25
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Sensitize Tumor Immunotherapy: Immunogenic Cell Death Inducing Nanosystems

, ORCID Icon &
Pages 5895-5930 | Received 28 Jan 2024, Accepted 22 May 2024, Published online: 02 Jul 2024

References

  • Duan X, Chan C, Lin W. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew. Chem. Int. Ed. 2019;58(3):670–680. doi:10.1002/anie.201804882
  • Couzin-Frankel J. Cancer Immunotherapy. Science. 2013;342(6165):1432–1433. doi:10.1126/science.342.6165.1432
  • Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56–61. doi:10.1126/science.aaa8172
  • Wang DY, Salem JE, Cohen JV, et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 2018;4(12):1721–1728. doi:10.1001/jamaoncol.2018.3923
  • Peng M, Mo Y, Wang Y, et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer. 2019;18(1):128. doi:10.1186/s12943-019-1055-6
  • Yatim N, Cullen S, Albert ML. Dying cells actively regulate adaptive immune responses. Nat Rev Immunol. 2017;17(4):262–275. doi:10.1038/nri.2017.9
  • Niu L, Strahotin S, Hewes B, et al. Cytokine-mediated disruption of lymphocyte trafficking, hemopoiesis, and induction of lymphopenia, anemia, and thrombocytopenia in Anti-CD137-treated mice1. J Immunol. 2007;178(7):4194–4213. doi:10.4049/jimmunol.178.7.4194
  • Leonard JP, Sherman ML, Fisher GL, et al. Effects of single-dose interleukin-12 exposure on interleukin-12–associated toxicity and interferon-γ production. Blood. 1997;90(7):2541–2548. doi:10.1182/blood.V90.7.2541
  • Di Giacomo AM, Biagioli M, Maio M. The emerging toxicity profiles of anti–CTLA-4 antibodies across clinical indications. Semin Oncol. 2010;37(5):499–507. doi:10.1053/j.seminoncol.2010.09.007
  • Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic nanoparticles for vaccines and immunotherapy. Chem Rev. 2015;115(19):11109–11146. doi:10.1021/acs.chemrev.5b00109
  • Chow EKH, Ho D. Cancer nanomedicine: from drug delivery to imaging. Sci, trans med. 2013;5(216):216rv4–216rv4. doi:10.1126/scitranslmed.3005872
  • Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol. 2022;23(4):487–500. doi:10.1038/s41590-022-01132-2
  • Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17(2):97–111. doi:10.1038/nri.2016.107
  • Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer. 2021;21(5):298–312. doi:10.1038/s41568-021-00339-z
  • Dedhar S. Novel functions for calreticulin: interaction with integrins and modulation of gene expression? Trends Biochem Sci. 1994;19(7):269–271. doi:10.1016/0968-0004(94)90001-9
  • Obeid M. ERP57 membrane translocation dictates the immunogenicity of tumor cell death by controlling the membrane translocation of calreticulin1. J Immunol. 2008;181(4):2533–2543. doi:10.4049/jimmunol.181.4.2533
  • Gardai SJ, McPhillips KA, Frasch SC, et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell. 2005;123(2):321–334. doi:10.1016/j.cell.2005.08.032
  • Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13(1):54–61. doi:10.1038/nm1523
  • Panaretakis T, Joza N, Modjtahedi N, et al. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ. 2008;15(9):1499–1509. doi:10.1038/cdd.2008.67
  • Elliott MR, Chekeni FB, Trampont PC, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009;461(7261):282–286. doi:10.1038/nature08296
  • Martins I, Wang Y, Michaud M, et al. Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death Differ. 2014;21(1):79–91. doi:10.1038/cdd.2013.75
  • Ghiringhelli F, Apetoh L, Tesniere A, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat Med. 2009;15(10):1170–1178. doi:10.1038/nm.2028
  • Wang Y, Martins I, Ma Y, Kepp O, Galluzzi L, Kroemer G. Autophagy-dependent ATP release from dying cells via lysosomal exocytosis. Autophagy. 2013;9(10):1624–1625. doi:10.4161/auto.25873
  • Michaud M, Martins I, Sukkurwala AQ, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011;334(6062):1573–1577. doi:10.1126/science.1208347
  • Li J, Cai W, Yu J, et al. Autophagy inhibition recovers deficient ICD-based cancer immunotherapy. Biomaterials. 2022;287:121651. doi:10.1016/j.biomaterials.2022.121651
  • Yang H, Wang H, Chavan SS, Andersson U. High mobility group box protein 1 (HMGB1): the prototypical endogenous danger molecule. Mol Med. 2015;21(1):S6–S12. doi:10.2119/molmed.2015.00087
  • Apetoh L, Ghiringhelli F, Tesniere A, et al. Toll-like receptor 4–dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050–1059. doi:10.1038/nm1622
  • Fabian KP, Wolfson B, Hodge JW. From immunogenic cell death to immunogenic modulation: select chemotherapy regimens induce a spectrum of immune-enhancing activities in the tumor microenvironment. Front Oncol. 2021;2021:11.
