101
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Machine Learning Tools to Assist the Synthesis of Antibacterial Carbon Dots

, , , , , , , , & ORCID Icon show all
Pages 5213-5226 | Received 24 Nov 2023, Accepted 03 May 2024, Published online: 04 Jun 2024

References

  • Hernando-Amado S, Coque TM, Baquero F, Martínez JL. Defining and combating antibiotic resistance from one health and global health perspectives. Nat Microbiol. 2019;4(9):1432–1442. doi:10.1038/s41564-019-0503-9
  • Kwon JH, Powderly WG. The post-antibiotic era is here. Science. 2021;373(6554):471. doi:10.1126/science.abl599
  • Nelson RE, Hatfield KM, Wolford H, et al. National estimates of healthcare costs associated with multidrug-resistant bacterial infections among hospitalized patients in the United States. Clin Infect Dis. 2021;72(Supplement_1):S17–S26. doi:10.1093/cid/ciaa1581
  • Baquero F, Levin BR. Proximate and ultimate causes of the bactericidal action of antibiotics. Nat Rev Microbiol. 2021;19(2):123–132. doi:10.1038/s41579-020-00443-1
  • Chu J, Koirala B, Forelli N, et al. Synthetic-bioinformatic natural product antibiotics with diverse modes of action. J Am Chem Soc. 2020;142(33):14158–14168. doi:10.1021/jacs.0c04376
  • Lai CKC, Ng RWY, Leung SSY, Hui M, Ip M. Overcoming the rising incidence and evolving mechanisms of antibiotic resistance by novel drug delivery approaches – an overview. Advanced Drug Delivery Reviews. 2022;181:114078. doi:10.1016/j.addr.2021.114078
  • Hochvaldová L, Večeřová R, Kolář M, et al. Antibacterial nanomaterials: upcoming hope to overcome antibiotic resistance crisis. Nanotechnol Rev. 2022;11:1115–1142. doi:10.1515/ntrev-2022-0059
  • Qin S, Xie M, Cao S, et al. Insight into the antibacterial resistance of graphdiyne functionalized by silver nanoparticles. Cell Prolif. 2022;55:13236. doi:10.1111/cpr.13236
  • Dat NM, Thinh DB, Huong LM, et al. Facile synthesis and antibacterial activity of silver nanoparticles-modified graphene oxide hybrid material: the assessment, utilization, and anti-virus potentiality. Mater Today Chem. 2022;23:100738. doi:10.1016/j.mtchem.2021.100738
  • Nguyen NTT, Nguyen LM, Nguyen TTT, Nguyen TT, Nguyen DTC, Van Tran T. Formation, antimicrobial activity, and biomedical performance of plant-based nanoparticles: a review. Environ Chem Lett. 2022;20:2531–2571. doi:10.1007/s10311-022-01425-w
  • Yu Z, Li Q, Wang J, et al. Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res Lett. 2020;15:115. doi:10.1186/s11671-020-03344-7
  • Wang Z, Wang X, Wang Y, et al. NanoZnO ‑ modified titanium implants for enhanced anti ‑ bacterial activity, osteogenesis and corrosion resistance. J Nanobiotechnology. 2021;19:353. doi:10.1186/s12951-021-01099-6
  • Ji Y, Han Z, Ding H, et al. Enhanced eradication of bacterial/fungi biofilms by glucose oxidase-modified magnetic nanoparticles as a potential treatment for persistent endodontic infections. ACS Appl Mater Interfaces. 2021;13:17289–17299. doi:10.1016/j.bioactmat.2021.04.033
  • Wang Z, Mei L, Liu X, Zhou Q. Hierarchically hybrid biocoatings on Ti implants for enhanced antibacterial activity and osteogenesis. Colloids Surf B Biointerfaces. 2021;204:111802. doi:10.1016/j.colsurfb.2021.111802
  • Xu S, Zhou Q, Jiang Z, et al. The effect of doxycycline-containing chitosan/carboxymethyl chitosan nanoparticles on NLRP3 inflammasome in periodontal disease. Carbohydr Polym. 2020;237:116163. doi:10.1016/j.carbpol.2020.116163
  • Godoy-Gallardo M, Eckhard U, Delgado LM, et al. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: from mechanisms to applications. Bioact Mater. 2021;6:4470–4490. doi:10.1016/j.bioactmat.2021.04.033
  • Huang S, Song Y, Zhang JR, Chen X, Zhu JJ. Antibacterial carbon dots-based composites. Small. 2023;2207385:1–28. doi:10.1002/smll.202207385
  • Ezati P, Rhim JW, Molaei R, et al. Preparation and characterization of B, S, and N-doped glucose carbon dots: antibacterial, antifungal, and antioxidant activity, Sustain. Mater Technol. 2022;32:e00397. doi:10.1016/j.susmat.2022.e00397
  • Liu Y, Xu B, Lu M, et al. Ultrasmall Fe-doped carbon dots nanozymes for photoenhanced antibacterial therapy and wound healing. Bioact Mater. 2022;12:246–256. doi:10.1016/j.bioactmat.2021.10.023
  • Wang Z, Sheng L, Yang X, et al. Natural biomass-derived carbon dots as potent antimicrobial agents against multidrug-resistant bacteria and their biofilms, Sustain. Mater Technol. 2023;36:e00584. doi:10.1016/j.susmat.2023.e00584
  • Qiao G, Chen G, Wen Q, et al. Rapid conversion from common precursors to carbon dots in large scale: spectral controls, optical sensing, cellular imaging and LEDs application. J Colloid Interface Sci. 2020;580:88–98. doi:10.1016/j.jcis.2020.07.034
  • Yang J, Zhang X, Ma YH, et al. Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Appl Mater Interfaces. 2016;8:32170–32181. doi:10.1021/acsami.8b08832
  • Wang X, Wang H, Zhou W, et al. Carbon dots with tunable third-order nonlinear coefficient instructed by machine learning. J Photochem Photobiol A. 2022;426:113729.
