263
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Advances in Brain Tumor Therapy Based on the Magnetic Nanoparticles

, , , , &
Pages 7803-7823 | Received 12 Oct 2023, Accepted 15 Dec 2023, Published online: 19 Dec 2023

References

  • Miller KD, Ostrom QT, Kruchko C, et al. Brain and other central nervous system tumor statistics, 2021. CA Cancer J Clin. 2021;71(5):381–406. doi:10.3322/caac.21693
  • Yu J, Green MD, Li S, et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med. 2021;27(1):152–164. doi:10.1038/s41591-020-1131-x
  • Jabbour SK, Berman AT, Decker RH, et al. Phase 1 Trial of Pembrolizumab Administered Concurrently With Chemoradiotherapy for Locally Advanced Non–Small Cell Lung Cancer: a Nonrandomized Controlled Trial. JAMA Oncol. 2020;6(6):848–855. doi:10.1001/jamaoncol.2019.6731
  • Old LJ. Tumor Necrosis Factor (TNF). Science. 1985;230(4726):630–632. doi:10.1126/science.2413547
  • Hodi FS, O’Day SJ, McDermott DF, et al. Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. N Engl J Med. 2010;363(8):711–723. doi:10.1056/NEJMoa1003466
  • Paz-Ares L, Luft A, Vicente D, et al. Pembrolizumab plus Chemotherapy for Squamous Non–Small-Cell Lung Cancer. N Engl J Med. 2018;379(21):2040–2051. doi:10.1056/NEJMoa1810865
  • Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer. N Engl J Med. 2018;378(22):2078–2092. doi:10.1056/NEJMoa1801005
  • Adams S, Gatti-Mays ME, Kalinsky K, et al. Current Landscape of Immunotherapy in Breast Cancer: a Review. JAMA Oncol. 2019;5(8):1205–1214. doi:10.1001/jamaoncol.2018.7147
  • Arvanitis CD, Ferraro GB, Jain RK. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20(1):26–41. doi:10.1038/s41568-019-0205-x
  • Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 2020;17(1):69. doi:10.1186/s12987-020-00230-3
  • Terstappen GC, Meyer AH, Bell RD, Zhang W. Strategies for delivering therapeutics across the blood–brain barrier. Nat Rev Drug Discov. 2021;20(5):362–383. doi:10.1038/s41573-021-00139-y
  • Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev. 2019;48(11):2967–3014. doi:10.1039/C8CS00805A
  • Lalatsa A, Butt AM. Chapter 3 - Physiology of the Blood–Brain Barrier and Mechanisms of Transport Across the BBB. In: Kesharwani P, Gupta U, editors. Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors. Academic Press; 2018:49–74.
  • Huang J, Li Y, Orza A, et al. Magnetic Nanoparticle Facilitated Drug Delivery for Cancer Therapy with Targeted and Image-Guided Approaches. Adv Funct Mater. 2016;26(22):3818–3836. doi:10.1002/adfm.201504185
  • Li B, Chen X, Qiu W, et al. Synchronous Disintegration of Ferroptosis Defense Axis via Engineered Exosome-Conjugated Magnetic Nanoparticles for Glioblastoma Therapy. Adv Sci. 2022;9(17):2105451. doi:10.1002/advs.202105451
  • Zhang J, Zhang T, Gao J. Biocompatible Iron Oxide Nanoparticles for Targeted Cancer Gene Therapy: a Review. Nanomaterials. 2022;12(19):3323. doi:10.3390/nano12193323
  • Cao Y, Zhang S, Ma M, Zhang Y. Fluorinated PEG-PEI Coated Magnetic Nanoparticles for siRNA Delivery and CXCR4 Knockdown. Nanomaterials. 2022;12(10):1692. doi:10.3390/nano12101692
  • Han H, Hou Y, Chen X, et al. Metformin-Induced Stromal Depletion to Enhance the Penetration of Gemcitabine-Loaded Magnetic Nanoparticles for Pancreatic Cancer Targeted Therapy. J Am Chem Soc. 2020;142(10):4944–4954. doi:10.1021/jacs.0c00650
  • Guo Y, Ran Y, Wang Z, et al. Magnetic-responsive and targeted cancer nanotheranostics by PA/MR bimodal imaging-guided photothermally triggered immunotherapy. Biomaterials. 2019;219:119370. doi:10.1016/j.biomaterials.2019.119370
  • Ma Y, Yan C, Guo Z, et al. Spatio‐Temporally Reporting Dose‐Dependent Chemotherapy via Uniting Dual‐Modal MRI/NIR Imaging. Angew Chem Int Ed. 2020;59(47):21143–21150. doi:10.1002/anie.202009380
  • Song G, Kenney M, Chen Y-S, et al. Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties. Nat Biomed Eng. 2020;4(3):325–334. doi:10.1038/s41551-019-0506-0
  • Huang G, Qiu Y, Yang F, et al. Magnetothermally Triggered Free-Radical Generation for Deep-Seated Tumor Treatment. Nano Lett. 2021;21(7):2926–2931. doi:10.1021/acs.nanolett.1c00009
  • Pan J, Xu Y, Wu Q, Hu P, Shi J. Mild Magnetic Hyperthermia-Activated Innate Immunity for Liver Cancer Therapy. J Am Chem Soc. 2021;143(21):8116–8128. doi:10.1021/jacs.1c02537
  • Sadeghi-Goughari M, Jeon S, Kwon H-J. Magnetic nanoparticles-enhanced focused ultrasound heating: size effect, mechanism, and performance analysis. Nanotechnology. 2020;31(24):245101. doi:10.1088/1361-6528/ab7cea
  • Liu H-L, Hua M-Y, Yang H-W, et al. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci. 2010;107(34):15205–15210. doi:10.1073/pnas.1003388107
  • Torres-Díaz I, Rinaldi C. Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids. Soft Matter. 2014;10(43):8584–8602. doi:10.1039/C4SM01308E
  • Tong S, Zhu H, Bao G. Magnetic iron oxide nanoparticles for disease detection and therapy. Mater Today. 2019;31:86–99. doi:10.1016/j.mattod.2019.06.003
  • Paunovic J, Vucevic D, Radosavljevic T, Mandić-Rajčević S, Pantic I. Iron-based nanoparticles and their potential toxicity: focus on oxidative stress and apoptosis. Chem Biol Interact. 2020;316:108935. doi:10.1016/j.cbi.2019.108935
  • Huber DL. Synthesis, Properties, and Applications of Iron Nanoparticles. Small. 2005;1(5):482–501. doi:10.1002/smll.200500006
  • Hou Y, Gao S. Monodisperse nickel nanoparticles prepared from a monosurfactant system and their magnetic properties. J Mater Chem. 2003;13(7):1510–1512. doi:10.1039/B303226D
  • Cordente N, Respaud M, Senocq F, Casanove M-J, Amiens C, Chaudret B. Synthesis and Magnetic Properties of Nickel Nanorods. Nano Lett. 2001;1(10):565–568. doi:10.1021/nl0100522
  • Başkaya G, Yıldız Y, Savk A, et al. Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes. Biosens Bioelectron. 2017;91:728–733. doi:10.1016/j.bios.2017.01.045
  • Gomaji Chaudhary R, Tanna A, J G. Synthesis Of Nickel Nanoparticles: microscopic Investigation, An Efficient Catalyst And Effective Antibacterial Activity. Adv Mater Lett. 2015;6(11):990–998. doi:10.5185/amlett.2015.5901
  • Shukla V, Jayabalan J, Chari R. Optical shielding of nickel nanoparticle by a bubble: optical limiting gets limited. Appl Phys Lett. 2016;108(24):567.