  • Fucikova J, Kepp O, Kasikova L, et al. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020;11(11):1–13. doi:10.1038/s41419-020-03221-2
  • Kraehenbuehl L, Weng CH, Eghbali S, Wolchok JD, Merghoub T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat Rev Clin Oncol. 2022;19(1):37–50. doi:10.1038/s41571-021-00552-7
  • Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression — implications for anticancer therapy. Nat Rev Clin Oncol. 2019;16(6):356–371. doi:10.1038/s41571-019-0175-7
  • Sautès-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. 2019;19(6):307–325. doi:10.1038/s41568-019-0144-6
  • Kepp O, Menger L, Vacchelli E, et al. Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev. 2013;24(4):311–318. doi:10.1016/j.cytogfr.2013.05.001
  • Garg AD, Dudek-Peric AM, Romano E, Agostinis P. Immunogenic cell death. Int J Dev Biol. 2015;59(1–2–3):131–140. doi:10.1387/ijdb.150061pa
  • Oda N, Shimazu K, Naoi Y, et al. Intratumoral regulatory T cells as an independent predictive factor for pathological complete response to neoadjuvant paclitaxel followed by 5-FU/epirubicin/cyclophosphamide in breast cancer patients. Breast Cancer Res Treat. 2012;136(1):107–116. doi:10.1007/s10549-012-2245-8
  • Panaretakis T, Kepp O, Brockmeier U, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 2009;28(5):578–590. doi:10.1038/emboj.2009.1
  • Liu Z, Xu X, Liu K, Zhang J, Ding D, Fu R. Immunogenic cell death in hematological malignancy therapy. Adv. Sci. 2023;10(13):2207475. doi:10.1002/advs.202207475
  • Garg AD, Krysko DV, Verfaillie T, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J. 2012;31(5):1062–1079. doi:10.1038/emboj.2011.497
  • Yang H, Villani RM, Wang H, et al. The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res. 2018;37(1):266. doi:10.1186/s13046-018-0909-x
  • Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12(12):860–875. doi:10.1038/nrc3380
  • Rufo N, Garg AD, Agostinis P. The unfolded protein response in immunogenic cell death and cancer immunotherapy. Trends Cancer. 2017;3(9):643–658. doi:10.1016/j.trecan.2017.07.002
  • Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev. 2013;24(4):319–333. doi:10.1016/j.cytogfr.2013.01.005
  • Schiavoni G, Sistigu A, Valentini M, et al. Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res. 2011;71(3):768–778. doi:10.1158/0008-5472.CAN-10-2788
  • Bugaut H, Bruchard M, Berger H, et al. Bleomycin exerts ambivalent antitumor immune effect by triggering both immunogenic cell death and proliferation of regulatory T cells. PLoS One. 2013;8(6):e65181. doi:10.1371/journal.pone.0065181
  • Lu Y, Zhu D, Hu B, et al. pH-responsive, self-assembled ruthenium nanodrug: dual impact on lysosomes and DNA for synergistic chemotherapy and immunogenic cell death. Small. 2024:2310636. doi:10.1002/smll.202310636
  • Sen S, Hufnagel S, Maier EY, et al. Rationally designed redox-active Au(I) N-heterocyclic carbene: an immunogenic cell death inducer. J Am Chem Soc. 2020;142(49):20536–20541. doi:10.1021/jacs.0c09753
  • Kaur P, Johnson A, Northcote‐Smith J, Lu C, Suntharalingam K. Immunogenic cell death of breast cancer stem cells induced by an endoplasmic reticulum‐targeting copper(II) Complex. ChemBioChem. 2020;21(24):3618–3624. doi:10.1002/cbic.202000553
  • Xiong X, Huang KB, Wang Y, et al. Target profiling of an iridium(III)-based immunogenic cell death inducer unveils the engagement of unfolded protein response regulator BiP. J Am Chem Soc. 2022;144(23):10407–10416. doi:10.1021/jacs.2c02435
  • Terenzi A, Pirker C, Keppler BK, Berger W. Anticancer metal drugs and immunogenic cell death. J Inorg Biochem. 2016;165:71–79. doi:10.1016/j.jinorgbio.2016.06.021
  • Zhang D, Zhang J, Li Q, et al. pH- and Enzyme-Sensitive IR820–paclitaxel conjugate self-assembled nanovehicles for near-infrared fluorescence imaging-guided chemo–photothermal therapy. ACS Appl Mater Interfaces. 2018;10(36):30092–30102. doi:10.1021/acsami.8b09098
  • Lin TJ, Lin HT, Chang WT, et al. Shikonin-enhanced cell immunogenicity of tumor vaccine is mediated by the differential effects of DAMP components. Mol Cancer. 2015;14(1):174. doi:10.1186/s12943-015-0435-9
  • Yang Y, Li XJ, Chen Z, et al. Wogonin induced calreticulin/Annexin A1 Exposure dictates the immunogenicity of cancer cells in a PERK/AKT dependent manner. PLoS One. 2012;7(12):e50811. doi:10.1371/journal.pone.0050811
  • Lau TS, Chan LKY, Man GCW, et al. Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE-dependent exocytosis. Cancer Immunol Res. 2020;8(8):1099–1111. doi:10.1158/2326-6066.CIR-19-0616
  • Aranda F, Bloy N, Pesquet J, et al. Immune-dependent antineoplastic effects of cisplatin plus pyridoxine in non-small-cell lung cancer. Oncogene. 2015;34(23):3053–3062. doi:10.1038/onc.2014.234
  • Bezu L, Sauvat A, Humeau J, et al. eIF2α phosphorylation is pathognomonic for immunogenic cell death. Cell Death Differ. 2018;25(8):1375–1393. doi:10.1038/s41418-017-0044-9
  • Sukkurwala AQ, Adjemian S, Senovilla L, et al. Screening of novel immunogenic cell death inducers within the NCI mechanistic diversity set. OncoImmunology. 2014;3(4):e28473. doi:10.4161/onci.28473
  • Wang H, Mu X, He H, Zhang XD. Cancer Radiosensitizers. Trends Pharmacol Sci. 2018;39(1):24–48. doi:10.1016/j.tips.2017.11.003
  • Seymour CB, Mothersill C. Radiation-induced bystander effects — implications for cancer. Nat Rev Cancer. 2004;4(2):158–164. doi:10.1038/nrc1277
  • Prise KM, O’Sullivan JM. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer. 2009;9(5):351–360. doi:10.1038/nrc2603
  • Kim W, Lee S, Seo D, et al. Cellular stress responses in radiotherapy. Cells. 2019;8(9):1105. doi:10.3390/cells8091105
  • Ngiow SF, McArthur GA, Smyth MJ. Radiotherapy complements immune checkpoint blockade. Cancer Cell. 2015;27(4):437–438. doi:10.1016/j.ccell.2015.03.015
