101
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Prosthetic Metals: Release, Metabolism and Toxicity

, , , , , , , & show all
Pages 5245-5267 | Received 12 Jan 2024, Accepted 13 May 2024, Published online: 05 Jun 2024

References

  • Mercuri LG. Alloplastic temporomandibular joint reconstruction. Oral Surg, Oral Med Oral Pathol Oral Radiol Endod. 1998;85(6):631–637. doi:10.1016/S1079-2104(98)90028-2
  • Makridis KG, Karachalios T. A Brief History of Total Knee Arthroplasty. J Med Case Rep. 2015.
  • Learmonth ID, Young C, Rorabeck C. The operation of the century: total Hip replacement. Lancet. 2007;370(9597):1508–1519. doi:10.1016/S0140-6736(07)60457-7
  • Markatos K, Savvidou OD, Foteinou A, et al. Hallmarks in the History and Development of Total Hip Arthroplasty. Surg Innov. 2020;27(6):691–694. doi:10.1177/1553350620947209
  • Mellon SJ, Liddle AD, Pandit H. Hip replacement: landmark surgery in modern medical history. Maturitas. 2013;75(3):221–226. doi:10.1016/j.maturitas.2013.04.011
  • Kovochich M, Finley BL, Novick R, et al. Understanding outcomes and toxicological aspects of second generation metal-on-metal Hip implants: a state-of-The-art review. Crit. Rev. Toxicol. 2018;48(10):853–901. doi:10.1080/10408444.2018.1563048
  • Ranawat CS. History of total knee replacement. J South Orthop Assoc. 2002;11(4):218–226.
  • Rizzo TD. Chapter 61 - Total Hip Replacement**Based on a chapter in the third edition written by Juan A. Cabrera, MD and Alison L. Cabrera, MD. In: Frontera WR, Silver JK, Rizzo TD, editors. Essentials of Physical Medicine and Rehabilitation (Fourth Edition). Philadelphia: Elsevier; 2020:337–345.
  • Hegde V, Stambough JB, Levine BR, Springer BD. Highlights of the 2022 American Joint Replacement Registry Annual Report. Arthroplast Today. 2023;21:101137. doi:10.1016/j.artd.2023.101137
  • Head WC, Bauk DJ, Emerson RH. Titanium as the material of choice for cementless femoral components in total Hip arthroplasty. Clin Orthop Relat Res. 1995;311:85–90.
  • Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C Mater Biol Appl. 2019;102:844–862.
  • Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng. 2015;87:1–57.
  • Patel NR, Gohil PP. A review on biomaterials: scope, applications & human anatomy significance. Int J Emerging Technol Adv Eng. 2012;2(4):91–101.
  • Osamu W. What are Trace Elements? J Med Case Rep. 2018. doi:10.1186/s13256-018-1703-2
  • Berdanier CD, Dwyer JT, Feldman EB. Handbook of Nutrition and Food. CRC press; 2007.
  • Trumbo P, Yates AA, Schlicker S, Poos M. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Acad Nutr Diet. 2001;101(3):294.
  • Eastley R, Wilcock GK, Bucks RS. Vitamin B12 deficiency in dementia and cognitive impairment: the effects of treatment on neuropsychological function. Int j Geriatric Psychiatry. 2000;15(3):226–233. doi:10.1002/(SICI)1099-1166(200003)15:3<226::AID-GPS98>3.0.CO;2-K
  • Badmaev V, Prakash S, Majeed M. Vanadium: a review of its potential role in the fight against diabetes. J Altern Complementary Med. 1999;5(3):273–291. doi:10.1089/acm.1999.5.273
  • Beliaeva N, Gorodetskiĭ V, Tochilkin A, Golubev M, Semenova N, Kovel’man I. Vanadium compounds--a new class of therapeutic agents for the treatment of diabetes mellitus. Voprosy meditsinskoi khimii. 2000;46(4):344–360.
  • Anderson RA. Nutritional factors influencing the glucose/insulin system: chromium. J Am Coll Nutr. 1997;16(5):404–410. doi:10.1080/07315724.1997.10718705
  • Kimura K. Role of essential trace elements in the disturbance of carbohydrate metabolism. Nihon rinsho Japan j clin med. 1996;54(1):79–84.
  • Cefalu WT, Hu FB. Role of chromium in human health and in diabetes. Diabetes Care. 2004;27(11):2741–2751. doi:10.2337/diacare.27.11.2741
  • Chao E, Frassica F, Pritchard D, Moyer T. Metal ion release in patients with porous coated megaprostheses. Trans Orthop Res Soc. 1995;20:731.
  • Buettner KM, Valentine AM. Bioinorganic chemistry of titanium. Chem. Rev. 2012;112(3):1863–1881. doi:10.1021/cr1002886
  • Berk L, Burchenal JH, Castle WB. Erythropoietic Effect of Cobalt in Patients with or without Anemia. N Engl J Med. 1949;240(19):754–761. doi:10.1056/NEJM194905122401903
  • Simonsen LO, Brown AM, Harbak H, Kristensen BI, Bennekou P. Cobalt uptake and binding in human red blood cells. Blood Cells Mol. Dis. 2011;46(4):266–276. doi:10.1016/j.bcmd.2011.02.009
  • Schwarz G, Mendel RR, Ribbe MW. Molybdenum cofactors, enzymes and pathways. Nature. 2009;460(7257):839–847. doi:10.1038/nature08302
  • Schwarz G. Molybdenum cofactor and human disease. Curr. Opin. Chem. Biol. 2016;31:179–187. doi:10.1016/j.cbpa.2016.03.016
  • Vincent JB. Chromium: biological Relevance. Encyclopedia Inorganic Bioinorganic Chemistry. 2011.