  • Liu F, Ma G, Zhao D. Nickel nanoparticle-stabilized room-temperature blue-phase liquid crystals. Nanotechnology. 2018;29(28):285703. doi:10.1088/1361-6528/aabaa4
  • Metin Ö, Mazumder V, Özkar S, Sun S. Monodisperse Nickel Nanoparticles and Their Catalysis in Hydrolytic Dehydrogenation of Ammonia Borane. J Am Chem Soc. 2010;132(5):1468–1469. doi:10.1021/ja909243z
  • Park J, Kang E, Son SU, et al. Monodisperse Nanoparticles of Ni and NiO: synthesis, Characterization, Self-Assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction. Adv Mater. 2005;17(4):429–434. doi:10.1002/adma.200400611
  • Guo K, Li H, Yu Z. Size-Dependent Catalytic Activity of Monodispersed Nickel Nanoparticles for the Hydrolytic Dehydrogenation of Ammonia Borane. ACS Appl Mater Interfaces. 2018;10(1):517–525. doi:10.1021/acsami.7b14166
  • Samia AC, Hyzer K, Schlueter JA, et al. Ligand effect on the growth and the digestion of Co nanocrystals. J Am Chem Soc. 2005;127(12):4126–4127.
  • Fuller RO, Goh B-M, Koutsantonis GA, Loedolff MJ, Saunders M, Woodward RC. A simple procedure for the production of large ferromagnetic cobalt nanoparticles. Dalton Trans. 2016;45(30):11983–11989. doi:10.1039/c6dt01935h
  • Psimadas D, Baldi G, Ravagli C, et al. Comparison of the magnetic, radiolabeling, hyperthermic and biodistribution properties of hybrid nanoparticles bearing CoFe2O4 and Fe3O4 metal cores. Nanotechnology. 2014;25(2):025101. doi:10.1088/0957-4484/25/2/025101
  • Bjørnerud A, Briley-Sæbø K, Johansson LO, Kellar KE. Effect of NC100150 injection on the 1H NMR linewidth of human whole blood ex vivo: dependency on blood oxygen tension. Magn Reson Med. 2000;44(5):803–807. doi:10.1002/1522-2594(200011)44:5<803::AID-MRM19>3.0.CO;2-K
  • Du V, Luciani N, Richard S, et al. A 3D magnetic tissue stretcher for remote mechanical control of embryonic stem cell differentiation. Article Nat Commun. 2017;8(1):400. doi:10.1038/s41467-017-00543-2
  • Petrarca C, Poma AM, Vecchiotti G, et al. Cobalt magnetic nanoparticles as theranostics: conceivable or forgettable?. Nanotechn Rev. 2020;9(1):1522–1538. doi:10.1515/ntrev-2020-0111
  • Hu R, Dai C, Dai X, et al. Topology regulation of nanomedicine for autophagy-augmented ferroptosis and cancer immunotherapy. Sci Bull. 2023;68(1):77–94. doi:10.1016/j.scib.2022.12.030
  • Giltinan J, Sridhar V, Bozuyuk U, Sheehan D, Sitti M. 3D Microprinting of Iron Platinum Nanoparticle-Based Magnetic Mobile Microrobots. Adv Intell Syst. 2021;3(1):2000204. doi:10.1002/aisy.202000204
  • Chang Z-X, C-H L, Chang Y-C, Huang C-YF, Chan M-H, Hsiao M. Novel monodisperse FePt nanocomposites for T2-weighted magnetic resonance imaging: biomedical theranostics applications. Nanoscale Adv. 2022;4(2):377–386. doi:10.1039/D1NA00613D
  • Céspedes MV, Unzueta U, Tatkiewicz W, et al. In Vivo Architectonic Stability of Fully de Novo Designed Protein-Only Nanoparticles. ACS Nano. 2014;8(5):4166–4176. doi:10.1021/nn4055732
  • Kekalo K, Shubitidze F, Meyers R, Yaqub R, Baker I. Magnetic Heating of Fe–Co Ferrites — experiments and Modeling. Nano LIFE. 2016;06(02):1650007. doi:10.1142/s1793984416500070
  • Wang C, Hsu C-H, Li Z, et al. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia. Int J Nanomed. 2017;12:6273–6287. doi:10.2147/IJN.S141072
  • Huang K, Li Z, Lin J, Han G, Huang P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev. 2018;47(14):5109–5124. doi:10.1039/C7CS00838D
  • Yang W, Rehman S, Chu X, Hou Y, Gao S. Transition Metal (Fe, Co and Ni) Carbide and Nitride Nanomaterials: structure, Chemical Synthesis and Applications. ChemNanoMat. 2015;1(6):376–398. doi:10.1002/cnma.201500073
  • Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chem Rev. 2015;115(19):10637–10689. doi:10.1021/acs.chemrev.5b00112
  • Au - Castaneda RT, Au - Khurana A, Au - Khan R. Labeling Stem Cells with Ferumoxytol, an FDA-Approved Iron Oxide Nanoparticle. J Vis Exp. 2011;57:e3482. doi:10.3791/3482
  • Korangath P, Barnett JD, Sharma A, et al. Nanoparticle interactions with immune cells dominate tumor retention and induce T cell–mediated tumor suppression in models of breast cancer. Sci Adv. 2020;6(13):eaay1601. doi:10.1126/sciadv.aay1601
  • Gemici C, Yetmen O, Yaprak G, et al. Is there any role of intravenous iron for the treatment of anemia in cancer?. BMC Cancer. 2016;16(1):661. doi:10.1186/s12885-016-2686-2
  • Zanganeh S, Hutter G, Spitler R, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11(11):986–994. doi:10.1038/nnano.2016.168
  • Lebrun F, Klastersky J, Levacq D, Wissam Y, Paesmans M. Intravenous iron therapy for anemic cancer patients: a review of recently published clinical studies. Support Care Cancer. 2017;25(7):2313–2319. doi:10.1007/s00520-017-3672-1
  • Baribeault D, Auerbach M. Iron replacement therapy in cancer-related anemia. Am J Health Syst Pharm. 2011;68(10_Supplement_1):S4–S14. doi:10.2146/ajhp110039
  • Kalska-Szostko B, Wykowska U, Satuła D. Magnetic nanoparticles of core–shell structure. Colloids Surf A: Physicochem Eng Aspects. 2015;481:527–536. doi:10.1016/j.colsurfa.2015.05.040
  • Hong RY, Zhang SZ, Di GQ, et al. Preparation, characterization and application of Fe3O4/ZnO core/shell magnetic nanoparticles. Mater Res Bull. 2008;43(8):2457–2468. doi:10.1016/j.materresbull.2007.07.035
  • Chen W-J, Tsai P-J, Chen Y-C. Functional Fe3O4/TiO2 Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria. Small. 2008;4(4):485–491. doi:10.1002/smll.200701164
  • Cui Y-R, Hong C, Zhou Y-L, Li Y, Gao X-M, Zhang -X-X. Synthesis of orientedly bioconjugated core/shell Fe3O4@Au magnetic nanoparticles for cell separation. Talanta. 2011;85(3):1246–1252. doi:10.1016/j.talanta.2011.05.010
