215
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Preparation and Characterization Evaluation of Poly(L-Glutamic Acid)-g-Methoxy Poly(Ethylene Glycol)/Combretastatin A4/BLZ945 Nanoparticles for Cervical Cancer Therapy

, , , , , , , & show all
Pages 6901-6914 | Received 19 Sep 2023, Accepted 12 Nov 2023, Published online: 21 Nov 2023

References

  • Hyuna Sung JFM, Siegel RL, Laversanne M, Isabelle Soerjomataram MD, Ahmedin Jemal DMV, Bray BSc F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin. 2021;71(209–249):209. doi:10.3322/caac.21660
  • Yin L, Lu S, Zhu J, Zhang W, Ke G. Ovarian transposition before radiotherapy in cervical cancer patients: functional outcome and the adequate dose constraint. Radiat Oncol. 2019;14(1):100. doi:10.1186/s13014-019-1312-2
  • Monk BJ, Enomoto T, Kast WM, et al. Integration of Immunotherapy into Treatment of Cervical Cancer: recent Data and Ongoing Trials. Cancer Treat Rev. 2022;106:102385. doi:10.1016/j.ctrv.2022.102385
  • Kitagawa R, Katsumata N, Shibata T, et al. Paclitaxel plus carboplatin versus paclitaxel plus cisplatin in metastatic or recurrent cervical cancer: the open-label randomized phase III trial JCOG0505. J Clin Oncol. 2015;33(19):2129–2135. doi:10.1200/JCO.2014.58.4391
  • Maria Kyrgiou AA, Arbyn M, Lax SF, et al. Terminology for cone dimensions after local conservative treatment for cervical intraepithelial neoplasia and early invasive cervical cancer: 2022 consensus recommendations from ESGO, EFC, IFCPC, and ESP. Lancet Oncol. 2022;23(8):385–392. doi:10.1016/S1470-2045(22)00191-7
  • Du S, Yan J, Xue Y, Zhong Y, Dong Y. Adoptive cell therapy for cancer treatment. Exploration. 2023;3:4. doi:10.1002/EXP.20210058
  • Brozovic A, Osmak M. Activation of mitogen-activated protein kinases by cisplatin and their role in cisplatin-resistance. Cancer Lett. 2007;251(1):1–16. doi:10.1016/j.canlet.2006.10.007
  • Zhang Z, Zhang S, Lin B, Wang Q, Nie X, Shi Y. Combined treatment of marizomib and cisplatin modulates cervical cancer growth and invasion and enhances antitumor potential in vitro and in vivo. Front Oncol. 2022;12:974573. doi:10.3389/fonc.2022.974573
  • Feng Y, Wang J, Cao J, Cao F, Chen X. Manipulating calcium homeostasis with nanoplatforms for enhanced cancer therapy. Exploration. 2023. doi:10.1002/EXP.20220173
  • Pearcey R, B. M, Drouin P, et al. Phase III trial comparing radical radiotherapy with and without cisplatin chemotherapy in patients with advanced squamous cell cancer of the cervix. J Clin Oncol. 2002;20(4):966–972. doi:10.1200/JCO.2002.20.4.966
  • Sha Chen HB, Miao Y, Liu F, Zhang L. Clinical value of transvaginal color Doppler ultrasound in evaluating angiogenesis of cervical cancer. J Med Imaging. 2022;32(7):1254–1257.
  • Shiliang Xu BB. Research of three-dimensional energy imaging detects cervical cancer and pathologic MVD. Chinese J Ultrasound Med. 2017;33(9):816–819.