  • Sahin K, Onderci M, Tuzcu M, et al. Effect of chromium on carbohydrate and lipid metabolism in a rat model of type 2 diabetes mellitus: the fat-fed, streptozotocin-treated rat. Metabolism. 2007;56(9):1233–1240. doi:10.1016/j.metabol.2007.04.021
  • Agency EP. Toxicological review of trivalent chromium. J Med. 1998.
  • Ortega R, Bresson C, Fraysse A, et al. Cobalt distribution in keratinocyte cells indicates nuclear and perinuclear accumulation and interaction with magnesium and zinc homeostasis. Toxicol Lett. 2009;188(1):26–32.
  • Czarnek K, Terpiłowska S, Siwicki AK. Selected aspects of the action of cobalt ions in the human body. Central-Eur J Immunol. 2015;40(2):236–242.
  • Springer. Vanadium. Netherlands: Dordrecht: Springer; 2012.
  • Malay Chatterjee SD, Chatterjeeand Kaushik Roy M. Vanadium in Biological Systems. Encyclopedia Metalloproteins. 2013.
  • Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A. 2002;33(3):477–486. doi:10.1007/s11661-002-0109-2
  • Shanmuganantha L, Baharudin A, Sulong AB, Shamsudin R, Ng MH. Prospect of Metal Ceramic (Titanium-Wollastonite) Composite as Permanent Bone Implants: a Narrative Review. Materials (Basel). 2021;14(2):2. doi:10.3390/ma14020277
  • Oldani C, Dominguez AJRAIA. Titanium as a Biomaterial for Implants. Phys Chem Chem Phys. 2012;218:149–162.
  • Metikos-Hukovic M, Kwokal A, Piljac J. The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials. 2003;24(21):3765–3775. doi:10.1016/S0142-9612(03)00252-7
  • Liao Y, Hoffman E, Wimmer M, Fischer A, Jacobs J, Marks L. CoCrMo metal-on-metal Hip replacements. Phys Chem Chem Phys. 2013;15(3):746–756. doi:10.1039/C2CP42968C
  • Virtanen S. Metal release mechanisms in Hip replacement. Acta orthopaedica. 2006;77(5):695–696. doi:10.1080/17453670610012854
  • Huber M, Reinisch G, Trettenhahn G, Zweymuller K, Lintner F. Presence of corrosion products and hypersensitivity-associated reactions in periprosthetic tissue after aseptic loosening of total Hip replacements with metal bearing surfaces. Acta Biomater. 2009;5(1):172–180. doi:10.1016/j.actbio.2008.07.032
  • Bijukumar DR, Salunkhe S, Zheng G, et al. Wear particles induce a new macrophage phenotype with the potential to accelerate material corrosion within total Hip replacement interfaces. Acta Biomater. 2020;101:586–597. doi:10.1016/j.actbio.2019.10.039
  • Gill HS, Grammatopoulos G, Adshead S, Tsialogiannis E, Tsiridis E. Molecular and immune toxicity of CoCr nanoparticles in MoM Hip arthroplasty. Trends Mol Med. 2012;18(3):145–155. doi:10.1016/j.molmed.2011.12.002
  • Heise G, Black CM, Smith R, Morrow BR, Mihalko WM. In vitro effects of macrophages on orthopaedic implant alloys and local release of metallic alloy components. Bone Joint j. 2020;102-B(7_Supple_B):116–121. doi:10.1302/0301-620X.102B7.BJJ-2019-1556.R1
  • Gallo J, Goodman SB, Konttinen YT, Wimmer MA, Holinka M. Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms. Acta Biomater. 2013;9(9):8046–8058. doi:10.1016/j.actbio.2013.05.005
  • Hallab NJ, Jacobs JJ. Chemokines Associated with Pathologic Responses to Orthopedic Implant Debris. Front Endocrinol (Lausanne). 2017;8:5. doi:10.3389/fendo.2017.00005
  • Merritt K, Brown SA. Biological Effects of Corrosion Products from Metals. Corrosion and degradation of implant materials: second symposium, ASTM International; 1985.
  • ALS - Clinical: aluminum, Serum. Available from: https://www.mayocliniclabs.com/test-catalog/Clinical+and+Interpretive/8373. Accessed May 20, 2024.
  • TIS - Clinical: titanium, Serum. Available from: https://www.mayocliniclabs.com/test-catalog/Clinical+and+Interpretive/89367. Accessed May 20, 2024.
  • CRS - Clinical: chromium, Serum. Available from: https://www.mayocliniclabs.com/test-catalog/Clinical+and+Interpretive/8638. Accessed May 20, 2024.
  • COS - Clinical: cobalt, Serum. Available from: https://www.mayocliniclabs.com/test-catalog/Clinical+and+Interpretive/80084. Accessed May 20, 2024.
  • MOWB - Clinical: molybdenum, Blood. Available from: https://www.mayocliniclabs.com/test-catalog/Clinical+and+Interpretive/64272. Accessed May 20, 2024.