  • Martín M, Salazar P, Villalonga R, Campuzano S, Pingarrón JM, González-Mora JL. Preparation of core–shell Fe3O4@poly(dopamine) magnetic nanoparticles for biosensor construction. J Mater Chem B. 2014;2(6):739–746. doi:10.1039/C3TB21171A
  • Shi D, Yang H, Ji S, Jiang S, Liu X, Zhang D. Preparation and Characterization of Core-shell Structure Fe3O4@C Magnetic Nanoparticles. Procedia Eng. 2015;102:1555–1562. doi:10.1016/j.proeng.2015.01.291
  • Teo SH, Islam A, Chan ES, et al. Efficient biodiesel production from Jatropha curcus using CaSO4/Fe2O3-SiO2 core-shell magnetic nanoparticles. J Clean Prod. 2019;208:816–826. doi:10.1016/j.jclepro.2018.10.107
  • Zomorodian K, Veisi H, Mousavi SM, et al. Modified magnetic nanoparticles by PEG-400-immobilized Ag nanoparticles (Fe3O4@PEG–Ag) as a core/shell nanocomposite and evaluation of its antimicrobial activity. Int J Nanomed. 2018;13:3965–3973. doi:10.2147/IJN.S161002
  • Liu Y, Yang K, Cheng L, et al. PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles: potential theranostic applications and in vivo toxicity studies. Nanomed Nanotechnol Biol Med. 2013;9(7):1077–1088. doi:10.1016/j.nano.2013.02.010
  • Yang S, Zong P, Ren X, Wang Q, Wang X. Rapid and Highly Efficient Preconcentration of Eu(III) by Core–Shell Structured Fe3O4@Humic Acid Magnetic Nanoparticles. ACS Appl Mater Interfaces. 2012;4(12):6891–6900. doi:10.1021/am3020372
  • Estrader M, López-Ortega A, Estradé S, et al. Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles. Nat Commun. 2013;4(1):2960. doi:10.1038/ncomms3960
  • G-y L, Jiang Y-R, Huang K-L, Ding P, Chen J. Preparation and properties of magnetic Fe3O4–chitosan nanoparticles. J Alloys Compd. 2008;466(1–2):56. doi:10.1016/j.jallcom.2007.11.100
  • Suleman M, Riaz S. In silico study of hyperthermia treatment of liver cancer using core-shell CoFe2O4@ MnFe2O4 magnetic nanoparticles. J Magn Magn Mater. 2020;498:166143. doi:10.1016/j.jmmm.2019.166143
  • Wang Y, Gu H. Core–Shell-Type Magnetic Mesoporous Silica Nanocomposites for Bioimaging and Therapeutic Agent Delivery. Adv Mater. 2015;27(3):576–585. doi:10.1002/adma.201401124
  • Wu J, Hou Y, Gao S. Controlled synthesis and multifunctional properties of FePt-Au heterostructures. Nano Res. 2011;4(9):836–848. doi:10.1007/s12274-011-0140-y
  • Zhu J, Wu J, Liu F, et al. Controlled synthesis of FePt–Au hybrid nanoparticles triggered by reaction atmosphere and FePt seeds. Nanoscale. 2013;5(19):9141–9149. doi:10.1039/C3NR02911E
  • Kong M, Jia Z, Wang B, et al. Construction of metal-organic framework derived Co/ZnO/Ti3C2Tx composites for excellent microwave absorption. Sustainable Mater Technol. 2020;26:e00219. doi:10.1016/j.susmat.2020.e00219
  • Feng W, Liu Y, Bi Y, et al. Recent advancement of magnetic MOF composites in microwave absorption. Synth Met. 2023;294:117307. doi:10.1016/j.synthmet.2023.117307
  • Pukdeejorhor L, Adpakpang K, Ponchai P, et al. Polymorphism of Mixed Metal Cr/Fe Terephthalate Metal–Organic Frameworks Utilizing a Microwave Synthetic Method. Cryst Growth Des. 2019;19(10):5581–5591. doi:10.1021/acs.cgd.9b00508
  • Chen H, Hong R, Liu Q, et al. CNFs@carbonaceous Co/CoO composite derived from CNFs penetrated through ZIF-67 for high-efficient electromagnetic wave absorption material. J Alloys Compd. 2018;752:115–122. doi:10.1016/j.jallcom.2018.04.142
  • Zeng Q, Wang L, Li X, et al. Double ligand MOF-derived pomegranate-like Ni@C microspheres as high-performance microwave absorber. Appl Surf Sci. 2021;538:148051. doi:10.1016/j.apsusc.2020.148051
  • Shu R, Li N, Li X, Sun J. Preparation of FeNi/C composite derived from metal-organic frameworks as high-efficiency microwave absorbers at ultrathin thickness. J Colloid Interface Sci. 2022;606:1918–1927. doi:10.1016/j.jcis.2021.10.011
  • Lin K, Wu L, Wu T, et al. Bimetal-doped core-shell carbon derived from nickel-cobalt dual-ligand metal-organic framework for adjustable strong microwave absorption. J Colloid Interface Sci. 2022;627:90–101. doi:10.1016/j.jcis.2022.07.048
  • Hu Q, Yang R, Yang S, Huang W, Zeng Z, Gui X. Metal–Organic Framework-Derived Core–Shell Nanospheres Anchored on Fe-Filled Carbon Nanotube Sponge for Strong Wideband Microwave Absorption. ACS Appl Mater Interfaces. 2022;14(8):10577–10587. doi:10.1021/acsami.1c25019
  • Ebrahimpour A, Riahi Alam N, Abdolmaleki P, et al. Magnetic Metal–Organic Framework Based on Zinc and 5-Aminolevulinic Acid: MR Imaging and Brain Tumor Therapy. J Inorg Organomet Polym Mater. 2021;31(3):1208–1216. doi:10.1007/s10904-020-01782-5
  • Li Z, Wang C, Chen J, et al uPAR targeted phototheranostic metal-organic framework nanoprobes for MR/NIR-II imaging-guided therapy and surgical resection of glioblastoma. Mater Design. 2021;198:109386. doi:10.1016/j.matdes.2020.109386
  • Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic Nanoparticles: design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chem Rev. 2012;112(11):5818–5878. doi:10.1021/cr300068p
  • Wang X, Zhuang J, Peng Q, Li Y. A general strategy for nanocrystal synthesis. Nature. 2005;437(7055):121–124. doi:10.1038/nature03968
  • Rafie SF, Sayahi H, Abdollahi H, Abu-Zahra N. Hydrothermal synthesis of Fe3O4 nanoparticles at different pHs and its effect on discoloration of methylene blue: evaluation of alternatives by TOPSIS method. Mater Today Commun. 2023;37:107589. doi:10.1016/j.mtcomm.2023.107589
  • Mohamed AE-MA, Mohamed MA. Nanoparticles: magnetism and Applications. In: Abd-Elsalam KA, Mohamed MA, Prasad R, editors. Magnetic Nanostructures : Environmental and Agricultural Applications. Springer International Publishing; 2019:1–12.