  • Deng L, Liang H, Xu M, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41(5):843–852. doi:10.1016/j.immuni.2014.10.019
  • Gameiro SR, Jammed ML, Wattenberg MM, Tsang KY, Ferrone S, Hodge JW. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget. 2013;5(2):403–416. doi:10.18632/oncotarget.1719
  • Garnett CT, Palena C, Chakarborty M, Tsang KY, Schlom J, Hodge JW. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res. 2004;64(21):7985–7994. doi:10.1158/0008-5472.CAN-04-1525
  • Chakraborty M, Wansley EK, Carrasquillo JA, et al. The use of chelated radionuclide (Samarium-153-Ethylenediaminetetramethylenephosphonate) to modulate phenotype of tumor cells and enhance T cell–mediated killing. Clin Cancer Res. 2008;14(13):4241–4249. doi:10.1158/1078-0432.CCR-08-0335
  • Reits EA, Hodge JW, Herberts CA, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 2006;203(5):1259–1271. doi:10.1084/jem.20052494
  • Ahn GO, Tseng D, Liao CH, Dorie MJ, Czechowicz A, Brown JM. Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc Natl Acad Sci. 2010;107(18):8363–8368. doi:10.1073/pnas.0911378107
  • Kachikwu EL, Iwamoto KS, Liao YP, et al. Radiation enhances regulatory T cell representation. Internat J Rad Oncol Biol Phys. 2011;81(4):1128–1135. doi:10.1016/j.ijrobp.2010.09.034
  • Pan P, Dong X, Chen Y, Ye JJ, Sun YX, Zhang XZ. A heterogenic membrane-based biomimetic hybrid nanoplatform for combining radiotherapy and immunotherapy against breast cancer. Biomaterials. 2022;289:121810. doi:10.1016/j.biomaterials.2022.121810
  • Demaria S, Formenti SC. Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol. 2012;2:153. doi:10.3389/fonc.2012.00153
  • Huang Z, Wang Y, Yao D, Wu J, Hu Y, Yuan A. Nanoscale coordination polymers induce immunogenic cell death by amplifying radiation therapy mediated oxidative stress. Nat Commun. 2021;12(1):145. doi:10.1038/s41467-020-20243-8
  • Maggiorella L, Barouch G, Devaux C, et al. Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol. 2012;8(9):1167–1181. doi:10.2217/fon.12.96
  • Ni K, Luo T, Culbert A, Kaufmann M, Jiang X, Lin W. Nanoscale metal–organic framework co-delivers TLR-7 agonists and Anti-CD47 antibodies to modulate macrophages and orchestrate cancer immunotherapy. J Am Chem Soc. 2020;142(29):12579–12584. doi:10.1021/jacs.0c05039
  • Song H, Sun H, He N, et al. Gadolinium-based ultra-small nanoparticles augment radiotherapy-induced T-cell response to synergize with checkpoint blockade immunotherapy. Nanoscale. 2022;14(31):11429–11442. doi:10.1039/D2NR02620A
  • Verry C, Dufort S, Villa J, et al. Theranostic AGuIX nanoparticles as radiosensitizer: a Phase I, dose-escalation study in patients with multiple brain metastases (NANO-RAD trial). Radiother Oncol. 2021;160:159–165. doi:10.1016/j.radonc.2021.04.021
  • Liu Y, Pan Y, Cao W, et al. A tumor microenvironment responsive biodegradable CaCO3/MnO2- based nanoplatform for the enhanced photodynamic therapy and improved PD-L1 immunotherapy. Theranostics. 2019;9(23):6867–6884. doi:10.7150/thno.37586
  • Buytaert E, Dewaele M, Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Bioch et Bioph Acta. 2007;1776(1):86–107. doi:10.1016/j.bbcan.2007.07.001
  • Garg AD, Dudek AM, Ferreira GB, et al. ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy. 2013;9(9):1292–1307. doi:10.4161/auto.25399
  • Alzeibak R, Mishchenko TA, Shilyagina NY, Balalaeva IV, Vedunova MV, Krysko DV. Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future. J Immunother Cancer. 2021;9(1):e001926. doi:10.1136/jitc-2020-001926
  • Zeng S, Chen C, Zhang L, et al. Activation of pyroptosis by specific organelle-targeting photodynamic therapy to amplify immunogenic cell death for anti-tumor immunotherapy. Bioact Mater. 2023;25:580–593. doi:10.1016/j.bioactmat.2022.07.016
  • Shao Y, Liu B, Di Z, et al. Engineering of upconverted metal–organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors. J Am Chem Soc. 2020;142(8):3939–3946. doi:10.1021/jacs.9b12788
  • Vankayala R, Hwang KC. Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: an emerging paradigm for cancer treatment. Adv Mater. 2018;30(23):e1706320. doi:10.1002/adma.201706320
  • Xu L, Mou F, Gong H, Luo M, Guan J. Light-driven micro/nanomotors: from fundamentals to applications. Chem Soc Rev. 2017;46(22):6905–6926. doi:10.1039/c7cs00516d
  • Gu Z, Zhu S, Yan L, Zhao F, Zhao Y. Graphene-based smart platforms for combined cancer therapy. Adv. Mater. 2019;31(9):1800662. doi:10.1002/adma.201800662
  • Pan H, Zhang C, Wang T, Chen J, Sun SK. In situ fabrication of intelligent photothermal indocyanine green–alginate hydrogel for localized tumor ablation. ACS Appl Mater Interfaces. 2019;11(3):2782–2789. doi:10.1021/acsami.8b16517
  • Song J, Zhang N, Zhang L, et al. IR780-loaded folate-targeted nanoparticles for near-infrared fluorescence image-guided surgery and photothermal therapy in ovarian cancer. Int j Nanomed. 2019;14:2757–2772. doi:10.2147/IJN.S203108
  • Wu S, Li A, Zhao X, et al. Silica-coated gold–silver nanocages as photothermal antibacterial agents for combined anti-infective therapy. ACS Appl Mater Interfaces. 2019;11(19):17177–17183. doi:10.1021/acsami.9b01149
  • Luo L, Bian Y, Liu Y, et al. Combined near infrared photothermal therapy and chemotherapy using gold nanoshells coated liposomes to enhance antitumor effect. Small. 2016;12(30):4103–4112. doi:10.1002/smll.201503961
  • Lee C, Hwang HS, Lee S, et al. Rabies virus-inspired silica-coated gold nanorods as a photothermal therapeutic platform for treating brain tumors. Adv. Mater. 2017;29(13):1605563. doi:10.1002/adma.201605563