  • CRWB - Clinical: chromium, Blood. Available from: https://www.mayocliniclabs.com/test-catalog/Clinical+and+Interpretive/65601. Accessed May 20, 2024.
  • COWB - Clinical: cobalt, Blood. Available from: https://www.mayocliniclabs.com/test-catalog/Clinical+and+Interpretive/60355. Accessed May 20, 2024.
  • MOS - Clinical: molybdenum, Serum. Available from: https://www.mayocliniclabs.com/test-catalog/Clinical+and+Interpretive/89270. Accessed May 20, 2024.
  • VS - Clinical: vanadium, Serum. Available from: https://ltig.lhsc.on.ca/?action=view_rec&test=Vanadium%2C%20Plasma. Accessed May 20, 2024.
  • VWB - Clinical: vanadium, Blood. Available from: https://ltig.lhsc.on.ca/?action=view_rec&test=Vanadium%2CWhole%20Blood. Accessed May 20, 2024.
  • ALWB - Clinical: aluminum, Blood. Available from: https://ltig.lhsc.on.ca/?action=view_rec&test=Aluminum%2C%20Whole%20Blood. Accessed May 20, 2024.
  • TIWB - Clinical: titanium, Blood. Available from: https://ltig.lhsc.on.ca/?action=view_rec&test=Titanium%2C%20Whole%20Blood. Accessed May 20, 2024.
  • Control, C. f. D. Prevention, Guidelines for Collecting and Handling Blood Lead Samples [Video]; 2004.
  • Smolders JM, Hol A, Rijnberg WJ, van Susante JL. Metal ion levels and functional results after either resurfacing Hip arthroplasty or conventional metal-on-metal Hip arthroplasty. Acta orthopaedica. 2011;82(5):559–566. doi:10.3109/17453674.2011.625533
  • Moroni A, Nocco E, Hoque M, et al. Cushion bearings versus large diameter head metal-on-metal bearings in total Hip arthroplasty: a short-term metal ion study. Arch Orthopaedic Trauma Surgery. 2012;132(1):123–129. doi:10.1007/s00402-011-1364-8
  • Schouten R, Malone AA, Frampton CM, Tiffen C, Hooper G. Five-year follow-up of a prospective randomised trial comparing ceramic-on-metal and metal-on-metal bearing surfaces in total Hip arthroplasty. Bone Joint j. 2017;99-b(10):1298–1303. doi:10.1302/0301-620X.99B10.BJJ-2016-0905.R1
  • Cadossi M, Mazzotti A, Baldini N, Giannini S, Savarino L. New couplings, old problems: is there a role for ceramic-on-metal Hip arthroplasty? J Biomed Mater Res Part B. 2016;104(1):204–209. doi:10.1002/jbm.b.33383
  • Engh CA, MacDonald SJ, Sritulanondha S, Korczak A, Naudie D, Engh C. Metal ion levels after metal-on-metal total Hip arthroplasty: a five-year, prospective randomized trial. J Bone Joint Surg Am Vol. 2014;96(6):448–455. doi:10.2106/JBJS.M.00164
  • Hailer NP, Blaheta RA, Dahlstrand H, Stark A. Elevation of circulating HLA DR(+) CD8(+) T-cells and correlation with chromium and cobalt concentrations 6 years after metal-on-metal Hip arthroplasty. Acta orthopaedica. 2011;82(1):6–12. doi:10.3109/17453674.2010.548028
  • Zijlstra WP, van der Veen HC, van den Akker-Scheek I, Zee MJ, Bulstra SK, van Raay JJ. Acetabular bone density and metal ions after metal-on-metal versus metal-on-polyethylene total Hip arthroplasty; short-term results. Hip International. 2014;24(2):136–143. doi:10.5301/hipint.5000087
  • Vendittoli PA, Rivière C, Roy AG, Barry J, Lusignan D, Lavigne M. Metal-on-metal Hip resurfacing compared with 28-mm diameter metal-on-metal total Hip replacement: a randomised study with six to nine years’ follow-up. Bone Joint j. 2013;95-b(11):1464–1473. doi:10.1302/0301-620X.95B11.31604
  • Smolders JM, Bisseling P, Hol A, Van Der Straeten C, Schreurs BW, van Susante JL. Metal ion interpretation in resurfacing versus conventional Hip arthroplasty and in whole blood versus serum. How should we interpret metal ion data. Hip International. 2011;21(5):587–595. doi:10.5301/HIP.2011.8643
  • Bisseling P, Smolders JM, Hol A, van Susante JL. Metal ion levels and functional results following resurfacing Hip arthroplasty versus conventional small-diameter metal-on-metal total Hip arthroplasty; a 3 to 5 year follow-up of a randomized controlled trial. J Arthroplasty. 2015;30(1):61–67. doi:10.1016/j.arth.2014.07.036
  • Smolders JM, Hol A, van Susante JL. Metal ion trend may be more predictive for malfunctioning metal-on-metal implants than a single measurement. Hip International. 2013;23(5):434–440. doi:10.5301/hipint.5000066
  • Ando W, Yasui H, Yamamoto K, et al. A comparison of the effect of large and small metal-on-metal bearings in total Hip arthroplasty on metal ion levels and the incidence of pseudotumour: a five-year follow-up of a previous report. Bone Joint j. 2018;100-b(8):1018–1024. doi:10.1302/0301-620X.100B8.BJJ-2018-0414.R1