  • Gao C, Min X, Fang M, et al. Innovative materials science via machine learning. Adv Funct Mater. 2022;32:2108044. doi:10.1002/adfm.202108044
  • Choudhary K, DeCost B, Chen C, et al. Recent advances and applications of deep learning methods in materials science. npj Comput Mater. 2022;8:59. doi:10.1038/s41524-022-00734-6
  • Suwardi A, Wang FK, Xue K, et al. Machine learning-driven biomaterials evolution. Adv Mater. 2022;34:e2102703. doi:10.1002/adma.202102703
  • Furxhi I, Murphy F, Mullins M, et al. Nanotoxicology data for in silico tools: a literature review. Nanotoxicology. 2020;14:612–637. doi:10.1080/17435390.2020.1729439
  • Mirzaei M, Furxhi I, Murphy F, Mullins M. A machine learning tool to predict the antibacterial capacity of nanoparticles. Nanomaterials. 2021;11:1774. doi:10.1021/acsami.8b08832
  • Wang XY, Bin Chen B, Zhang J, et al. Exploiting deep learning for predictable carbon dot design. Chem Commun. 2021;57:532–535. doi:10.1039/d0cc07882d
  • Singh VK, Maurya NS, Mani A, Yadav RS. Machine learning method using position-specific mutation based classification outperforms one hot coding for disease severity prediction in haemophilia ‘A’. Genomics. 2020;112:5122–5128. doi:10.1039/d0cc07882d
  • Shlens J, A Tutorial on Principal Component Analysis; 2014. Available from: http://arxiv.org/abs/1404.1100. Accessed May 21, 2024.
  • Juan Y, Dai Y, Yang Y, Zhang J. Accelerating materials discovery using machine learning. J Mater Sci Technol. 2021;79:178–190. doi:10.1016/j.jmst.2020.12.010
  • Katsikas G, Sarafidis C, Kioseoglou J. Machine learning in magnetic materials. Physica Status Solidi. 2021;258:2000600. doi:10.1002/pssb.202000600
  • Rickert CA, Hayta EN, Selle DM, et al. Machine learning approach to analyze the surface properties of biological materials. ACS Biomater Sci Eng. 2021;7:4614–4625. doi:10.1021/acsbiomaterials.1c00869
  • Duan J, Asteris PG, Nguyen H, Bui XN, Moayedi H. A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model. Eng Comput. 2021;37:3329–3346. doi:10.1007/s00366-020-01003-0
  • Agrawal A, Deshpande PD, Cecen A, Basavarsu GP, Choudhary AN, Kalidindi SR. Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters, Integr. Mater Manuf Innov. 2014;3:8. doi:10.1186/2193-9772-3-8
  • Prasad D, Sreekumar P, Karumbu P. Identification and classification of materials using machine vision and machine learning in the context of industry 4. 0. J Intell Manuf. 2020;31:1229–1241. doi:10.1007/s10845-019-01508-6
  • Chicco D, Tötsch N, Jurman G. The Matthews correlation coefficient (Mcc) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Min. 2021;14:612–637. doi:10.1186/s13040-021-00244-z
  • Omar L, Ivrissimtzis I. Using theoretical ROC curves for analysing machine learning binary classifiers. Pattern Recognit Lett. 2019;128:447–451. doi:10.1016/j.patrec.2019.10.004
  • Georgescu AB, Ren P, Toland AR, et al. Database, features, and machine learning model to identify thermally driven metal-insulator transition compounds. Chem Mater. 2021;33:5591–5605. doi:10.1021/acs.chemmater.1c00905
  • Lee HC, Yoon HK, Nam K, et al. Derivation and validation of machine learning approaches to predict acute kidney injury after cardiac surgery. J Clin Med. 2018;7:332. doi:10.3390/jcm7100322
  • Dou Q, Fang X, Jiang S, Chee PL, Lee T, Loh XJ. RSC Advances antibacterial and gene delivery properties. RSC Adv. 2015;5:46817–46822.