  • Tozer GM, K. C, Bruce C. Baguley disrupting tumour blood vessels. Nat Rev Cancer. 2005;5:423–435. doi:10.1038/nrc1628
  • Winn BA, Devkota L, Kuch B, et al. Bioreductively activatable prodrug conjugates of combretastatin A-1 and combretastatin A-4 as anticancer agents targeted toward tumor-associated hypoxia. J Nat Prod. 2020;83(4):937–954. doi:10.1021/acs.jnatprod.9b00773
  • Hong S, Huang Q-X, Ji P, et al. Vascular disrupting agent-induced amplification of tumor targeting and prodrug activation boosts anti-tumor efficacy. Sci China Chem. 2022;65(10):1994–2004. doi:10.1007/s11426-022-1347-9
  • Liu Z, Zhang Y, Shen N, Sun J, Tang Z, Chen X. Destruction of tumor vasculature by vascular disrupting agents in overcoming the limitation of EPR effect. Adv Drug Deliv Rev. 2022;183:114138. doi:10.1016/j.addr.2022.114138
  • Lippert JW. Vascular disrupting agents. Bioorg Med Chem. 2007;15(2):605–615. doi:10.1016/j.bmc.2006.10.020
  • Thorpe PE. Vascular targeting agents as cancer therapeutics. Clin Can Res. 2004;10(15):415–427. doi:10.1158/1078-0432.CCR-0642-03
  • Siemann DW. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat Rev. 2011;37(1):63–74. doi:10.1016/j.ctrv.2010.05.001
  • Wang K, Chen Q, Liu N, Zhang J, Pan X. Recent Advances in, and Challenges of, Anti-angiogenesis Agents for Tumor Chemotherapy Based on Vascular Normalization. Drug Discov Today. 2021;26(11):2743–2753. doi:10.1016/j.drudis.2021.07.024
  • Fruytier AC, Le Duff CS, Po C, et al. The blood flow shutdown induced by combretastatin A4 impairs gemcitabine delivery in a mouse hepatocarcinoma. Front Pharmacol. 2016;7:506. doi:10.3389/fphar.2016.00506
  • Li H, Zhou S, Wu M, et al. Light-driven self-recruitment of biomimetic semiconducting polymer nanoparticles for precise tumor vascular disruption. Adv Mater. 2023;35(24):e2210920. doi:10.1002/adma.202210920
  • Daei Farshchi Adli A, Jahanban-Esfahlan R, Seidi K, Samandari-Rad S, Zarghami N. An overview on Vadimezan (DMXAA): the vascular disrupting agent. Chem Biol Drug Des. 2018;91(5):996–1006. doi:10.1111/cbdd.13166
  • Wang Y, Yu H, Zhang D, et al. Co-administration of combretastatin A4 nanoparticles and sorafenib for systemic therapy of hepatocellular carcinoma. Acta Biomater. 2019;92:229–240. doi:10.1016/j.actbio.2019.05.028
  • Tang Z, X C. Tumor-targeting drug delivery systems based on Poly(L-glutamic acid)-g-Poly(ethylene glycol). Acta Polymerica Sinica. 2019;50(6):543–552.
  • Li Z, Di C, Li S, Yang X, Nie G. Smart nanotherapeutic targeting of tumor vasculature. Acc Chem Res. 2019;52(9):2703–2712. doi:10.1021/acs.accounts.9b00283
  • Li B, Chu T, Wei J, et al. Platelet-membrane-coated nanoparticles enable vascular disrupting agent combining anti-angiogenic drug for improved tumor vessel impairment. Nano Lett. 2021;21(6):2588–2595. doi:10.1021/acs.nanolett.1c00168
  • Liu Zhi-Lin RX-T, Yue H, Jia-Li S, et al. A Novel CA4P polymeric nanoparticle for murine hepatoma therapy. Chin J Poly Sci. 2023;41(8):1223–1229. doi:10.1007/s10118-023-2921-7
  • Zhilin Liu HZ, Sun J, Zheng M, et al. Organic-solvent-free “lego-like” modular preparation of fab-nondestructive antibody-drug conjugates with ultra-high drug-to-antibody ratio. Adv Mater. 2023. doi:10.1002/adma.202300377
  • Qin H, Yu H, Sheng J, et al. PI3Kgamma inhibitor attenuates immunosuppressive effect of poly(l-Glutamic Acid)-Combretastatin A4 Conjugate in metastatic breast cancer. Adv Sci. 2019;6(12):1900327. doi:10.1002/advs.201900327
  • He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–3666. doi:10.1016/j.biomaterials.2010.01.065