  • Briggs TW, Hanna SA, Kayani B, et al. Metal-on-polyethylene versus metal-on-metal bearing surfaces in total Hip arthroplasty: a prospective randomised study investigating metal ion levels and chromosomal aberrations in peripheral lymphocytes. Bone Joint j. 2015;97-b(9):1183–1191. doi:10.1302/0301-620X.97B9.34824
  • Malviya A, Ramaskandhan JR, Bowman R, et al. What advantage is there to be gained using large modular metal-on-metal bearings in routine primary Hip replacement? A preliminary report of a prospective randomised controlled trial. J Bone Joint Surg Br Vol. 2011;93(12):1602–1609. doi:10.1302/0301-620X.93B12.27533
  • Hutt J, Lavigne M, Lungu E, Belzile E, Morin F, Vendittoli PA. Comparison of Whole-Blood Metal Ion Levels Among Four Types of Large-Head, Metal-on-Metal Total Hip Arthroplasty Implants: a Concise Follow-up, at Five Years, of a Previous Report. J Bone Joint Surg Am Vol. 2016;98(4):257–266. doi:10.2106/JBJS.O.00201
  • Lützner J, Hartmann A, Dinnebier G, Spornraft-Ragaller P, Hamann C, Kirschner S. Metal hypersensitivity and metal ion levels in patients with coated or uncoated total knee arthroplasty: a randomised controlled study. International Orthopaedics. 2013;37(10):1925–1931. doi:10.1007/s00264-013-2010-6
  • Postler A, Beyer F, Lützner C, Tille E, Lützner J. Similar outcome during short-term follow-up after coated and uncoated total knee arthroplasty: a randomized controlled study. Knee Surg Sports Traumatol Arthrosc. 2018;26(11):3459–3467. doi:10.1007/s00167-018-4928-0
  • Bistolfi A, Cimino A, Lee GC, et al. Does metal porosity affect metal ion release in blood and urine following total Hip arthroplasty? A short term study. Hip International. 2018;28(5):522–530. doi:10.1177/1120700018762167
  • Jantzen C, Jorgensen HL, Duus BR, Sporring SL, Lauritzen JB. Chromium and cobalt ion concentrations in blood and serum following various types of metal-on-metal Hip arthroplasties: a literature overview. Acta orthopaedica. 2013;84(3):229–236. doi:10.3109/17453674.2013.792034
  • Cui P, Jiang W, Fan M, Wan Y. Detection and influence factor of serum metal ions concentration level after resurfacing arthroplasty of the Hip. Chin J Reparative Reconst Surg. 2017;31(4):404–409. doi:10.7507/1002-1892.201608018
  • Lainiala O, Reito A, Jamsa P, Eskelinen A. Mild or moderate renal insufficiency does not increase circulating levels of cobalt and chromium in patients with metal-on-metal Hip arthroplasty. Bone Joint j. 2017;99-B(9):1147–1152. doi:10.1302/0301-620X.99B9.BJJ-2016-0773.R2
  • Manninen E, Lainiala O, Karsikas M, Reito A, Jamsa P, Eskelinen A. Do cobalt or chromium accumulate in metal-on-metal Hip arthroplasty patients who have mild, moderate, or severe renal insufficiency? Bone Joint j. 2021;103-B(7):1231–1237. doi:10.1302/0301-620X.103B7.BJJ-2020-0836.R2
  • Hartmann A, Hannemann F, Lutzner J, et al. Metal ion concentrations in body fluids after implantation of Hip replacements with metal-on-metal bearing--systematic review of clinical and epidemiological studies. PLoS One. 2013;8(8):e70359. doi:10.1371/journal.pone.0070359
  • Friesenbichler J, Maurer-Ertl W, Sadoghi P, Lovse T, Windhager R, Leithner A. Serum metal ion levels after rotating-hinge knee arthroplasty: comparison between a standard device and a megaprosthesis. Int Orthop. 2012;36(3):539–544. doi:10.1007/s00264-011-1317-4
  • Reiner T, Sorbi R, Muller M, et al. Blood Metal Ion Release After Primary Total Knee Arthroplasty: a Prospective Study. Orthop Surg. 2020;12(2):396–403. doi:10.1111/os.12591
  • Nuevo-Ordonez Y, Montes-Bayon M, Blanco-Gonzalez E, et al. Titanium release in serum of patients with different bone fixation implants and its interaction with serum biomolecules at physiological levels. Anal Bioanal Chem. 2011;401(9):2747–2754. doi:10.1007/s00216-011-5232-8
  • Alfrey AC. Aluminum metabolism. Kidney Int Suppl. 1986;18:S8–11.
  • Riihimaki V, Aitio A. Occupational exposure to aluminum and its biomonitoring in perspective. Crit. Rev. Toxicol. 2012;42(10):827–853. doi:10.3109/10408444.2012.725027
  • Barceloux DG. Vanadium. J Toxicol. 1999;37(2):265–278. doi:10.1081/clt-100102425
  • Rehder D. Vanadium. Its role for humans. Metal Ions Life Sci. 2013;13:139–169.