  • Kudr J, Haddad Y, Richtera L, et al. Magnetic Nanoparticles: from Design and Synthesis to Real World Applications. Nanomaterials. 2017;7(9):243. doi:10.3390/nano7090243
  • Insausti M. Tunning the composition of multidoped magnetite nanoparticles starting from bimetallic FeMn, FeCo and FeZn oleates.
  • Ali A, Shah T, Ullah R, et al. Review on Recent Progress in Magnetic Nanoparticles: synthesis, Characterization, and Diverse Applications. Review Front Chem. 2021:9. doi:10.3389/fchem.2021.629054
  • Chen JP, Sorensen CM, Klabunde KJ, Hadjipanayis GC, Devlin E, Kostikas A. Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys Rev B. 1996;54(13):9288–9296. doi:10.1103/PhysRevB.54.9288
  • Chen Q, Rondinone AJ, Chakoumakos C, John Zhang B. Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation. J Magn Magn Mater. 1999;194(1):1–7. doi:10.1016/S0304-8853(98)00585-X
  • Mireles L-K, Sacher E, Yahia LH, Laurent S, Stanicki D. A comparative physicochemical, morphological and magnetic study of silane-functionalized superparamagnetic iron oxide nanoparticles prepared by alkaline coprecipitation. INT J BIOCHEM CELL B. 2016;75:203–211. doi:10.1016/j.biocel.2015.12.002
  • Park J, An K, Hwang Y, et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater. 2004;3(12):891–895. doi:10.1038/nmat1251
  • de Mello LB, Varanda LC, Sigoli FA, Mazali IO. Co-precipitation synthesis of (Zn-Mn)-co-doped magnetite nanoparticles and their application in magnetic hyperthermia. J Alloys Compd. 2019;779:698–705. doi:10.1016/j.jallcom.2018.11.280
  • Andrade RGD, Veloso SRS, Castanheira EMS. Shape Anisotropic Iron Oxide-Based Magnetic Nanoparticles: synthesis and Biomedical Applications. Int J Mol Sci. 2020;21(7). doi:10.3390/ijms21072455
  • Ait Kerroum MA, Essyed A, Iacovita C, et al. The effect of basic pH on the elaboration of ZnFe2O4 nanoparticles by co-precipitation method: structural, magnetic and hyperthermia characterization. J Magn Magn Mater. 2019;478:239–246. doi:10.1016/j.jmmm.2019.01.081
  • Masunga N, Mamba BB, Getahun YW, El-Gendy AA, Kefeni KK. Synthesis of single-phase superparamagnetic copper ferrite nanoparticles using an optimized coprecipitation method. Materials Sci Eng. 2021;272:115368. doi:10.1016/j.mseb.2021.115368
  • Biehl P, Von der Lühe M, Dutz S, Schacher FH. Synthesis, Characterization, and Applications of Magnetic Nanoparticles Featuring Polyzwitterionic Coatings. Polymers. 2018;10(1):91. doi:10.3390/polym10010091
  • Shan D, Deng S, Zhao T, et al. Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J Hazard Mater. 2016;305:156–163. doi:10.1016/j.jhazmat.2015.11.047
  • Lerner MI, Glazkova EA, Lozhkomoev AS, et al. Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen. Powder Technol. 2016;295:307–314. doi:10.1016/j.powtec.2016.04.005
  • Jendrzej S, Gökce B, Epple M, Barcikowski S. How Size Determines the Value of Gold: economic Aspects of Wet Chemical and Laser-Based Metal Colloid Synthesis. ChemPhysChem. 2017;18(9):1012–1019. doi:10.1002/cphc.201601139
  • Kotov YA. Electric Explosion of Wires as a Method for Preparation of Nanopowders. J Nanopart Res. 2003;5(5):539–550. doi:10.1023/B:NANO.0000006069.45073.0b
  • Kawamura G, Alvarez S, Stewart IE, Catenacci M, Chen Z, Ha Y-C. Production of Oxidation-Resistant Cu-Based Nanoparticles by Wire Explosion. Sci Rep. 2015;5(1):18333. doi:10.1038/srep18333
  • Komeili A. Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol Rev. 2012;36(1):232–255. doi:10.1111/j.1574-6976.2011.00315.x
  • Gul S, Khan SB, Rehman IU, Khan MA, Khan MI. A Comprehensive Review of Magnetic Nanomaterials Modern Day Theranostics. Review Front Mater. 2019;6. doi:10.3389/fmats.2019.00179
  • Abhilash RK, Pandey BD. Microbial synthesis of iron-based nanomaterials—A review. Bull Mater Sci. 2011;34(2):191–198. doi:10.1007/s12034-011-0076-6
  • Makarov VV, Makarova SS, Love AJ, et al. Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir. 2014;30(20):5982–5988. doi:10.1021/la5011924
  • Kumar B, Smita K, Cumbal L, Debut A, Galeas S, Guerrero VH. Phytosynthesis and photocatalytic activity of magnetite (Fe3O4) nanoparticles using the Andean blackberry leaf. Mater Chem Phys. 2016;179:310–315. doi:10.1016/j.matchemphys.2016.05.045
  • Hsu C-Y, F-Y K, C-W L, Fann K, Lue J-T. Magnetoreception System in Honeybees (Apis mellifera). PLoS One. 2007;2(4):e395. doi:10.1371/journal.pone.0000395
  • Saaduldeen Anwer S. Simultaneous green synthesis of Magnetite-Nanoparticles MNPs using microalgae Spirulina sp. for antibacterial activity. Emirates Journal of Food and Agriculture. 2023;35(4):56. doi:10.9755/ejfa.2023.v35.i4.3033
  • El-Sesy ME, Othman SA. Promising antibacterial activities of anethole and green-synthesized magnetite nanoparticles against multiple antibiotic-resistant bacteria. Water Sci Technol. 2023;87(3):729–747. doi:10.2166/wst.2023.012
  • Furlani EP, Ng KC. Nanoscale magnetic biotransport with application to magnetofection. Phys Rev E. 2008;77(6):061914. doi:10.1103/PhysRevE.77.061914