  • Guo W, Chen Z, Feng X, et al. Graphene oxide (GO)-based nanosheets with combined chemo/photothermal/photodynamic therapy to overcome gastric cancer (GC) paclitaxel resistance by reducing mitochondria-derived adenosine-triphosphate (ATP). J Nanobiotechnology. 2021;19:146. doi:10.1186/s12951-021-00874-9
  • Zhao Y, Zhao T, Cao Y, et al. Temperature-sensitive lipid-coated carbon nanotubes for synergistic photothermal therapy and gene therapy. ACS Nano. 2021;15(4):6517–6529. doi:10.1021/acsnano.0c08790
  • Maji SK, Yu S, Chung K, et al. Synergistic nanozymetic activity of hybrid gold bipyramid–molybdenum disulfide core@shell nanostructures for two-photon imaging and anticancer therapy. ACS Appl Mater Interfaces. 2018;10(49):42068–42076. doi:10.1021/acsami.8b15443
  • Shin MH, Park EY, Han S, et al. Multimodal cancer theranosis using hyaluronate-conjugated molybdenum disulfide. Adv Healthcare Mater. 2019;8(1):1801036. doi:10.1002/adhm.201801036
  • Li N, Sun Q, Yu Z, et al. Nuclear-Targeted photothermal therapy prevents cancer recurrence with near-infrared triggered copper sulfide nanoparticles. ACS Nano. 2018;12(6):5197–5206. doi:10.1021/acsnano.7b06870
  • Ma Y, Zhang Y, Li X, et al. Near-Infrared II phototherapy induces deep tissue immunogenic cell death and potentiates cancer immunotherapy. ACS Nano. 2019;13(10):11967–11980. doi:10.1021/acsnano.9b06040
  • Wang X, Ma Y, Sheng X, Wang Y, Xu H. Ultrathin polypyrrole nanosheets via space-confined synthesis for efficient photothermal therapy in the second near-infrared window. Nano Lett. 2018;18(4):2217–2225. doi:10.1021/acs.nanolett.7b04675
  • Choi V, Rajora MA, Zheng G. Activating drugs with sound: mechanisms behind sonodynamic therapy and the role of nanomedicine. Bioconjugate Chem. 2020;31(4):967–989. doi:10.1021/acs.bioconjchem.0c00029
  • Zhang Y, Khan AR, Yang X, Shi Y, Zhao X, Zhai G. A sonosensitiser‐based polymeric nanoplatform for chemo‐sonodynamic combination therapy of lung cancer. J Nanobiotechnol. 2021;19(1):57. doi:10.1186/s12951-021-00804-9
  • Alphandéry E. Ultrasound and nanomaterial: an efficient pair to fight cancer. J Nanobiotechnology. 2022;20:139. doi:10.1186/s12951-022-01243-w
  • Rengeng L, Qianyu Z, Yuehong L, Zhongzhong P, Libo L. Sonodynamic therapy, a treatment developing from photodynamic therapy. Photodiagnosis Photodyn Ther. 2017;19:159–166. doi:10.1016/j.pdpdt.2017.06.003
  • Yang Y, Huang J, Liu M, et al. Emerging sonodynamic therapy‐based nanomedicines for cancer immunotherapy. Adv Sci. 2022;10(2):2204365. doi:10.1002/advs.202204365
  • Gong Z, Dai Z. Design and challenges of sonodynamic therapy system for cancer theranostics: from equipment to sensitizers. Adv. Sci. 2021;8(10):2002178. doi:10.1002/advs.202002178
  • Yin Y, Jiang X, Sun L, et al. Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma. Nano Today. 2021;36:101009. doi:10.1016/j.nantod.2020.101009
  • Zheng J, Sun J, Chen J, et al. Oxygen and oxaliplatin-loaded nanoparticles combined with photo-sonodynamic inducing enhanced immunogenic cell death in syngeneic mouse models of ovarian cancer. J Control Release. 2021;332:448–459. doi:10.1016/j.jconrel.2021.02.032
  • Ren J, Zhou J, Liu H, et al. Ultrasound (US)-activated redox dyshomeostasis therapy reinforced by immunogenic cell death (ICD) through a mitochondrial targeting liposomal nanosystem. Theranostics. 2021;11(19):9470–9491. doi:10.7150/thno.62984
  • Jiao X, Sun L, Zhang W, et al. Engineering oxygen-deficient ZrO2-x nanoplatform as therapy-activated “immunogenic cell death (ICD)” inducer to synergize photothermal-augmented sonodynamic tumor elimination in NIR-II biological window. Biomaterials. 2021;272:120787. doi:10.1016/j.biomaterials.2021.120787
  • Bai S, Yang N, Wang X, et al. Ultrasmall iron-doped titanium oxide nanodots for enhanced sonodynamic and chemodynamic cancer therapy. ACS Nano. 2020;14(11):15119–15130. doi:10.1021/acsnano.0c05235
  • Fu S, Yang R, Ren J, et al. Catalytically Active CoFe2O4 nanoflowers for augmented sonodynamic and chemodynamic combination therapy with elicitation of robust immune response. ACS Nano. 2021;15(7):11953–11969. doi:10.1021/acsnano.1c03128
  • Wang Q, He Z, Zhang R, et al. Carbon monoxide-based immunogenic cell death amplifier remodels the hypoxic microenvironment for tumor sono-immunotherapy. Chem Eng J. 2024;480:148269. doi:10.1016/j.cej.2023.148269
  • Wu M, Yong J, Zhang H, Wang Z, Xu ZP, Zhang R. 2D ultrathin iron doped bismuth oxychloride nanosheets with rich oxygen vacancies for enhanced sonodynamic therapy. Adv Healthcare Mater. 2023;12:2301497. doi:10.1002/adhm.202301497
  • Jana D, Zhao Y. Strategies for enhancing cancer chemodynamic therapy performance. Exploration. 2022;2(2):20210238. doi:10.1002/EXP.20210238
  • Liu XZ, Wen ZJ, Li YM, et al. Bioengineered bacterial membrane vesicles with multifunctional nanoparticles as a versatile platform for cancer immunotherapy. ACS Appl Mater Interfaces. 2023;15(3):3744–3759. doi:10.1021/acsami.2c18244
  • Rahim Pouran S, Abdul Raman AA, Wan Daud WMA. Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J Cleaner Prod. 2014;64:24–35. doi:10.1016/j.jclepro.2013.09.013
  • Hao Y, Li H, Ren F, et al. Ferrocene-conjugated polymeric platform via amide bond formation facilitates enhanced in situ fenton reaction and robust immune responses in combination with toll-like receptor 7/8 agonist. Chem Eng J. 2023;472:144909. doi:10.1016/j.cej.2023.144909
  • Wang Y, Ding Y, Yao D, et al. Copper-based nanoscale coordination polymers augmented tumor radioimmunotherapy for immunogenic cell death induction and T-cell infiltration. Small. 2021;17(8):2006231. doi:10.1002/smll.202006231
  • Guo W, Chen Z, Li Z, et al. Cancer cell membrane biomimetic mesoporous silica nanotheranostics for enhanced Ferroptosis-mediated immuogenic cell death on Gastric cancer. Chem Eng J. 2023;455:140868. doi:10.1016/j.cej.2022.140868
