112
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Composite Microgels Loaded with Doxorubicin-Conjugated Amine-Functionalized Zinc Ferrite Nanoparticles for Stimuli-Responsive Sustained Drug Release

, , , , , , ORCID Icon & ORCID Icon show all
Pages 5059-5070 | Received 07 Nov 2023, Accepted 08 Mar 2024, Published online: 30 May 2024

References

  • Adilakshmi B, Reddy OS, Hemalatha D, Krishna Rao KSV, Lai W-F. ROS-generating poly (Ethylene Glycol)-Conjugated Fe3O4 nanoparticles as cancer-targeting sustained release carrier of doxorubicin. Int J Nanomed. 2022;Volume 17:4989–5000. doi:10.2147/IJN.S379200
  • Boddu A, Reddy OS, Zhang D, Rao KK, Lai W-F. ROS-generating, pH-responsive and highly tunable reduced graphene oxide-embedded microbeads showing intrinsic anticancer properties and multi-drug co-delivery capacity for combination cancer therapy. Drug Deliv. 2022;29(1):2481–2490. doi:10.1080/10717544.2022.2100512
  • Pourmadadi M, Ghohrodi AR, Savari Z, et al. Enhancing cancer therapy: the potential of mercaptopurine-based nanomaterials for targeted drug delivery. Next Nanotechnol. 2023;2:100018.
  • Pramanik A, Xu Z, Shamsuddin SH, et al. Affimer tagged cubosomes: targeting of carcinoembryonic antigen expressing colorectal cancer cells using in vitro and in vivo models. ACS Appl Mater Interfaces. 2022;14(9):11078–11091.
  • Dang Y, Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater Med. 2020;1:10–19. doi:10.1016/j.smaim.2020.04.001
  • Lai WF, Tang R, Wong WT. Ionically crosslinked complex gels loaded with oleic acid-containing vesicles for transdermal drug delivery. Pharmaceutics. 2020;12(8):725. doi:10.3390/pharmaceutics12080725
  • Lai WF, He ZD. Design and fabrication of hydrogel-based nanoparticulate systems for in vivo drug delivery. J Control Release. 2016;243:269–282. doi:10.1016/j.jconrel.2016.10.013
  • Pourmadadi M, Eshaghi MM, Shaghaghi M, et al. Nano-scale drug delivery systems for carboplatin: a comprehensive review. OpenNano. 2023;13:100175. doi:10.1016/j.onano.2023.100175
  • Obireddy SR, Chintha M, Kashayi CR, Venkata KR, Subbarao SMC. Gelatin-coated dual cross-linked sodium alginate/magnetite nanoparticle microbeads for controlled release of doxorubicin. ChemistrySelect. 2020;5(33):10276–10284. doi:10.1002/slct.202002604
  • J-J X, Zhang W-C, Guo Y-W, Chen X-Y, Zhang Y-N. Metal nanoparticles as a promising technology in targeted cancer treatment. Drug Deliv. 2022;29(1):664–678. doi:10.1080/10717544.2022.2039804
  • Anjum S, Hashim M, Malik SA, et al. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers. 2021;13(18):4570. doi:10.3390/cancers13184570
  • Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 2010;7(9):1063–1077. doi:10.1517/17425247.2010.502560
  • Xiong H-M. ZnO nanoparticles applied to bioimaging and drug delivery. Adv Mater. 2013;25(37):5329–5335. doi:10.1002/adma.201301732
  • Kim S, Lee SY, Cho H-J. Doxorubicin-wrapped zinc oxide nanoclusters for the therapy of colorectal adenocarcinoma. Nanomaterials. 2017;7(11):354. doi:10.3390/nano7110354
  • Zhang Z-Y, Xiong H-M. Photoluminescent ZnO nanoparticles and their biological applications. Materials. 2015;8(6):3101–3127. doi:10.3390/ma8063101
  • Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today. 2017;22(12):1825–1834. doi:10.1016/j.drudis.2017.08.006
  • Perera WPTD, Dissanayake RK, Ranatunga UI, et al. Curcumin loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications. RSC Adv. 2020;10(51):30785–30795. doi:10.1039/D0RA05755J
  • Gholamali I. Stimuli-responsive polysaccharide hydrogels for biomedical applications: a review. Regen Eng Transl Med. 2021;7(1):91–114. doi:10.1007/s40883-019-00134-1
  • Yadollahi M, Farhoudian S, Barkhordari S, Gholamali I, Farhadnejad H, Motasadizadeh H. Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol. 2016;82:273–278. doi:10.1016/j.ijbiomac.2015.09.064