  • Dobson J. Remote control of cellular behaviour with magnetic nanoparticles. Nat Nanotechnol. 2008;3(3):139–143. doi:10.1038/nnano.2008.39
  • Mannix RJ, Kumar S, Cassiola F, et al. Nanomagnetic actuation of receptor-mediated signal transduction. Nat Nanotechnol. 2008;3(1):36–40. doi:10.1038/nnano.2007.418
  • Qiu Y, Tong S, Zhang L, et al. Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions. Nat Commun. 2017;8(1):15594. doi:10.1038/ncomms15594
  • Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology. 1990;175(2):489–493. doi:10.1148/radiology.175.2.2326474
  • Lewin M, Carlesso N, Tung C-H, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol. 2000;18(4):410–414. doi:10.1038/74464
  • Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB. Selective Inductive Heating of Lymph Nodes. Ann Surg. 1957;146(4):596–606. doi:10.1097/00000658-195710000-00007
  • Li Y, Bao Q, Yang S, Yang M, Mao C. Bionanoparticles in cancer imaging, diagnosis, and treatment. View. 2022;3(4):20200027. doi:10.1002/VIW.20200027
  • Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–79. doi:10.1016/j.addr.2012.10.002
  • Sindhwani S, Syed AM, Ngai J, et al. The entry of nanoparticles into solid tumours. Nat Mater. 2020;19(5):566–575. doi:10.1038/s41563-019-0566-2
  • Wang X, Chang Y, Zhang D, Tian B, Yang Y, Wei F. Transferrin-conjugated drug/dye-co-encapsulated magnetic nanocarriers for active-targeting fluorescent/magnetic resonance imaging and anti-tumor effects in human brain tumor cells. Rsc Adv. 2016;6(107):105661–105675. doi:10.1039/C6RA20903C
  • Singh R, Norret M, House MJ, et al. Dose-Dependent Therapeutic Distinction between Active and Passive Targeting Revealed Using Transferrin-Coated PGMA Nanoparticles. Small. 2016;12(3):351–359. doi:10.1002/smll.201502730
  • Ghadiri M, Vasheghani-Farahani E, Atyabi F, Kobarfard F, Mohamadyar-Toupkanlou F, Hosseinkhani H. Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J Biomed Mater Res Part A. 2017;105(10):2851–2864. doi:10.1002/jbm.a.36145
  • Song B, Jiang J, Yan H, Huang S, Yuan J. A tumor-targetable probe based on europium(iii)/gadolinium(iii) complex-conjugated transferrin for dual-modal time-gated luminescence and magnetic resonance imaging of cancerous cells in vitro and in vivo. J Mater Chem B. 2023;11(19):4346–4353. doi:10.1039/D3TB00387F
  • Villalobos-Manzo R, Ríos-Castro E, Hernández-Hernández JM, Oza G, Medina MA, Tapia-Ramírez J. Identification of Transferrin Receptor 1 (TfR1) Overexpressed in Lung Cancer Cells, and Internalization of Magnetic Au-CoFe2O4 Core-Shell Nanoparticles Functionalized with Its Ligand in a Cellular Model of Small Cell Lung Cancer (SCLC). Pharmaceutics. 2022;14(8):1715. doi:10.3390/pharmaceutics14081715
  • Ge P, Liu Y, Chen Q, et al. Transferrin receptors/magnetic resonance dual-targeted nanoplatform for precise chemo-photodynamic synergistic cancer therapy. Nanomed Nanotechnol Biol Med. 2022;39:102467. doi:10.1016/j.nano.2021.102467
  • Pan Y, Wang Z, Ma J, et al. Folic Acid-Modified Fluorescent-Magnetic Nanoparticles for Efficient Isolation and Identification of Circulating Tumor Cells in Ovarian Cancer. Biosensors. 2022;12(3):184. doi:10.3390/bios12030184
  • Derakhshankhah H, Haghshenas B, Eskandani M, Jahanban-Esfahlan R, Abbasi-Maleki S, Jaymand M. Folate-conjugated thermal- and pH-responsive magnetic hydrogel as a drug delivery nano-system for “smart” chemo/hyperthermia therapy of solid tumors. Mater Today Commun. 2022;30:103148. doi:10.1016/j.mtcomm.2022.103148
  • Wang Q, Cheng Y, Wang W, Tang X, Yang Y. Polyetherimide- and folic acid-modified Fe3O4 nanospheres for enhanced magnetic hyperthermia performance. J Biomed Mater Res B Appl Biomater. 2023;111(4):795–804. doi:10.1002/jbm.b.35190
  • Hong JY, Lim YG, Song YJ, Park K. Tumor microenvironment-responsive histidine modified-hyaluronic acid-based MnO2 as in vivo MRI contrast agent. Int J Biol Macromol. 2023;226:121–131. doi:10.1016/j.ijbiomac.2022.12.033
  • Khodayari H, Heydarinasab A, Moniri E, Miralinaghi M. Synthesis and characterization of magnetic nanoparticles-grafted-hyaluronic acid/β-cyclodextrin as a novel pH-sensetive nanocarrier for targeted delivery of doxorubicin. Inorg Chem Commun. 2023;148:110366. doi:10.1016/j.inoche.2022.110366
  • Mansoorianfar M, Hussain Z, Simchi A, Cao Y, Ullah I, Ullah S. Target-responsive DNA aptamer-conjugated superparamagnetic Ag/CuS nanoparticles as near-infrared light-triggered theranostics and dual-modal imaging. Appl Mater Today. 2023;34:101913. doi:10.1016/j.apmt.2023.101913
  • Zhang Y, Yu Y, Kang K, et al. Nano-magnetic aptamer sensor incorporating AND logic recognition-launched hybridization chain reaction for organ origin identification of circulating tumor cells. Nano Today. 2023;49:101817. doi:10.1016/j.nantod.2023.101817
  • Lodhi MS, Khalid F, Khan MT, et al. A Novel Method of Magnetic Nanoparticles Functionalized with Anti-Folate Receptor Antibody and Methotrexate for Antibody Mediated Targeted Drug Delivery. Molecules. 2022;27(1):261.