  • Wang Y, Wang D, Zhang Y, et al. Tumor microenvironment-adaptive nanoplatform synergistically enhances cascaded chemodynamic therapy. Bioact Mater. 2022;22:239–253. doi:10.1016/j.bioactmat.2022.09.025
  • Zhang S, Jin L, Liu J, et al. Boosting chemodynamic therapy by the synergistic effect of co-catalyze and photothermal effect triggered by the second near-infrared light. Nano-Micro Lett. 2020;12(1):180. doi:10.1007/s40820-020-00516-z
  • Calderwood SK, Theriault JR, Gong J. How is the immune response affected by hyperthermia and heat shock proteins? Int j Hyperthermia. 2005;21(8):713–716. doi:10.1080/02656730500340794
  • Schueller G, Kettenbach J, Sedivy R, et al. Heat shock protein expression induced by percutaneous radiofrequency ablation of hepatocellular carcinoma in vivo. Int j Oncol. 2004;24(3):609–613. doi:10.3892/ijo.24.3.609
  • Ahmad F, Gravante G, Bhardwaj N, et al. Renal effects of microwave ablation compared with radiofrequency, cryotherapy and surgical resection at different volumes of the liver treated. Liver Int. 2010;30(9):1305–1314. doi:10.1111/j.1478-3231.2010.02290.x
  • van den Bijgaart RJE, Eikelenboom DC, Hoogenboom M, Fütterer JJ, den Brok MH, Adema GJ. Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies. Cancer Immunol Immunother. 2017;66(2):247–258. doi:10.1007/s00262-016-1891-9
  • Fietta AM, Morosini M, Passadore I, et al. Systemic inflammatory response and downmodulation of peripheral CD25+Foxp3+ T-regulatory cells in patients undergoing radiofrequency thermal ablation for lung cancer. Hum Immunol. 2009;70(7):477–486. doi:10.1016/j.humimm.2009.03.012
  • Haen SP, Gouttefangeas C, Schmidt D, et al. Elevated serum levels of heat shock protein 70 can be detected after radiofrequency ablation. Cell Stress Chaperones. 2011;16(5):495–504. doi:10.1007/s12192-011-0261-y
  • Faraoni EY, O’Brien BJ, Strickland LN, et al. Radiofrequency ablation remodels the tumor microenvironment and promotes neutrophil-mediated abscopal immunomodulation in pancreatic cancer. Cancer Immunol Res. 2023;11(1):4–12. doi:10.1158/2326-6066.CIR-22-0379
  • Yu M, Pan H, Che N, et al. Microwave ablation of primary breast cancer inhibits metastatic progression in model mice via activation of natural killer cells. Cell Mol Immunol. 2021;18(9):2153–2164. doi:10.1038/s41423-020-0449-0
  • Gioia MD, Spreafico R, Springstead JR, et al. Endogenous oxidized phospholipids reprogram cellular metabolism and boost hyperinflammation. Nat Immunol. 2020;21(1):42–53. doi:10.1038/s41590-019-0539-2
  • Fite BZ, Wang J, Kare AJ, et al. Immune modulation resulting from MR-guided high intensity focused ultrasound in a model of murine breast cancer. Sci Rep. 2021;11(1):927. doi:10.1038/s41598-020-80135-1
  • Helmstein K. treatment of bladder carcinoma by a hydrostatic pressure technique report on 43 cases. Br J Urol. 1972;44(4):434–450. doi:10.1111/j.1464-410X.1972.tb10103.x
  • Eisenthal A, Ramakrishna V, Skornick Y, Shinitzky M. Induction of cell-mediated immunity against B16-BL6 melanoma in mice vaccinated with cells modified by hydrostatic pressure and chemical crosslinking. Cancer Immunol Immunother. 1993;36(5):300–306. doi:10.1007/BF01741168
  • Fucikova J, Moserova I, Truxova I, et al. High hydrostatic pressure induces immunogenic cell death in human tumor cells. Internat J Can. 2014;135(5):1165–1177. doi:10.1002/ijc.28766
  • Mikyšková R, Štěpánek I, Indrová M, et al. Dendritic cells pulsed with tumor cells killed by high hydrostatic pressure induce strong immune responses and display therapeutic effects both in murine TC-1 and TRAMP-C2 tumors when combined with docetaxel chemotherapy. Int J Oncol. 2016;48(3):953–964. doi:10.3892/ijo.2015.3314
  • Moehler MH, Zeidler M, Wilsberg V, et al. Parvovirus H-1-induced tumor cell death enhances human immune response in vitro via increased phagocytosis, maturation, and cross-presentation by dendritic cells. Hum Gene Ther. 2005;16(8):996–1005. doi:10.1089/hum.2005.16.996
  • Greiner S, Humrich JY, Thuman P, Sauter B, Schuler G, Jenne L. The highly attenuated vaccinia virus strain modified virus Ankara induces apoptosis in melanoma cells and allows bystander dendritic cells to generate a potent anti-tumoral immunity. Clin Exp Immunol. 2006;146(2):344–353. doi:10.1111/j.1365-2249.2006.03177.x
  • Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther. 2007;15(4):651–659. doi:10.1038/sj.mt.6300108
  • Prestwich RJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, Errington F. Oncolytic viruses: a novel form of immunotherapy. Expert Rev Anticancer Ther. 2008;8(10):1581–1588. doi:10.1586/14737140.8.10.1581
  • Chiocca E, Rabkin S. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res. 2014;2(4):295–300. doi:10.1158/2326-6066.CIR-14-0015
  • Koks CA, Garg AD, Ehrhardt M, et al. Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Internat J Can. 2015;136(5):E313–E325. doi:10.1002/ijc.29202
  • Wang X, Shao X, Gu L, et al. Targeting STAT3 enhances NDV-induced immunogenic cell death in prostate cancer cells. J Cell & Mol Med. 2020;24(7):4286–4297. doi:10.1111/jcmm.15089
  • Araki H, Tazawa H, Kanaya N, et al. Oncolytic virus-mediated p53 overexpression promotes immunogenic cell death and efficacy of PD-1 blockade in pancreatic cancer. Molecul Thera. 2022;27:3–13. doi:10.1016/j.omto.2022.09.003
  • Donnelly OG, Errington-Mais F, Steele L, et al. Measles virus causes immunogenic cell death in human melanoma. Gene Ther. 2013;20(1):7–15. doi:10.1038/gt.2011.205
  • Miyamoto S, Inoue H, Nakamura T, et al. Coxsackievirus B3 is an oncolytic virus with immunostimulatory properties that is active against lung adenocarcinoma. Cancer Res. 2012;72(10):2609–2621. doi:10.1158/0008-5472.CAN-11-3185