  • Hou P, Yang T, Liu H, Li YF, Huang CZ. An active structure preservation method for developing functional graphitic carbon dots as an effective antibacterial agent and a sensitive pH and Al(III) nanosensor. Nanoscale. 2017;9:17334–17341. doi:10.1039/c7nr05539k
  • Ju B, Nie H, Zhang XG, et al. Inorganic salt incorporated solvothermal synthesis of multicolor carbon dots, emission mechanism, and antibacterial study. ACS Appl Nano Mater. 2018;1:6131–6138. doi:10.1021/acsanm.8b01355
  • Sun B, Wu F, Zhang Q, et al. Journal of colloid and interface science insight into the effect of particle size distribution differences on the antibacterial activity of carbon dots. J Colloid Interface Sci. 2021;584:505–519. doi:10.1016/j.jcis.2020.10.015
  • Serafim MSM, Kronenberger T, Oliveira PR, et al. The application of machine learning techniques to innovative antibacterial discovery and development. Expert Opin Drug Discov. 2020;15:1165–1180. doi:10.3390/jcm7100322
  • He M, Zhang L. Machine learning and symbolic regression investigation on stability of MXene materials. Comput. Mater. Sci. 2021;196:110578. doi:10.1016/j.commatsci.2021.110578
  • Nembrini S, Ko IR, Wright MN, Lu C. Data and text mining The revival of the Gini importance ? Bioinformatics 2018;34:3711–3718. doi:10.1093/bioinformatics/bty373
  • Jin J, Dong P, Lai L. One-step synthesis of silver nanoparticles using carbon dots as reducing and stabilizing agents and their antibacterial mechanisms. Carbon N Y. 2015;94:129–141. doi:10.1016/j.carbon.2015.05.084
  • Dong X, Liang W, Meziani MJ, Sun YP, Yang L. Carbon dots as potent antimicrobial agents. Theranostics. 2020;10:671–686. doi:10.7150/thno.39863
  • Jian HJ, Wu RS, Lin TY, et al. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano. 2017;11:6703–6716. doi:10.1016/j.commatsci.2021.110578
  • Anand A, Unnikrishnan B, Wei SC, Chou CP, Zhang LZ, Huang CC. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents-a minireview. Nano Horiz. 2019;4:117–137. doi:10.1039/c8nh00174j
  • Bing W, Sun H, Yan Z, Ren J, Qu X. Programmed bacteria death induced by carbon dots with different surface charge. Small. 2016;12:4713–4718. doi:10.1002/smll.201600294
  • Ghirardello M, Ramos-Soriano J, Galan MC. Carbon dots as an emergent class of antimicrobial agents. Nanomaterials. 2021;11:1877. doi:10.3390/nano11081877
  • Jones DE, Ghandehari H, Facelli JC. A review of the applications of data mining and machine learning for the prediction of biomedical properties of nanoparticles, Comput. Methods Programs Biomed. 2016;132:93–103. doi:10.1016/j.cmpb.2016.04.025
  • Yu Y, Tan X, Ning S, Wu Y. Machine learning for understanding compatibility of organic-inorganic hybrid perovskites with post-treatment amines. ACS Energy Lett. 2019;4:397–404. doi:10.1021/acsenergylett.8b02451
  • Sun B, Wu F, Zhang Q, et al. Insight into the effect of particle size distribution differences on the antibacterial activity of carbon dots. J Colloid Interface Sci. 2021;584:505–519. doi:10.1016/j.jcis.2020.10.015
  • Jin JC, Xu ZQ, Dong P, et al. One-step synthesis of silver nanoparticles using carbon dots as reducing and stabilizing agents and their antibacterial mechanisms. Carbon N Y. 2015;94:129–141. doi:10.1016/j.carbon.2015.05.084
  • Verma A, Arshad F, Ahmad K, et al. Role of surface charge in enhancing antibacterial activity of fluorescent carbon dots. Nanotechnology. 2020;31:095101. doi:10.1088/1361-6528/ab55b8
  • Peng J, Muhammad R, Wang SL, Zhong HZ. How machine learning accelerates the development of quantum dots? Chinese J Chem. 2021;39:181–188. doi:10.1002/cjoc.202000393