  • Dahlstrand H, Stark A, Wick MC, Anissian L, Hailer NP, Weiss RJ. Comparison of metal ion concentrations and implant survival after total Hip arthroplasty with metal-on-metal versus metal-on-polyethylene articulations. Acta orthopaedica. 2017;88(5):490–495. doi:10.1080/17453674.2017.1350370
  • Bosker BH, Ettema HB, Boomsma MF, Kollen BJ, Maas M, Verheyen CC. High incidence of pseudotumour formation after large-diameter metal-on-metal total Hip replacement: a prospective cohort study. J Bone Joint Surg Br Vol. 2012;94(6):755–761. doi:10.1302/0301-620X.94B6.28373
  • Omlor GW, Kretzer JP, Reinders J, et al. In vivo serum titanium ion levels following modular neck total Hip arthroplasty--10 year results in 67 patients. Acta Biomater. 2013;9(4):6278–6282. doi:10.1016/j.actbio.2012.12.001
  • Hahn M, Busse B, Procop M, Zustin J, Amling M, Katzer A. Cobalt deposition in mineralized bone tissue after metal-on-metal Hip resurfacing: quantitative mu-X-ray-fluorescence analysis of implant material incorporation in periprosthetic tissue. J Biomed Mater Res Part B. 2017;105(7):1855–1862. doi:10.1002/jbm.b.33667
  • Simonsen LO, Harbak H, Bennekou P. Cobalt metabolism and toxicology--a brief update. Sci Total Environ. 2012;432:210–215. doi:10.1016/j.scitotenv.2012.06.009
  • Katz SA, Salem H. The toxicology of chromium with respect to its chemical speciation: a review. J Appl Toxicol. 1993;13(3):217–224. doi:10.1002/jat.2550130314
  • Merritt K, Brown SA. Distribution of titanium and vanadium following repeated injection of high-dose salts. J Biomed Mater Res. 1995;29(10):1175–1178. doi:10.1002/jbm.820291003
  • Krewski D, Yokel RA, Nieboer E, et al. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Crit Rev. 2007;10 Suppl 1:1–269. doi:10.1080/10937400701597766
  • Peto MV. Aluminium and iron in humans: bioaccumulation, pathology, and removal. Rejuvenation Res. 2010;13(5):589–598. doi:10.1089/rej.2009.0995
  • Trevino S, Diaz A, Sanchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, Gonzalez-Vergara E. Vanadium in Biological Action: chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol. Trace Elem. Res. 2019;188(1):68–98. doi:10.1007/s12011-018-1540-6
  • Dobbs HS, Minski MJ. Metal ion release after total Hip replacement. Biomaterials. 1980;1(4):193–198. doi:10.1016/0142-9612(80)90016-2
  • Jakobsen SS, Danscher G, Stoltenberg M, et al. Cobalt-chromium-molybdenum alloy causes metal accumulation and metallothionein up-regulation in rat liver and kidney. Basic Clin Pharmacol Toxicol. 2007;101(6):441–446. doi:10.1111/j.1742-7843.2007.00137.x
  • Rubio JC, Garcia-Alonso MC, Alonso C, et al. Determination of metallic traces in kidneys, livers, lungs and spleens of rats with metallic implants after a long implantation time. J Mater Sci Mater Med. 2008;19(1):369–375. doi:10.1007/s10856-007-3002-0
  • Golasik M, Herman M, Piekoszewski W. Toxicological aspects of soluble titanium - a review of in vitro and in vivo studies. Metallomics. 2016;8(12):1227–1242. doi:10.1039/C6MT00110F
  • Mukherjee B, Patra B, Mahapatra S, Banerjee P, Tiwari A, Chatterjee M. Vanadium--an element of atypical biological significance. Toxicol Lett. 2004;150(2):135–143. doi:10.1016/j.toxlet.2004.01.009
  • Hong F, Mu X, Ze Y, Li W, Zhou Y, Ji J. Damage to the Blood Brain Barrier Structure and Function from Nano Titanium Dioxide Exposure Involves the Destruction of Key Tight Junction Proteins in the Mouse Brain. J biomedical nanotechnol. 2021;17(6):1068–1078. doi:10.1166/jbn.2021.3083
  • Shelly S, Liraz Zaltsman S, Ben-Gal O, et al. Potential neurotoxicity of titanium implants: prospective, in-vivo and in-vitro study. Biomaterials. 2021;276:121039. doi:10.1016/j.biomaterials.2021.121039
  • Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol. 2013;10(1):15. doi:10.1186/1743-8977-10-15
  • Sun L, Wang K, Li Y, Fan Q, Zheng W, Li H. Vanadium exposure-induced striatal learning and memory alterations in rats. Neurotoxicology. 2017;62:124–129. doi:10.1016/j.neuro.2017.06.008
  • Fatola OI, Olaolorun FA, Olopade FE, Olopade JO. Trends in vanadium neurotoxicity. Brain Res Bull. 2019;145:75–80. doi:10.1016/j.brainresbull.2018.03.010
  • Harrison-Brown M, Scholes C, Field C, et al. Limited penetration of cobalt and chromium ions into the cerebrospinal fluid following metal on metal arthroplasty: a cross-sectional analysis. Clin toxicol. 2020;58(4):233–240. doi:10.1080/15563650.2019.1636993