  • Taheri-Ledari R, Zolfaghari E, Zarei-Shokat S, Kashtiaray A, Maleki A. A magnetic antibody-conjugated nano-system for selective delivery of Ca(OH)2 and taxotere in ovarian cancer cells. Commun Biol. 2022;5(1):995. doi:10.1038/s42003-022-03966-w
  • Pramanik A, Patibandla S, Gao Y, et al. Bio-Conjugated Magnetic-Fluorescence Nanoarchitectures for the Capture and Identification of Lung-Tumor-Derived Programmed Cell Death Lighand 1-Positive Exosomes. ACS Omega. 2022;7(18):16035–16042. doi:10.1021/acsomega.2c01210
  • Hasani M, Jafari S, Akbari Javar H, Abdollahi H, Rashidzadeh H. Cell-Penetrating Peptidic GRP78 Ligand-Conjugated Iron Oxide Magnetic Nanoparticles for Tumor-Targeted Doxorubicin Delivery and Imaging. ACS Appl Bio Mater. 2023;6(3):1019–1031. doi:10.1021/acsabm.2c00897
  • Thirumurugan S, Dash P, Liu X, et al. Angiopep-2-decorated titanium–alloy core–shell magnetic nanoparticles for nanotheranostics and medical imaging. Nanoscale. 2022;14(39):14789–14800. doi:10.1039/D2NR03683E
  • Horák D, Turnovcová K, Plichta Z, et al. RGDS- and doxorubicin-modified poly[N-(2-hydroxypropyl)methacrylamide]-coated γ-Fe2O3 nanoparticles for treatment of glioblastoma. Colloid Polym Sci. 2022;300(4):267–277. doi:10.1007/s00396-021-04895-6
  • Pucci C, Degl’Innocenti A, Belenli Gümüş M, Ciofani G. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era. Biomater Sci. 2022;10(9):2103–2121. doi:10.1039/D1BM01963E
  • Zhi D, Yang T, Yang J, Fu S, Zhang S. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater. 2020;102:13–34. doi:10.1016/j.actbio.2019.11.027
  • Rao Y-F, Chen W, Liang X-G, et al. Epirubicin-Loaded Superparamagnetic Iron-Oxide Nanoparticles for Transdermal Delivery: cancer Therapy by Circumventing the Skin Barrier. Small. 2015;11(2):239–247. doi:10.1002/smll.201400775
  • Schleich N, Po C, Jacobs D, et al. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release. 2014;194:82–91. doi:10.1016/j.jconrel.2014.07.059
  • Ma K, Xu S, Tao T, et al. Magnetosome-inspired synthesis of soft ferrimagnetic nanoparticles for magnetic tumor targeting. Proc Natl Acad Sci. 2022;119(45):e2211228119. doi:10.1073/pnas.2211228119
  • Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun. 2018;9(1):1410. doi:10.1038/s41467-018-03705-y
  • Li Z, Yin S, Cheng L, Yang K, Li Y, Liu Z. Magnetic Targeting Enhanced Theranostic Strategy Based on Multimodal Imaging for Selective Ablation of Cancer. Adv Funct Mater. 2014;24(16):2312–2321. doi:10.1002/adfm.201303345
  • Muthana M, Kennerley AJ, Hughes R, et al. Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat Commun. 2015;6(1):8009. doi:10.1038/ncomms9009
  • Y-J L, Hsu H-L, Lan Y-H, Chen J-P. Thermosensitive Cationic Magnetic Liposomes for Thermoresponsive Delivery of CPT-11 and SLP2 shRNA in Glioblastoma Treatment. Pharmaceutics. 2023;15(4):1169. doi:10.3390/pharmaceutics15041169
  • Meng Y, Hynynen K, Lipsman N. Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nat Rev Neurol. 2021;17(1):7–22. doi:10.1038/s41582-020-00418-z
  • Schoen S, Kilinc MS, Lee H, et al. Towards controlled drug delivery in brain tumors with microbubble-enhanced focused ultrasound. Adv Drug Deliv Rev. 2022;180:114043. doi:10.1016/j.addr.2021.114043
  • Chen K-T, Wei K-C, Liu H-L. Theranostic Strategy of Focused Ultrasound Induced Blood-Brain Barrier Opening for CNS Disease Treatment. Front Pharmacol. 2019;10. doi:10.3389/fphar.2019.00086
  • Kobus T, Zervantonakis IK, Zhang Y, McDannold NJ. Growth inhibition in a brain metastasis model by antibody delivery using focused ultrasound-mediated blood-brain barrier disruption. J Control Release. 2016;238:281–288. doi:10.1016/j.jconrel.2016.08.001
  • Liu H-L, Hsu P-H, Lin C-Y, et al. Focused Ultrasound Enhances Central Nervous System Delivery of Bevacizumab for Malignant Glioma Treatment. Radiology. 2016;281(1):99–108. doi:10.1148/radiol.2016152444
  • Giammalva GR, Gagliardo C, Marrone S, et al. Focused Ultrasound in Neuroscience. State of the Art and Future Perspectives. Brain Sci. 2021;11(1):84. doi:10.3390/brainsci11010084
  • Grasso G, Torregrossa F, Noto M, et al. MR-guided focused ultrasound–induced blood-brain barrier opening for brain metastasis: a review. Neurosurg Focus. 2023;55(2):E11. doi:10.3171/2023.5.FOCUS23227
  • Papachristodoulou A, Signorell RD, Werner B, et al. Chemotherapy sensitization of glioblastoma by focused ultrasound-mediated delivery of therapeutic liposomes. J Control Release. 2019;295:130–139. doi:10.1016/j.jconrel.2018.12.009
  • Hou J, Zhou J, Chang M, et al. LIFU-responsive nanomedicine enables acoustic droplet vaporization-induced apoptosis of macrophages for stabilizing vulnerable atherosclerotic plaques. Bioact Mater. 2022;16:120–133. doi:10.1016/j.bioactmat.2022.02.022
  • Novoselova MV, Shramova EI, Sergeeva OV, et al. Polymer/magnetite carriers functionalized by HER2-DARPin: avoiding lysosomes during internalization and controlled toxicity of doxorubicin by focused ultrasound induced release. Nanomed Nanotechnol Biol Med. 2023;47:102612. doi:10.1016/j.nano.2022.102612
  • Bunevicius A, McDannold NJ, Golby AJ. Focused Ultrasound Strategies for Brain Tumor Therapy. Oper Neurosurg. 2020;19(1):9–18. doi:10.1093/ons/opz374
  • Kircher MF, Willmann JK. Molecular Body Imaging: MR Imaging, CT, and US. Part I. Principles. Radiology. 2012;263(3):633–643. doi:10.1148/radiol.12102394