  • Gholamali I, Yadollahi M. Doxorubicin-loaded carboxymethyl cellulose/Starch/ZnO nanocomposite hydrogel beads as an anticancer drug carrier agent. Int J Biol Macromol. 2020;160:724–735. doi:10.1016/j.ijbiomac.2020.05.232
  • Lai W-F, Huang EM, Wong W-T. A gel-forming clusteroluminogenic polymer with tunable emission behavior as a sustained-release carrier enabling real-time tracking during bioactive agent delivery. Appl Mater Today. 2020;21:100876. doi:10.1016/j.apmt.2020.100876
  • Wu T, Huang J, Jiang Y, et al. Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity. Food Chem. 2018;240:361–369. doi:10.1016/j.foodchem.2017.07.052
  • Sanchez-Ballester NM, Soulairol I, Bataille B, Sharkawi T. Flexible heteroionic calcium-magnesium alginate beads for controlled drug release. Carbohydr Polym. 2019;207:224–229. doi:10.1016/j.carbpol.2018.11.096
  • Sreekanth Reddy O, Subha MCS, Jithendra T, Madhavi C, Chowdoji Rao K. Curcumin encapsulated dual cross linked sodium alginate/montmorillonite polymeric composite beads for controlled drug delivery. J Pharm Anal. 2021;11(2):191–199. doi:10.1016/j.jpha.2020.07.002
  • Leonel AG, Mansur HS, Mansur AAP, et al. Synthesis and characterization of iron oxide nanoparticles/carboxymethyl cellulose core-shell nanohybrids for killing cancer cells in vitro. Int J Biol Macromol. 2019;132:677–691. doi:10.1016/j.ijbiomac.2019.04.006
  • Zare-Akbari Z, Farhadnejad H, Furughi-Nia B, Abedin S, Yadollahi M, Khorsand-Ghayeni M. PH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as drug carrier. Int J Biol Macromol. 2016;93:1317–1327. doi:10.1016/j.ijbiomac.2016.09.110
  • Lai W-F, Shum HC. A stimuli-responsive nanoparticulate system using poly(ethylenimine)-graft-polysorbate for controlled protein release. Nanoscale. 2016;8(1):517–528. doi:10.1039/C5NR06641G
  • Lai W-F, Susha AS, Rogach AL. Multicompartment microgel beads for co-delivery of multiple drugs at individual release rates. ACS Appl Mater Interfaces. 2016;8(1):871–880. doi:10.1021/acsami.5b10274
  • Lai WF, Deng R, He T, Wong WT. A bioinspired, sustained-release material in response to internal signals for biphasic chemical sensing in wound therapy. Adv Healthc Mater. 2021;10(2):e2001267. doi:10.1002/adhm.202001267
  • Bashir S, Hina M, Iqbal J, et al. Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers. 2020;12(11):2702. doi:10.3390/polym12112702
  • Jiang Y, Krishnan N, Heo J, Fang RH, Zhang L. Nanoparticle–hydrogel superstructures for biomedical applications. J Control Release. 2020;324:505–521.
  • Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng. 2014;111(3):441–453. doi:10.1002/bit.25160
  • Mahmood RI, Kadhim AA, Ibraheem S, et al. Biosynthesis of copper oxide nanoparticles mediated Annona muricata as cytotoxic and apoptosis inducer factor in breast cancer cell lines. Sci Rep. 2022;12(1):16165. doi:10.1038/s41598-022-20360-y
  • Stepankova H, Swiatkowski M, Kruszynski R, et al. The anti-proliferative activity of coordination compound-based ZnO nanoparticles as a promising agent against triple negative breast cancer cells. Int J Nanomed. 2021;16:4431. doi:10.2147/IJN.S304902
  • Obireddy SR, Lai W-F. ROS-generating amine-functionalized magnetic nanoparticles coupled with carboxymethyl chitosan for pH-responsive release of doxorubicin. Int J Nanomed. 2022;17:589–601. doi:10.2147/IJN.S338897
  • Farhoudian S, Yadollahi M, Namazi H. Facile synthesis of antibacterial chitosan/CuO bio-nanocomposite hydrogel beads. Int J Biol Macromol. 2016;82:837–843. doi:10.1016/j.ijbiomac.2015.10.018
  • Yadollahi M, Farhoudian S, Namazi H. One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol. 2015;79:37–43. doi:10.1016/j.ijbiomac.2015.04.032
  • Giri TK. 20 - Alginate Containing Nanoarchitectonics for Improved Cancer Therapy. In: Holban AM, Grumezescu AM, editors. Nanoarchitectonics for Smart Delivery and Drug Targeting. William Andrew Publishing; 2016:565–588.