  • Gomez-Arnaiz S, Tate RJ, Grant MH. Cobalt Neurotoxicity: transcriptional Effect of Elevated Cobalt Blood Levels in the Rodent Brain. Toxics. 2022;10(2):2. doi:10.3390/toxics10020059
  • Salama A, Hegazy R, Hassan A. Intranasal Chromium Induces Acute Brain and Lung Injuries in Rats: assessment of Different Potential Hazardous Effects of Environmental and Occupational Exposure to Chromium and Introduction of a Novel Pharmacological and Toxicological Animal Model. PLoS One. 2016;11(12):e0168688. doi:10.1371/journal.pone.0168688
  • Woodman JL, Jacobs JJ, Galante JO, Urban RM. Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons: a long-term study. J Orthop Res. 1984;1(4):421–430. doi:10.1002/jor.1100010411
  • Afolaranmi GA, Akbar M, Brewer J, Grant MH. Distribution of metal released from cobalt-chromium alloy orthopaedic wear particles implanted into air pouches in mice. J Biomed Mater Res Part A. 2012;100(6):1529–1538. doi:10.1002/jbm.a.34091
  • Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc’h M. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with Hip or knee replacement. J Bone Joint Surg Am Vol. 2000;82(4):457–476. doi:10.2106/00004623-200004000-00002
  • Urban RM, Tomlinson MJ, Hall DJ, Jacobs JJ. Accumulation in liver and spleen of metal particles generated at nonbearing surfaces in Hip arthroplasty. J Arthroplasty. 2004;19(8 Suppl 3):94–101. doi:10.1016/j.arth.2004.09.013
  • Hethey C, Hartung N, Wangorsch G, Weisser K, Huisinga W. Physiology-based toxicokinetic modelling of aluminium in rat and man. Arch Toxicol. 2021;95(9):2977–3000. doi:10.1007/s00204-021-03107-y
  • Hernandez-Vaquero D, Rodriguez de la Flor M, Fernandez-Carreira JM, Sariego-Muniz C. Detection of metal ions in hair after metal-metal Hip arthroplasty. Revista espanola de cirugia ortopedica y traumatologia. 2014;58(5):267–273. doi:10.1016/j.recot.2014.01.008
  • Rodriguez de la Flor M, Hernandez-Vaquero D, Fernandez-Carreira JM. Metal presence in hair after metal-on-metal resurfacing arthroplasty. J Orthop Res. 2013;31(12):2025–2031. doi:10.1002/jor.22450
  • Zywiel MG, Brandt JM, Overgaard CB, Cheung AC, Turgeon TR, Syed KA. Fatal cardiomyopathy after revision total Hip replacement for fracture of a ceramic liner. Bone Joint j. 2013;95-B(1):31–37. doi:10.1302/0301-620X.95B1.30060
  • Matusiewicz H. Potential release of in vivo trace metals from metallic medical implants in the human body: from ions to nanoparticles--a systematic analytical review. Acta Biomater. 2014;10(6):2379–2403. doi:10.1016/j.actbio.2014.02.027
  • Zeiner M, Zenz P, Lintner F, Schuster E, Schwagerl W, Steffan I. Influence on elemental status by Hip-endoprostheses. Microchem J. 2007;85(1):145–148. doi:10.1016/j.microc.2006.04.019
  • Mertz W. Chromium occurrence and function in biological systems. Physiol Rev. 1969;49(2):163–239. doi:10.1152/physrev.1969.49.2.163
  • Turnlund JR, Keyes WR, Peiffer GL, Chiang G. Molybdenum absorption, excretion, and retention studied with stable isotopes in young men during depletion and repletion. The American Journal of Clinical Nutrition. 1995;61(5):1102–1109. doi:10.1093/ajcn/61.5.1102
  • Rodushkin I, Engstrom E, Stenberg A, Baxter DC. Determination of low-abundance elements at ultra-trace levels in urine and serum by inductively coupled plasma-sector field mass spectrometry. Anal Bioanal Chem. 2004;380(2):247–257. doi:10.1007/s00216-004-2742-7
  • Catalani S, Stea S, Beraudi A, et al. Vanadium release in whole blood, serum and urine of patients implanted with a titanium alloy Hip prosthesis. Clin toxicol. 2013;51(7):550–556. doi:10.3109/15563650.2013.818682
  • Sarmiento-González A, Marchante-Gayón JM, Tejerina-Lobo JM. High-resolution ICP-MS determination of Ti, V, Cr, Co, Ni, and Mo in human blood and urine of patients implanted with a Hip or knee prosthesis. Anal Bioanal Chem. 2008;391(7):2583–2589. doi:10.1007/s00216-008-2188-4
  • Takai S, Yoshino N, Kusaka Y, Watanabe Y, Hirasawa Y. Dissemination of metals from a failed patellar component made of titanium-base alloy. J Arthroplasty. 2003;18(7):931–935. doi:10.1016/S0883-5403(03)00277-8
  • La Barbera L, D’Apolito R, Peretti GM, Piergiovanni M, Banfi G, Zagra L; Xix Congresso Nazionale S.I.C.O.O.P. Societa’ Italiana Chirurghi Ortopedici Dell’Ospedalita’ Privata, A. Modular implant design affects metal ion release following metal-on-metal Hip arthroplasty: a retrospective study on 75 cases. J Biol Regul Homeost Agents. 2019;33(2 Suppl. 1):79–88.