  • Luo JQ, Liu R, Chen FM, et al. Nanoparticle-Mediated CD47-SIRPα blockade and calreticulin exposure for improved cancer chemo-immunotherapy. ACS Nano. 2023;17(10):8966–8979. doi:10.1021/acsnano.2c08240
  • Xue J, Zhu Y, Bai S, et al. Nanoparticles with rough surface improve the therapeutic effect of photothermal immunotherapy against melanoma. Acta Pharm Sin B. 2022;12(6):2934–2949. doi:10.1016/j.apsb.2021.11.020
  • Sethuraman SN, Singh MP, Patil G, et al. Novel calreticulin-nanoparticle in combination with focused ultrasound induces immunogenic cell death in melanoma to enhance antitumor immunity. Theranostics. 2020;10(8):3397–3412. doi:10.7150/thno.42243
  • Yu Z, Guo J, Hu M, Gao Y, Huang L. Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. ACS Nano. 2020;14(4):4816–4828. doi:10.1021/acsnano.0c00708
  • Fu X, Shi Y, Zang H, et al. Combination of oxaliplatin and POM-1 by nanoliposomes to reprogram the tumor immune microenvironment. J Control Release. 2022;347:1–13. doi:10.1016/j.jconrel.2022.04.041
  • Zhang J, Sun X, Zhao X, et al. Combining immune checkpoint blockade with ATP-based immunogenic cell death amplifier for cancer chemo-immunotherapy. Acta Pharm Sin B. 2022;12(9):3694–3709. doi:10.1016/j.apsb.2022.05.008
  • Du Y, Guo Y, Xiao X, et al. Glutathione depletion and photosensitizer activation augments efficacy of tumor photodynamic immunotherapy. Chem Eng J. 2022;442:136170. doi:10.1016/j.cej.2022.136170
  • Deng H, Zhou Z, Yang W, et al. Endoplasmic reticulum targeting to amplify immunogenic cell death for cancer immunotherapy. Nano Lett. 2020;20(3):1928–1933. doi:10.1021/acs.nanolett.9b05210
  • Kim CS, Tonga GY, Solfiell D, Rotello VM. Inorganic nanosystems for therapeutic delivery: status and prospects. Adv. Drug Delivery Rev. 2013;65(1):93–99. doi:10.1016/j.addr.2012.08.011
  • Chen Q, Liu L, Lu Y, et al. Tumor microenvironment-triggered aggregated magnetic nanoparticles for reinforced image-guided immunogenic chemotherapy. Adv. Sci. 2019;6(6):1802134. doi:10.1002/advs.201802134
  • Zhu L, Li J, Guo Z, Kwok HF, Zhao Q. Synergistic combination of targeted nano-nuclear-reactors and anti-PD-L1 nanobodies evokes persistent T cell immune activation for cancer immunotherapy. J Nanobiotechnology. 2022;20:521. doi:10.1186/s12951-022-01736-8
  • Zhu S, Yan F, Yang L, et al. Low-dose X-ray radiodynamic therapy solely based on gold nanoclusters for efficient treatment of deep hypoxic solid tumors combined with enhanced antitumor immune response. Theranostics. 2023;13(3):1042–1058. doi:10.7150/thno.78649
  • Zhang D, Wu T, Qin X, et al. Intracellularly generated immunological gold nanoparticles for combinatorial photothermal therapy and immunotherapy against tumor. Nano Lett. 2019;19(9):6635–6646. doi:10.1021/acs.nanolett.9b02903
  • Wang C, Xu L, Liang C, Xiang J, Peng R, Liu Z. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 2014;26(48):8154–8162. doi:10.1002/adma.201402996
  • Du X, Yang X, Zhang Y, et al. Transdermal delivery system based on heparin-modified graphene oxide for deep transportation, tumor microenvironment regulation, and immune activation. Nano Today. 2022;46:101565. doi:10.1016/j.nantod.2022.101565
  • Zhang F, Chen F, Yang C, et al. Coordination and redox dual-responsive mesoporous organosilica nanoparticles amplify immunogenic cell death for cancer chemoimmunotherapy. Small. 2021;17(26):2100006. doi:10.1002/smll.202100006
  • Li H, Wang M, Huang B, et al. Theranostic near-infrared-IIb emitting nanoprobes for promoting immunogenic radiotherapy and abscopal effects against cancer metastasis. Nat Commun. 2021;12:7149. doi:10.1038/s41467-021-27485-0
  • Zhao J, Huang H, Zhao J, et al. A hybrid bacterium with tumor-associated macrophage polarization for enhanced photothermal-immunotherapy. Acta Pharmaceutica Sinica B. 2022;12(6):2683–2694. doi:10.1016/j.apsb.2021.10.019
  • Xu J, Xu L, Wang C, et al. Near-Infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano. 2017;11(5):4463–4474. doi:10.1021/acsnano.7b00715
  • Wang M, Song J, Zhou F, et al. NIR‐triggered phototherapy and immunotherapy via an antigen‐capturing nanoplatform for metastatic cancer treatment. Adv Sci. 2019;6(10):1802157. doi:10.1002/advs.201802157
  • Mao D, Hu F, Yi Z, et al. AIEgen-coupled upconversion nanoparticles eradicate solid tumors through dual-mode ROS activation. Sci Adv. 2020;6(26):eabb2712. doi:10.1126/sciadv.abb2712
  • Tian Z, Hu Q, Sun Z, et al. A booster for radiofrequency ablation: advanced adjuvant therapy via in situ nanovaccine synergized with anti-programmed death ligand 1 immunotherapy for systemically constraining hepatocellular carcinoma. ACS Nano. 2023;17(19):19441–19458. doi:10.1021/acsnano.3c08064
  • Li B, Hao G, Sun B, Gu Z, Xu ZP. Engineering a therapy-induced “immunogenic cancer cell death” amplifier to boost systemic tumor elimination. Adv. Funct. Mater. 2020;30(22):1909745. doi:10.1002/adfm.201909745
  • Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev. 2015;115(19):10637–10689. doi:10.1021/acs.chemrev.5b00112
  • Chen J, Gong M, Fan Y, et al. Collective plasmon coupling in gold nanoparticle clusters for highly efficient photothermal therapy. ACS Nano. 2022;16(1):910–920. doi:10.1021/acsnano.1c08485
  • Niikura K, Matsunaga T, Suzuki T, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano. 2013;7(5):3926–3938. doi:10.1021/nn3057005
  • Sugikawa K, Kadota T, Yasuhara K, Ikeda A. Anisotropic self-assembly of citrate-coated gold nanoparticles on fluidic liposomes. Angew. Chem. Int. Ed. 2016;55(12):4059–4063. doi:10.1002/anie.201511785
  • Jung HS, Kong WH, Sung DK, et al. Nanographene Oxide–Hyaluronic Acid Conjugate for Photothermal Ablation Therapy of Skin Cancer. ACS Nano. 2014;8(1):260–268. doi:10.1021/nn405383a
