinoma. Nanoscale. 2020;12(32):17064–17073. doi:10.1039/D0NR03907A
  • Jiang Z, Li Y, Wei Z, et al. Pressure-induced amorphous zeolitic imidazole frameworks with reduced toxicity and increased tumor accumulation improves therapeutic efficacy In vivo. Bioact Mater. 2021;6(3):740–748. doi:10.1016/j.bioactmat.2020.08.036
  • Guan YX, Yang YX, Wang XX, et al. Multifunctional Fe3O4@SiO2-CDs magnetic fluorescent nanoparticles as effective carrier of gambogic acid for inhibiting VX2 tumor cells. J Mol Liq. 2021;327.
  • Cheng C, Li C, Zhu X, Han W, Li J, Lv Y. Doxorubicin-loaded Fe(3)O(4)-ZIF-8 nano-composites for hepatocellular carcinoma therapy. J Biomaterials Appl. 2019;33(10):1373–1381. doi:10.1177/0885328219836540
  • Chen XR, Shi ZQ, Tong RL, et al. Derivative of Epigallocatechin-3-gallatea Encapsulated in ZIF-8 with Polyethylene Glycol-Folic Acid Modification for Target and pH-Responsive Drug Release in Anticancer Research. ACS Biomater Sci Eng. 2018;4(12):4183–4192. doi:10.1021/acsbiomaterials.8b00840
  • Shi Y, van der Meel R, Chen X, Lammers T. The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics. 2020;10(17):7921–7924. doi:10.7150/thno.49577
  • Fang J, Islam W, Maeda H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv Drug Delivery Rev 2020;157:142–160. doi:10.1016/j.addr.2020.06.005
  • Kent CA, Mehl BP, Ma L, Papanikolas JM, Meyer TJ, Lin W. Energy transfer dynamics in metal-organic frameworks. J Am Chem Soc. 2010;132(37):12767–12769. doi:10.1021/ja102804s
  • Avci C, Ariñez-Soriano J, Carné-Sánchez A, et al. Post-Synthetic Anisotropic Wet-Chemical Etching of Colloidal Sodalite ZIF Crystals. Angewandte Chemie. 2015;54(48):14417–14421. doi:10.1002/anie.201507588
  • Padhye P, Alam A, Ghorai S, Chattopadhyay S, Poddar P. Doxorubicin-conjugated β-NaYF4:Gd(3+)/Tb(3+) multifunctional, phosphor nanorods: a multi-modal, luminescent, magnetic probe for simultaneous optical and magnetic resonance imaging and an excellent pH-triggered anti-cancer drug delivery nanovehicle. Nanoscale. 2015;7(46):19501–19518. doi:10.1039/C5NR04473A
  • Adhikari C, Das A, Chakraborty A. Zeolitic Imidazole Framework (ZIF) Nanospheres for Easy Encapsulation and Controlled Release of an Anticancer Drug Doxorubicin under Different External Stimuli: a Way toward Smart Drug Delivery System. Mol Pharmaceut. 2015;12(9):3158–3166. doi:10.1021/acs.molpharmaceut.5b00043
  • Li X, Hou S, Chen J, et al. Engineering silk sericin decorated zeolitic imidazolate framework-8 nanoplatform to enhance chemotherapy. Colloids Surf B. 2021;200:111594. doi:10.1016/j.colsurfb.2021.111594
  • Wang Z, Niu J, Zhao C, Wang X, Ren J, Qu X. A Bimetallic Metal-Organic Framework Encapsulated with DNAzyme for Intracellular Drug Synthesis and Self-Sufficient Gene Therapy. Angewandte Chemie. 2021;60(22):12431–12437. doi:10.1002/anie.202016442
  • Xu M, Hu Y, Ding W, et al. Rationally designed rapamycin-encapsulated ZIF-8 nanosystem for overcoming chemotherapy resistance. Biomaterials. 2020;258:120308. doi:10.1016/j.biomaterials.2020.120308
  • Wang J, Chen P, Dong Y, et al. Designer exosomes enabling tumor targeted efficient chemo/gene/photothermal therapy. Biomaterials. 2021;276:121056. doi:10.1016/j.biomaterials.2021.121056
  • Sun XK, Dong B, Xu HW, et al. Amphiphilic Silane Modified Multifunctional Nanoparticles for Magnetically Targeted Photodynamic Therapy. ACS Appl Mater Interfaces. 2017;9(13):11451–11460. doi:10.1021/acsami.7b00647
  • Guo XM, Li W, Luo LH, et al. External Magnetic Field-Enhanced Chemo-Photothermal Combination Tumor Therapy via Iron Oxide Nanoparticles. ACS Appl Mater Interfaces. 2017;9(19):16581–16593. doi:10.1021/acsami.6b16513
  • Dada SN, Babanyinah GK, Tetteh MT, et al. Covalent and Noncovalent Loading of Doxorubicin by Folic Acid-Carbon Dot Nanoparticles for Cancer Theranostics. ACS omega. 2022;7(27):23322–23331. doi:10.1021/acsomega.2c01482
  • Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35(7):2383–2390. doi:10.1016/j.biomaterials.2013.11.083