  • Reiner T, Bader N, Panzram B, et al. In vivo blood metal ion levels in patients after total shoulder arthroplasty. J Shoulder Elbow Surgery. 2019;28(3):539–546. doi:10.1016/j.jse.2018.08.027
  • Pernaa K, Saltychev M, Makela K. Relationship between Pelvic Incidence Angle and Blood Concentration of Chromium and Cobalt Ions after Metal-on-Metal Hip Replacement: a Brief Report. Scand J Surg. 2018;107(1):91–94. doi:10.1177/1457496917731182
  • Kasparek MF, Renner L, Faschingbauer M, Waldstein W, Weber M, Boettner F. Predictive factors for metal ion levels in metal-on-metal total Hip arthroplasty. Arch Orthopaedic Trauma Surgery. 2018;138(2):281–286. doi:10.1007/s00402-017-2856-y
  • Wyles CC, Wright TC, Bois MC, et al. Myocardial Cobalt Levels Are Elevated in the Setting of Total Hip Arthroplasty. J Bone Joint Surg Am Vol. 2017;99(22):e118. doi:10.2106/JBJS.17.00159
  • Ohtsuru T, Morita Y, Murata Y, Shimamoto S, Munakata Y, Kato Y. Blood metal ion concentrations in metal-on-metal total Hip arthroplasty. Eurn J of Orthop Surg and Traumatol. 2017;27(4):527–532. doi:10.1007/s00590-017-1931-y
  • Nam D, Salih R, Brown KM, Nunley RM, Barrack RL. Metal Ion Levels in Young, Active Patients Receiving a Modular, Dual Mobility Total Hip Arthroplasty. J Arthroplasty. 2017;32(5):1581–1585. doi:10.1016/j.arth.2016.12.012
  • Milosev I, Levasic V, Vidmar J, Kovac S, Trebse R. pH and metal concentration of synovial fluid of osteoarthritic joints and joints with metal replacements. J Biomed Mater Res Part B. 2017;105(8):2507–2515. doi:10.1002/jbm.b.33793
  • Lehtovirta L, Reito A, Parkkinen J, et al. Analysis of bearing wear, whole blood and synovial fluid metal ion concentrations and histopathological findings in patients with failed ASR Hip resurfacings. BMC Musculoskeletal Disorders. 2017;18(1):523. doi:10.1186/s12891-017-1894-5
  • Smith T, Edmonds CJ, Barnaby CF. Absorption and retention of cobalt in man by whole-body counting. Health Phys. 1972;22(4):359–367. doi:10.1097/00004032-197204000-00007
  • Clark NA, Teschke K, Rideout K, Copes R. Trace element levels in adults from the west coast of Canada and associations with age, gender, diet, activities, and levels of other trace elements. Chemosphere. 2007;70(1):155–164. doi:10.1016/j.chemosphere.2007.06.038
  • Barceloux DG. Molybdenum. J Toxicol. 1999;37(2):231–237. doi:10.1081/clt-100102422
  • Barceloux DG. Chromium. J Toxicol. 1999;37(2):173–194. doi:10.1081/clt-100102418
  • Tripathi D, Mani V, Pal RP. Vanadium in Biosphere and Its Role in Biological Processes. Biol. Trace Elem. Res. 2018;186(1):52–67. doi:10.1007/s12011-018-1289-y
  • Leggett RW. The biokinetics of inorganic cobalt in the human body. Sci Total Environ. 2008;389(2–3):259–269. doi:10.1016/j.scitotenv.2007.08.054
  • Hong F, Yu X, Wu N, Zhang YQ. Progress of in vivo studies on the systemic toxicities induced by titanium dioxide nanoparticles. Toxicol Res (Camb). 2017;6(2):115–133. doi:10.1039/C6TX00338A
  • Aguilar F, Autrup H, Barlow S, et al. Safety of aluminium from dietary intake scientific opinion of the panel on food additives, flavourings, processing aids and food contact materials (AFC). J Med. 2008;754:1–34.
  • Fleshman DG, Silva AJ, Shore B. The metabolism of tantalum in the rat. Health Phys. 1971;21(3):385–392. doi:10.1097/00004032-197109000-00004
  • Ho JH, Leikin JB, Dargan PI, Archer JRH, Wood DM, Brent J. Metal-on-Metal Hip Joint Prostheses: a Retrospective Case Series Investigating the Association of Systemic Toxicity with Serum Cobalt and Chromium Concentrations. J Med Toxicol. 2017;13(4):321–328. doi:10.1007/s13181-017-0629-1
  • Ikeda T, Takahashi K, Kabata T, Sakagoshi D, Tomita K, Yamada M. Polyneuropathy caused by cobalt-chromium metallosis after total Hip replacement. Muscle and Nerve. 2010;42(1):140–143. doi:10.1002/mus.21638
  • Gilbert CJ, Cheung A, Butany J, et al. Hip pain and heart failure: the missing link. Can J Cardiol. 2013;29(5):639 e1–2. doi:10.1016/j.cjca.2012.10.015
  • Bradberry SM, Wilkinson JM, Ferner RE. Systemic toxicity related to metal Hip prostheses. Clin toxicol. 2014;52(8):837–847. doi:10.3109/15563650.2014.944977
  • Kavanagh KT, Kraman SS, Kavanagh SP. An Analysis of the FDA MAUDE Database and the Search for Cobalt Toxicity in Class 3 Johnson & Johnson/DePuy Metal-on-Metal Hip Implants. J Patient Saf. 2018;14(4):e89–e96. doi:10.1097/PTS.0000000000000534
  • Peters K, Unger RE, Barth S, Gerdes T, Kirkpatrick CJ. Induction of apoptosis in human microvascular endothelial cells by divalent cobalt ions. Evidence for integrin-mediated signaling via the cytoskeleton. J Mater Sci Mater Med. 2001;12(10–12):955–958. doi:10.1023/A:1012852814570
  • Prescott E, Netterstrom B, Faber J, Hegedus L, Suadicani P, Christensen JM. Effect of occupational exposure to cobalt blue dyes on the thyroid volume and function of female plate painters. Scand J Work Environ Health. 1992;18(2):101–104. doi:10.5271/sjweh.1605
  • Holly RG. Studies on iron and cobalt metabolism. Journal of the American Medical Association. 1955;158(15):1349–1352. doi:10.1001/jama.1955.02960150019005
  • Barceloux DG. Cobalt. J Toxicol. 1999;37(2):201–206. doi:10.1081/clt-100102420
  • Parkinson I, Ward M, Kerr D. Dialysis encephalopathy, bone disease and anaemia: the aluminum intoxication syndrome during regular haemodialysis. J Clin Pathol. 1981;34(11):1285. doi:10.1136/jcp.34.11.1285
  • Willhite CC, Karyakina NA, Yokel RA, et al. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit. Rev. Toxicol. 2014;44 Suppl 4(Suppl 4):1–80. doi:10.3109/10408444.2014.934439
  • Domingo JL. Vanadium: a review of the reproductive and developmental toxicity. Reprod Toxicol. 1996;10(3):175–182. doi:10.1016/0890-6238(96)00019-6
  • Peat F, Coomber R, Rana A, Vince A. Vanadium allergy following total knee arthroplasty. BMJ Case Rep. 2018;2018:548.