  • Meng C, Zhi X, Li C, et al. graphene oxides decorated with carnosine as an adjuvant to modulate innate immune and improve adaptive immunity in vivo. ACS Nano. 2016;10(2):2203–2213. doi:10.1021/acsnano.5b06750
  • Adeli M, Soleyman R, Beiranvand Z, Madani F. Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube–polymer interactions. Chem Soc Rev. 2013;42(12):5231–5256. doi:10.1039/C3CS35431H
  • Fadel TR, Fahmy TM. Immunotherapy applications of carbon nanotubes: from design to safe applications. Trends Biotechnol. 2014;32(4):198–209. doi:10.1016/j.tibtech.2014.02.005
  • Yang M, Meng J, Cheng X, et al. Multiwalled carbon nanotubes interact with macrophages and influence tumor progression and metastasis. Theranostics. 2012;2(3):258–270. doi:10.7150/thno.3629
  • Bao H, Pan Y, Ping Y, et al. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small. 2011;7(11):1569–1578. doi:10.1002/smll.201100191
  • Feng X, Chen L, Guo W, et al. Graphene oxide induces p62/SQSTM-dependent apoptosis through the impairment of autophagic flux and lysosomal dysfunction in PC12 cells. Acta Biomater. 2018;81:278–292. doi:10.1016/j.actbio.2018.09.057
  • Yan BB, Zhao Y, Li M, et al. Engineering multishelled nanostructures enables stepwise self-degradability for drug-release optimization. Nano Lett. 2022;22(22):9181–9189. doi:10.1021/acs.nanolett.2c04229
  • Badıllı U, Mollarasouli F, Bakirhan NK, Ozkan Y, Ozkan SA. Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. TrAC Trends in Analytical Chemistry. 2020;131:116013. doi:10.1016/j.trac.2020.116013
  • Zhou Q, Gong N, Zhang D, et al. Mannose-derived carbon dots amplify microwave ablation-induced antitumor immune responses by capturing and transferring “danger signals” to dendritic cells. ACS Nano. 2021;15(2):2920–2932. doi:10.1021/acsnano.0c09120
  • Haase M, Schäfer H. Upconverting Nanoparticles. Angew. Chem. Int. Ed. 2011;50(26):5808–5829. doi:10.1002/anie.201005159
  • Chu H, Zhao J, Mi Y, Di Z, Li L. NIR-light-mediated spatially selective triggering of anti-tumor immunity via upconversion nanoparticle-based immunodevices. Nat Commun. 2019;10:10. doi:10.1038/s41467-019-10847-0
  • Gu Z, Yan L, Tian G, Li S, Chai Z, Zhao Y. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mater. 2013;25(28):3758–3779. doi:10.1002/adma.201301197
  • Zhang L, Jin D, Stenzel MH. Polymer-functionalized upconversion nanoparticles for light/imaging-guided drug delivery. Biomacromolecules. 2021;22(8):3168–3201. doi:10.1021/acs.biomac.1c00669
  • Chen C, Song M, Du Y, et al. Tumor-associated-macrophage-membrane-coated nanoparticles for improved photodynamic immunotherapy. Nano Lett. 2021;21(13):5522–5531. doi:10.1021/acs.nanolett.1c00818
  • Li L, Gu W, Chen J, Chen W, Xu ZP. Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles. Biomaterials. 2014;35(10):3331–3339. doi:10.1016/j.biomaterials.2013.12.095
  • Choy JH, Kwak SY, Jeong YJ, Park JS. Inorganic layered double hydroxides as nonviral vectors. Angew Chem. 2000;112(22):4207–4211. doi:10.1002/1521-3757(20001117)112:22
  • Samson N, Ablasser A. The cGAS–STING pathway and cancer. Nat Cancer. 2022;3(12):1452–1463. doi:10.1038/s43018-022-00468-w
  • Wen H, Zhong Y, Yin Y, et al. A marine-derived small molecule induces immunogenic cell death against triple-negative breast cancer through ER stress-CHOP pathway. Int J Biol Sci. 2022;18(7):2898–2913. doi:10.7150/ijbs.70975
  • Song P, Wang B, Pan Q, et al. GE11-modified carboxymethyl chitosan micelles to deliver DOX·PD-L1 siRNA complex for combination of ICD and immune escape inhibition against tumor. Carbohydr Polym. 2023;312:120837. doi:10.1016/j.carbpol.2023.120837
  • Shi M, Zhang J, Wang Y, et al. Blockage of the IDO1 pathway by charge-switchable nanoparticles amplifies immunogenic cell death for enhanced cancer immunotherapy. Acta Biomater. 2022;150:353–366. doi:10.1016/j.actbio.2022.07.022
  • Liu X, Liu Y, Li X, et al. ER-Targeting PDT converts tumors into in situ therapeutic tumor vaccines. ACS Nano. 2022;16(6):9240–9253. doi:10.1021/acsnano.2c01669
  • Zhou W, Zhou Y, Chen X, et al. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials. 2021;268:120546. doi:10.1016/j.biomaterials.2020.120546
  • Cheng H, Fan JH, Zhao LP, et al. Chimeric peptide engineered exosomes for dual-stage light guided plasma membrane and nucleus targeted photodynamic therapy. Biomaterials. 2019;211:14–24. doi:10.1016/j.biomaterials.2019.05.004
  • Wang C, Wang J, Zhang X, et al. In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci, trans med. 2018;10(429):eaan3682. doi:10.1126/scitranslmed.aan3682
  • Zhang G, Zhan M, Zhang C, et al. Redox-responsive dendrimer nanogels enable ultrasound-enhanced chemoimmunotherapy of pancreatic cancer via endoplasmic reticulum stress amplification and macrophage polarization. Adv. Sci. 2023;10(24):2301759. doi:10.1002/advs.202301759
  • Guo Y, Zhang Q, Zhu Q, et al. Copackaging photosensitizer and PD-L1 siRNA in a nucleic acid nanogel for synergistic cancer photoimmunotherapy. Sci Adv. 2022;8(16):eabn2941. doi:10.1126/sciadv.abn2941
  • Sun D, Zou Y, Song L, et al. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm Sin B. 2022;12(1):378–393. doi:10.1016/j.apsb.2021.06.005
  • Sun F, Zhu Q, Li T, et al. Regulating glucose metabolism with prodrug nanoparticles for promoting photoimmunotherapy of pancreatic cancer. Adv Sci. 2021;8(4):2002746. doi:10.1002/advs.202002746
  • Hu J, Liang M, Ye M, et al. Reduction-triggered polycyclodextrin supramolecular nanocage induces immunogenic cell death for improved chemotherapy. Carbohydr Polym. 2023;301:120365. doi:10.1016/j.carbpol.2022.120365
  • Han S, Bi S, Guo T, et al. Nano co-delivery of plumbagin and dihydrotanshinone I reverses immunosuppressive TME of liver cancer. J Control Release. 2022;348:250–263. doi:10.1016/j.jconrel.2022.05.057
  • Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnol. 2011;9(1):55. doi:10.1186/1477-3155-9-55
  • Wang N, Chen M, Wang T. Liposomes used as a vaccine adjuvant-delivery system: from basics to clinical immunization. J Control Release. 2019;303:130–150. doi:10.1016/j.jconrel.2019.04.025
  • Zhao Y, Chen Z, Li Q, et al. Polymer-reinforced liposomes amplify immunogenic cell death-associated antitumor immunity for photodynamic-immunotherapy. Adv. Funct. Mater. 2022;32(52):2209711. doi:10.1002/adfm.202209711
  • Guo X, Tu P, Zhu L, et al. Nanoenabled tumor energy metabolism disorder via sonodynamic therapy for multidrug resistance reversal and metastasis inhibition. ACS Appl Mater Interfaces. 2023;15(1):309–326. doi:10.1021/acsami.2c16278
  • Yang Y, Liu X, Ma W, et al. Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy. Biomaterials. 2021;265:120456. doi:10.1016/j.biomaterials.2020.120456
  • Song X, Xu J, Liang C, et al. Self-supplied tumor oxygenation through separated liposomal delivery of H2O2 and catalase for enhanced radio-immunotherapy of cancer. Nano Lett. 2018;18(10):6360–6368. doi:10.1021/acs.nanolett.8b02720
  • Devhare PB, Ray RB. A novel role of exosomes in the vaccination approach. Ann Transl Med. 2017;5(1):23. doi:10.21037/atm.2016.12.75
  • Syn NL, Wang L, Chow EKH, Lim CT, Goh BC. Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges. Trends Biotechnol. 2017;35(7):665–676. doi:10.1016/j.tibtech.2017.03.004
  • Sun D, Zhuang X, Zhang S, et al. Exosomes are endogenous nanoparticles that can deliver biological information between cells. Adv. Drug Delivery Rev. 2013;65(3):342–347. doi:10.1016/j.addr.2012.07.002
  • Lu M, Xing H, Shao W. Antitumor synergism between PAK4 silencing and immunogenic phototherapy of engineered extracellular vesicles. Acta Pharmaceutica Sinica B. 2023;13(9):3945–3955. doi:10.1016/j.apsb.2023.03.020
  • Karg M, Pich A, Hellweg T, et al. Nanogels and microgels: from model colloids to applications, recent developments, and future trends. Langmuir. 2019;35(19):6231–6255. doi:10.1021/acs.langmuir.8b04304
  • Ma X, Li SJ, Liu Y, et al. Bioengineered nanogels for cancer immunotherapy. Chem Soc Rev. 2022;51(12):5136–5174. doi:10.1039/D2CS00247G
  • Ma X, Yang S, Zhang T, et al. Bioresponsive immune-booster-based prodrug nanogel for cancer immunotherapy. Acta Pharm Sin B. 2022;12(1):451–466. doi:10.1016/j.apsb.2021.05.016
  • Sahu KM, Patra S, Swain SK. Host-guest drug delivery by β-cyclodextrin assisted polysaccharide vehicles: a review. Int J Biol Macromol. 2023;240:124338. doi:10.1016/j.ijbiomac.2023.124338
  • Hu QD, Tang GP, Chu PK. Cyclodextrin-based host–guest supramolecular nanoparticles for delivery: from design to applications. Acc Chem Res. 2014;47(7):2017–2025. doi:10.1021/ar500055s
  • Pereva S, Sarafska T, Bogdanova S, Т S. Efficiency of “cyclodextrin-ibuprofen” inclusion complex formation. J Drug Delivery Sci Technol. 2016;35:34–39. doi:10.1016/j.jddst.2016.04.006
  • Fang RH, CMJ H, Chen KNH, et al. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale. 2013;5(19):8884–8888. doi:10.1039/C3NR03064D
  • Aparicio J, Esposito F, Serrano S, et al. Metastatic colorectal cancer. First line therapy for unresectable disease. J Clin Med. 2020;9(12):3889. doi:10.3390/jcm9123889
  • Ni K, Lan G, Lin W. Nanoscale metal–organic frameworks generate reactive oxygen species for cancer therapy. ACS Cent Sci. 2020;6(6):861–868. doi:10.1021/acscentsci.0c00397
  • Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019;9(23):12944–12967. doi:10.1039/c8ra10483b
  • El-Said WA, Cho HY, Yea CH, Choi JW. Synthesis of metal nanoparticles inside living human cells based on the intracellular formation process. Adv Mater. 2014;26(6):910–918. doi:10.1002/adma.201303699
  • Qin X, Yang C, Xu H, et al. Cell-derived biogenetic gold nanoparticles for sensitizing radiotherapy and boosting immune response against cancer. Small. 2021;17(50):2103984. doi:10.1002/smll.202103984
  • Meng X, Zhang F, Guo H, et al. One-Pot Approach to Fe2+ /Fe3+ -Based MOFs with enhanced catalytic activity for fenton reaction. Adv Healthc Mater. 2021;10(19):e2100780. doi:10.1002/adhm.202100780
  • Zanganeh S, Hutter G, Spitler R, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11(11):986–994. doi:10.1038/nnano.2016.168
  • Yang Z, Zhu Y, Dong Z, et al. Tumor-killing nanoreactors fueled by tumor debris can enhance radiofrequency ablation therapy and boost antitumor immune responses. Nat Commun. 2021;12(1):4299. doi:10.1038/s41467-021-24604-9
  • Ma Y, Zhao X, Tian P, et al. Laser-ignited lipid peroxidation nanoamplifiers for strengthening tumor photodynamic therapy through aggravating ferroptotic propagation and sustainable high immunogenicity. Small. 2024;20:2306402. doi:10.1002/smll.202306402
  • Jiang M, Chen W, Yu W, et al. Sequentially pH-responsive drug-delivery nanosystem for tumor immunogenic cell death and cooperating with immune checkpoint blockade for efficient cancer chemoimmunotherapy. ACS Appl Mater Interfaces. 2021;13(37):43963–43974. doi:10.1021/acsami.1c10643
  • He J, Song R, Xiao F, Wang M, Wen L. Cu3P/1-MT nanocomposites potentiated photothermal-immunotherapy. Int j Nanomed. 2023;18:3021–3033. doi:10.2147/IJN.S414117
  • Tan J, Ding B, Zheng P, Chen H, Ma P, Lin J. Hollow Aluminum Hydroxide Modified Silica Nanoadjuvants with Amplified Immunotherapy Effects through Immunogenic Cell Death Induction and Antigen Release. Small. 2022;18(34):2202462. doi:10.1002/smll.202202462
  • He J, Ouyang X, Xiao F, Liu N, Wen L. Imaging-guided photoacoustic immunotherapy based on the polydopamine-functionalized black phosphorus nanocomposites. ACS Appl Mater Interfaces. 2023;15(47):54322–54334. doi:10.1021/acsami.3c13998