  • Pedroso-Santana S, Fleitas-Salazar N. Ionotropic gelation method in the synthesis of nanoparticles/microparticles for biomedical purposes. Polym Int. 2020;69(5):443–447. doi:10.1002/pi.5970
  • Sacco P, Pedroso-Santana S, Kumar Y, Joly N, Martin P, Bocchetta P. Ionotropic gelation of chitosan flat structures and potential applications. Molecules. 2021;26(3):660. doi:10.3390/molecules26030660
  • Cánepa C, Imperiale JC, Berini CA, Lewicki M, Sosnik A, Biglione MM. Development of a drug delivery system based on chitosan nanoparticles for oral administration of interferon-α. Biomacromolecules. 2017;18(10):3302–3309. doi:10.1021/acs.biomac.7b00959
  • Reddy NS, Eswaramma S, Chung I, Rao KK, Ramesh P, Chandra Sekhar A. Chitosan/poly(dimethylaminoethylmethacrylate-co-hydroxyethylacrylate) based semi-IPN hydrogels and silver nanocomposites: synthesis, evaluation of amoxicillin release studies, and antibacterial studies. Int J Polym Mater Polym Biomater. 2019;68(14):870–880. doi:10.1080/00914037.2018.1517349
  • Lai WF, Susha AS, Rogach AL, et al. Electrospray-mediated preparation of compositionally homogeneous core–shell hydrogel microspheres for sustained drug release. RSC Adv. 2017;7:44482–44491. doi:10.1039/C7RA07568E
  • Pallerla D, Banoth S, Jyothi S. Fabrication of nano clay intercalated polymeric microbeads for controlled release of curcumin. Int J Appl Pharm. 2021;13(1):206–215. doi:10.22159/ijap.2021v13i1.39965
  • Jithendra T, Reddy OS, Subha MCS, Rao KC. Fabrication of drug delivery system for controlled release of curcumin, intercalated with magnetite nanoparticles through sodium alginate/polyvinylpyrrolidone-co-vinyl acetate semi-IPN microbeads. Int J Appl Pharm. 2020;12:249–257. doi:10.22159/ijap.2020v12i5.37761
  • Chintha M, Obireddy SR, Areti P, Marata Chinna Subbarao S, Kashayi CR, Rapoli JK. Sodium alginate/locust bean gum-g-methacrylic acid IPN hydrogels for “simvastatin” drug delivery. J Dispers Sci Technol. 2020;41(14):2192–2202. doi:10.1080/01932691.2019.1677247
  • Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–133.
  • Rao KM, Kumar A, Suneetha M, Han SS. pH and near-infrared active; chitosan-coated halloysite nanotubes loaded with curcumin-Au hybrid nanoparticles for cancer drug delivery. Int J Biol Macromol. 2018;112:119–125. doi:10.1016/j.ijbiomac.2018.01.163
  • Matloubi Moghaddam F, Doulabi M, Saeidian H. Controlled microwave-assisted synthesis of ZnFe2O4 nanoparticles and their catalytic activity for O-acylation of alcohol and phenol in acetic anhydride. Sci Iran. 2012;19(6):1597–1600. doi:10.1016/j.scient.2012.10.013
  • Lungu II, Nistorescu S, Badea MA, et al. Doxorubicin-conjugated iron oxide nanoparticles synthesized by laser pyrolysis: in vitro study on human breast cancer cells. Polymers. 2020;12(12):2799. doi:10.3390/polym12122799
  • Zhang X, Chen Z, Liu J, Cui S. Synthesis and characterization of ZnFe2O4 nanoparticles on infrared radiation by xerogel with sol-gel method. Chem Phys Lett. 2021;764:138265. doi:10.1016/j.cplett.2020.138265
  • Lanz-Landázuri A, Martínez de Ilarduya A, García-Alvarez M, Muñoz-Guerra S. Poly(β,L-malic acid)/Doxorubicin ionic complex: a pH-dependent delivery system. React Funct Polym. 2014;81:45–53. doi:10.1016/j.reactfunctpolym.2014.04.005
  • Li L, Fan H, Wang L, Jin Z. Does halloysite behave like an inert carrier for doxorubicin? RSC Adv. 2016;6(59):54193–54201.
  • Reddy OS, Subha MCS, Jithendra T, Madhavi C, Rao KC. Fabrication and characterization of smart karaya gum/sodium alginate semi-IPN microbeads for controlled release of D-penicillamine drug. Polym Polym Compos. 2020;29(3):163–175.
  • Padma GT, Rao TS, Naidu KCB. Preparation, characterization and dielectric properties of sodium alginate/titanium dioxide composite membranes. SN Appl Sci. 2018;1(1):75. doi:10.1007/s42452-018-0083-y
  • Pourmadadi M, Rahmani E, Shamsabadipour A, et al. Role of Iron Oxide (Fe2O3) Nanocomposites in advanced biomedical applications: a state-of-the-art review. Nanomaterials. 2022;12(21):3873.
  • Akl MA, Kamel AM, El-Ghaffar MAA. Biodegradable functionalized magnetite nanoparticles as binary-targeting carrier for breast carcinoma. BMC Chem. 2023;17(1):3. doi:10.1186/s13065-023-00915-4
  • Eswaramma S, Rao KK. Synthesis of dual responsive carbohydrate polymer based IPN microbeads for controlled release of anti-HIV drug. Carbohydr Polym. 2017;156:125–134. doi:10.1016/j.carbpol.2016.09.023
  • Tao Y, Liu S, Zhang Y, Chi Z, Xu J. A pH-responsive polymer based on dynamic imine bonds as a drug delivery material with pseudo target release behavior. Polym Chem. 2018;9(7):878–884. doi:10.1039/C7PY02108A