  • Schenkman L. Second Thoughts About CT Imaging. Science. 2011;331(6020):1002–1004. doi:10.1126/science.331.6020.1002
  • Ahmed HU, Kirkham A, Arya M, et al. Is it time to consider a role for MRI before prostate biopsy?. Nat Rev Clin Oncol. 2009;6(4):197–206. doi:10.1038/nrclinonc.2009.18
  • Kim BH, Lee N, Kim H, et al. Large-Scale Synthesis of Uniform and Extremely Small-Sized Iron Oxide Nanoparticles for High-Resolution T1 Magnetic Resonance Imaging Contrast Agents. J Am Chem Soc. 2011;133(32):12624–12631. doi:10.1021/ja203340u
  • Lee SH, Kim BH, Na HB, Hyeon T. Paramagnetic inorganic nanoparticles as T1 MRI contrast agents. WIREs Nanomed Nanobiotechnol. 2014;6(2):196–209. doi:10.1002/wnan.1243
  • Tromsdorf UI, Bruns OT, Salmen SC, Beisiegel U, Weller H. A Highly Effective, Nontoxic T1 MR Contrast Agent Based on Ultrasmall PEGylated Iron Oxide Nanoparticles. Nano Lett. 2009;9(12):4434–4440. doi:10.1021/nl902715v
  • Tong S, Hou S, Zheng Z, Zhou J, Bao G. Coating Optimization of Superparamagnetic Iron Oxide Nanoparticles for High T2 Relaxivity. Nano Lett. 2010;10(11):4607–4613. doi:10.1021/nl102623x
  • Kuczynski EA, Vermeulen PB, Pezzella F, Kerbel RS, Reynolds AR. Vessel co-option in cancer. Nat Rev Clin Oncol. 2019;16(8):469–493. doi:10.1038/s41571-019-0181-9
  • Li Y, Qu X, Cao B, et al. Selectively Suppressing Tumor Angiogenesis for Targeted Breast Cancer Therapy by Genetically Engineered Phage. Adv Mater. 2020;32(29):e2001260. doi:10.1002/adma.202001260
  • Adiseshaiah PP, Hall JB, McNeil SE. Nanomaterial standards for efficacy and toxicity assessment. WIREs Nanomed Nanobiotechnol. 2010;2(1):99–112. doi:10.1002/wnan.66
  • Reichel D, Sagong B, Teh J, et al. Near Infrared Fluorescent Nanoplatform for Targeted Intraoperative Resection and Chemotherapeutic Treatment of Glioblastoma. ACS Nano. 2020;14(7):8392–8408. doi:10.1021/acsnano.0c02509
  • Hadjipanayis CG, Machaidze R, Kaluzova M, et al. EGFRvIII Antibody–Conjugated Iron Oxide Nanoparticles for Magnetic Resonance Imaging–Guided Convection-Enhanced Delivery and Targeted Therapy of Glioblastoma. Cancer Res. 2010;70(15):6303–6312. doi:10.1158/0008-5472.Can-10-1022
  • Kaluzova M, Bouras A, Machaidze R, Hadjipanayis CG. Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget. 2015;6(11):34. doi:10.18632/oncotarget.3554
  • Shevtsov MA, Nikolaev BP, Yakovleva LY, et al. Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION–EGF) for targeting brain tumors. Int J Nanomed. 2014;9:273–287. doi:10.2147/IJN.S55118
  • Arias-Ramos N, Ibarra LE, Serrano-Torres M, et al. Iron Oxide Incorporated Conjugated Polymer Nanoparticles for Simultaneous Use in Magnetic Resonance and Fluorescent Imaging of Brain Tumors. Pharmaceutics. 2021;13(8). doi:10.3390/pharmaceutics13081258
  • Shevtsov MA, Nikolaev BP, Ryzhov VA, et al. Brain tumor magnetic targeting and biodistribution of superparamagnetic iron oxide nanoparticles linked with 70-kDa heat shock protein study by nonlinear longitudinal response. J Magn Magn Mater. 2015;388:123–134. doi:10.1016/j.jmmm.2015.04.030
  • Tomitaka A, Arami H, Gandhi S, Krishnan KM. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging. Nanoscale. 2015;7(40):16890–16898. doi:10.1039/C5NR02831K
  • Luo B, Wang S, Rao R, et al. Conjugation Magnetic PAEEP-PLLA Nanoparticles with Lactoferrin as a Specific Targeting MRI Contrast Agent for Detection of Brain Glioma in Rats. Nanoscale Res Lett. 2016;11(1):227. doi:10.1186/s11671-016-1421-x
  • Zhang F, Huang X, Zhu L, et al. Noninvasive monitoring of orthotopic glioblastoma therapy response using RGD-conjugated iron oxide nanoparticles. Biomaterials. 2012;33(21):5414–5422. doi:10.1016/j.biomaterials.2012.04.032
  • Nair BG, Nagaoka Y, Morimoto H, Yoshida Y, Maekawa T, Sakthi Kumar D. Aptamer conjugated magnetic nanoparticles as nanosurgeons. Nanotechnology. 2010;21(45):455102. doi:10.1088/0957-4484/21/45/455102
  • Wang S, Shen H, Mao Q, et al. Macrophage-Mediated Porous Magnetic Nanoparticles for Multimodal Imaging and Postoperative Photothermal Therapy of Gliomas. ACS Appl Mater Interfaces. 2021;13(48):56825–56837. doi:10.1021/acsami.1c12406
  • Xie M, Li Y, Xu Y, et al. Brain Tumor Imaging and Delivery of Sub-5 nm Magnetic Iron Oxide Nanoparticles in an Orthotopic Murine Model of Glioblastoma. ACS Appl Nano Mater. 2022;5(7):9706–9718. doi:10.1021/acsanm.2c01930
  • Jordan A, Scholz R, Wust P, Fähling H, Roland F. Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater. 1999;201(1):413–419. doi:10.1016/S0304-8853(99)00088-8
  • Hilger I, Hiergeist R, Hergt R, Winnefeld K, Schubert H, Kaiser WA. Thermal Ablation of Tumors Using Magnetic Nanoparticles: an In Vivo Feasibility Study. Invest Radiol. 2002;37(10):580–586. doi:10.1097/00004424-200210000-00008
  • Salunkhe AB, Khot VM, Pawar SH. Magnetic Hyperthermia with Magnetic Nanoparticles: a Status Review. Curr Top Med Chem. 2014;14(5):572–594. doi:10.2174/1568026614666140118203550
  • Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103(2):317–324. doi:10.1007/s11060-010-0389-0
  • Peña Pino I, Ma J, Hori YS, et al. Stereotactic Laser Ablation (SLA) followed by consolidation stereotactic radiosurgery (cSRS) as treatment for brain metastasis that recurred locally after initial radiosurgery (BMRS): a multi-institutional experience. J Neurooncol. 2022;156(2):295–306. doi:10.1007/s11060-021-03893-6