  • Kulkarni A, Chandrasekar V, Natarajan SK, et al. A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer. Nat Biomed Eng. 2018;2(8):589–599. doi:10.1038/s41551-018-0254-6
  • Strachan DC, R. B, Oei Y, Bissell MJ, Coussens LM, Pryer N. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells. OncoImmunology. 2013;2(12):E26968. doi:10.4161/onci.26968
  • Rebelo SP, Pinto C, Martins TR, et al. 3D-3-culture: a tool to unveil macrophage plasticity in the tumour microenvironment. Biomaterials. 2018;163:185–197. doi:10.1016/j.biomaterials.2018.02.030
  • Zhu D, Johnson TK, Wang Y, et al. Macrophage M2 polarization induced by exosomes from adipose-derived stem cells Contributes to the exosomal proangiogenic effect on mouse ischemic hindlimb. Stem Cell Res Ther. 2020;11(1):162. doi:10.1186/s13287-020-01669-9
  • Cui X, Ma C, Vasudevaraja V, et al. Dissecting the immunosuppressive tumor microenvironments in glioblastoma-on-a-chip for optimized PD-1 immunotherapy. Elife. 2020;9. doi:10.7554/eLife.52253
  • Huang Y, Yang C, Lv J, et al. Formula optimization and in vivo study of poly(L-glutamic acid)-g-methoxy poly(ethylene glycol)/combretastatin A4/BLZ945 nanoparticles for cancer therapy. Int J Pharm. 2023;636:122849. doi:10.1016/j.ijpharm.2023.122849
  • Liu Z, Shen N, Tang Z, et al. An eximious and affordable GSH stimulus-responsive poly(alpha-lipoic acid) nanocarrier bonding combretastatin A4 for tumor therapy. Biomater Sci. 2019;7(7):2803–2811. doi:10.1039/C9BM00002J
  • Dan Peer JMK, Hong S, Farokhzad OC, Margalit R, Langer R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–760. doi:10.1038/nnano.2007.387
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–951. doi:10.1038/nbt.3330
  • Xue X, Qu H, Li Y. Stimuli-responsive crosslinked nanomedicine for cancer treatment. Exploration. 2022;2(6):20210134. doi:10.1002/EXP.20210134
  • De Jong W, Borm PJA. Drug delivery and nanoparticles applications and hazards. Int J Nanomedicine. 2008;3(2):133–149. doi:10.2147/IJN.S596
  • Yeh YC, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale. 2012;4(6):1871–1880. doi:10.1039/C1NR11188D
  • Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38(6):1759–1782. doi:10.1039/b806051g
  • Liu L, Li S, Yang K, et al. Drug-free antimicrobial nanomotor for precise treatment of multidrug-resistant bacterial infections. Nano Lett. 2023;23(9):3929–3938. doi:10.1021/acs.nanolett.3c00632
  • Luntao Liu YW, Jiamin Y, Qinrui F, et al. Synthesis of magnesium nanoparticle for NIR-II-photoacoustic-imaging-guided synergistic burst-like and H2 cancer therapy. Chem. 2022;8(11):2990–3007. doi:10.1016/j.chempr.2022.07.001
  • Liu L, Li Q, Chen L, et al. Plasmon enhanced catalysis-driven nanomotors with autonomous navigation for deep cancer imaging and enhanced radiotherapy. Chem Sci. 2022;13(43):12840–12850. doi:10.1039/D2SC03036E
  • Gu B, Feng H, Dong J, Zhang H, Bian X, Liu Y. The establishment and characterization of a continuous cell line of mouse cervical carcinoma. Chin J Clin Oncol. 2008;5(1):44–48. doi:10.1007/s11805-008-0044-0
  • Feng CHEN, D. D, Yan FU, et al. Anti-tumor activity of biodegradable polymer-paclitaxel conjugated micelle against mice U14 cervical cancer. Chem Res Chin Universi. 2012;28(4):656–661.
  • Liu D, Duhamel J, Gauthier M. Synthesis and characterization of furan-based non-ionic surfactants (fbnios). Langmuir. 2023;39(26):8974–8983. doi:10.1021/acs.langmuir.3c00344
  • Negi SCK. Insight of molecular interactions between short-chain tetraalkylammonium bromides and cetyltrimethylammonium bromide: a spectroscopic and thermodynamic approach. J Hazard Mater. 2023;26(4):505–515.