  • Tasci TO, Vargel I, Arat A, Guzel E, Korkusuz P, Atalar E. Focused RF hyperthermia using magnetic fluids. Med Phys. 2009;36(5):1906–1912. doi:10.1118/1.3106343
  • Chang M, Hou Z, Wang M, et al. Single-Atom Pd Nanozyme for Ferroptosis-Boosted Mild-Temperature Photothermal Therapy. Angew Chem Int Ed. 2021;60(23):12971–12979. doi:10.1002/anie.202101924
  • Sun Z, Deng G, Peng X, et al. Intelligent photothermal dendritic cells restart the cancer immunity cycle through enhanced immunogenic cell death. Biomaterials. 2021;279:121228. doi:10.1016/j.biomaterials.2021.121228
  • Harmon BV, Corder AM, Collins RJ, et al. Cell Death Induced in a Murine Mastocytoma by 42–47°C Heating in Vitro: evidence that the Form of Death Changes from Apoptosis to Necrosis Above a Critical Heat Load. Int J Radiat Biol. 1990;58(5):845–858. doi:10.1080/09553009014552221
  • Tomitaka A, Kobayashi H, Yamada T, Jeun M, Bae S, Takemura Y. Magnetization and self-heating temperature of NiFe2O4 nanoparticles measured by applying ac magnetic field. J Phys Conf Ser. 2010;200(12):122010. doi:10.1088/1742-6596/200/12/122010
  • Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperth. 2008;24(6):467–474. doi:10.1080/02656730802104757
  • Li GC, Mivechi NF, Weitzel G. Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia. Int J Hyperth. 1995;11(4):459–488. doi:10.3109/02656739509022483
  • Chiosis G, Digwal CS, Trepel JB, Neckers L. Structural and functional complexity of HSP90 in cellular homeostasis and disease. Nat Rev Mol Cell Biol. 2023. doi:10.1038/s41580-023-00640-9
  • Hoter A, El-Sabban ME, Naim HY. The HSP90 Family: structure, Regulation, Function, and Implications in Health and Disease. Int J Mol Sci. 2018;19(9):2560. doi:10.3390/ijms19092560
  • Lim S, Cho HY, Kim DG, et al. Targeting the interaction of AIMP2-DX2 with HSP70 suppresses cancer development. Nat Chem Biol. 2020;16(1):31–41. doi:10.1038/s41589-019-0415-2
  • Sha G, Jiang Z, Zhang W, Jiang C, Wang D, Tang D. The multifunction of HSP70 in cancer: guardian or traitor to the survival of tumor cells and the next potential therapeutic target. Int Immunopharmacol. 2023;122:110492. doi:10.1016/j.intimp.2023.110492
  • Huang L, Mivechi NF, Moskophidis D. Insights into Regulation and Function of the Major Stress-Induced hsp70 Molecular Chaperone In Vivo: analysis of Mice with Targeted Gene Disruption of the hsp70.1 or hsp70.3 Gene. Mol Cell Biol. 2001;21(24):8575–8591. doi:10.1128/MCB.21.24.8575-8591.2001
  • Qiu J, Li Z, An K, Niu L, Huang H, Xu F. Thermo-Chemical Resistance to Combination Therapy of Glioma Depends on Cellular Energy Level. ACS Appl Mater Interfaces. 2023;15(33):39053–39063. doi:10.1021/acsami.3c05683
  • Beliakoff J, Bagatell R, Paine-Murrieta G, Taylor CW, Lykkesfeldt AE, Whitesell L. Hormone-Refractory Breast Cancer Remains Sensitive to the Antitumor Activity of Heat Shock Protein 90 Inhibitors. Clin Cancer Res. 2003;9(13):4961–4971.
  • Fliss AE, Benzeno S, Rao J, Caplan AJ. Control of estrogen receptor ligand binding by Hsp90. J Steroid Biochem Mol Biol. 2000;72(5):223–230. doi:10.1016/S0960-0760(00)00037-6
  • Münster PN, Marchion DC, Basso AD, Rosen N. Degradation of HER2 by Ansamycins Induces Growth Arrest and Apoptosis in Cells with HER2 Overexpression via a HER3, Phosphatidylinositol 3′-Kinase-AKT-dependent Pathway. Cancer Res. 2002;62(11):3132–3137.
  • Fortugno P, Beltrami E, Plescia J, et al. Regulation of survivin function by Hsp90. Proc Natl Acad Sci. 2003;100(24):13791–13796. doi:10.1073/pnas.2434345100
  • Wu H, Liu L, Ma M, Zhang Y. Modulation of blood-brain tumor barrier for delivery of magnetic hyperthermia to brain cancer. J Control Release. 2023;355:248–258. doi:10.1016/j.jconrel.2023.01.072
  • Curley CT, Sheybani ND, Bullock TN, Price RJ. Focused Ultrasound Immunotherapy for Central Nervous System Pathologies: challenges and Opportunities. Theranostics. 2017;7(15):3608–3623. doi:10.7150/thno.21225
  • Johansen PM, Hansen PY, Mohamed AA, Girshfeld SJ, Feldmann M, Lucke-Wold B. Focused ultrasound for treatment of peripheral brain tumors. Explor Drug Sci. 2023;1(2):107–125. doi:10.37349/eds.2023.00009
  • Bunevicius A, McDannold NJ, Golby AJ. Focused Ultrasound Strategies for Brain Tumor Therapy. Oper Neurosurg. 2020;19(1):9–18. doi:10.1093/ons/opz374
  • Meng Y, Pople CB, Kalia SK, et al. Cost-effectiveness analysis of MR-guided focused ultrasound thalamotomy for tremor-dominant Parkinson’s disease. J Neurosurg. 2020;135(1):273–278. doi:10.3171/2020.5.JNS20692
  • Jung HH, Kim SJ, Roh D, et al. Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder: a proof-of-concept study. Mol Psychiatry. 2015;20(10):1205–1211. doi:10.1038/mp.2014.154
  • Clary A, Tyler WJ, Wetmore DZ. Abstract #45: ultrasound neuromodulation for the treatment of peripheral nerve compression syndromes. Brain Stimulation. 2019;12(2):e16. doi:10.1016/j.brs.2018.12.052
  • Coluccia D, Fandino J, Schwyzer L, et al. First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound. J Ther Ultrasound. 2014;2(1):17. doi:10.1186/2050-5736-2-17
  • Zhang X, Lu H, Tang N, et al. Low-Power Magnetic Resonance-Guided Focused Ultrasound Tumor Ablation upon Controlled Accumulation of Magnetic Nanoparticles by Cascade-Activated DNA Cross-Linkers. ACS Appl Mater Interfaces. 2022;14(28):31677–31688. doi:10.1021/acsami.2c07235