  • Granchi D, Cenni E, Tigani D, Trisolino G, Baldini N, Giunti A. Sensitivity to implant materials in patients with total knee arthroplasties. Biomaterials. 2008;29(10):1494–1500. doi:10.1016/j.biomaterials.2007.11.038
  • Moretti B, Pesce V, Maccagnano G, et al. Peripheral neuropathy after Hip replacement failure: is vanadium the culprit? Lancet. 2012;379(9826):1676. doi:10.1016/S0140-6736(12)60273-6
  • Cancilleri F, De Giorgis P, Verdoia C, Parrini L, Lodi A, Crosti C. Allergy to components of total Hip arthroplasty before and after surgery. Ital J Orthop Traumatol. 1992;18(3):407–410.
  • Smith D, Pickering R. A systematic review of vanadium oral supplements for glycaemic control in type 2 diabetes mellitus. QJM. 2008;101(5):351–358. doi:10.1093/qjmed/hcn003
  • Barceloux DG, Barceloux D. Vanadium. J Toxicol. 1999;37(2):265–278.
  • Vyskočil A, Viau C. Assessment of molybdenum toxicity in humans. J Appl Toxicol. 1999;19(3):185–192. doi:10.1002/(SICI)1099-1263(199905/06)19:3<185::AID-JAT555>3.0.CO;2-Z
  • Lewis RC, Johns LE, Meeker JD. Exploratory analysis of the potential relationship between urinary molybdenum and bone mineral density among adult men and women from NHANES 2007–2010. Chemosphere. 2016;164:677–682. doi:10.1016/j.chemosphere.2016.08.142
  • Parry NM, Phillippo M, Reid MD, McGaw BA, Flint DJ, Loveridge N. Molybdenum-induced changes in the epiphyseal growth plate. Calcified Tissue Int. 1993;53(3):180–186. doi:10.1007/BF01321835
  • Meeker JD, Rossano MG, Protas B, et al. Cadmium, lead, and other metals in relation to semen quality: human evidence for molybdenum as a male reproductive toxicant. Environ. Health Perspect. 2008;116(11):1473–1479. doi:10.1289/ehp.11490
  • Meeker JD, Rossano MG, Protas B, et al. Environmental exposure to metals and male reproductive hormones: circulating testosterone is inversely associated with blood molybdenum. Fertil Sterility. 2010;93(1):130–140. doi:10.1016/j.fertnstert.2008.09.044
  • Ribeiro AM, Flores-Sahagun THS, Paredes RC. A perspective on molybdenum biocompatibility and antimicrobial activity for applications in implants. J Mater Sci. 2015;51(6):2806–2816. doi:10.1007/s10853-015-9664-y
  • Thomas WC, Prieto HA. Total Hip replacement failure due to adverse local tissue reaction from both ceramic abrasive wear and trunnion corrosion. Arthroplast Today. 2019;5(4):384–388.
  • Cadossi M, Chiarello E, Savarino L, et al. Fast growing pseudotumour in a hairdresser after metal-on-metal Hip resurfacing: a case report. Eur. Rev. Med. Pharmacol. Sci. 2014;18(1 Suppl):29–33.
  • Grote CW, Cowan PC, Anderson DW, Templeton KJ. Pseudotumor from Metal-on-Metal Total Hip Arthroplasty Causing Unilateral Leg Edema: case Presentation and Literature Review. Biores Open Access. 2018;7(1):33–38. doi:10.1089/biores.2017.0035
  • Lainiala O, Eskelinen A, Elo P, Puolakka T, Korhonen J, Moilanen T. Adverse reaction to metal debris is more common in patients following MoM total Hip replacement with a 36 mm femoral head than previously thought: results from a modern MoM follow-up programme. Bone Joint j. 2014;96-B(12):1610–1617. doi:10.1302/0301-620X.96B12.33742
  • Czajka M, Sawicki K, Sikorska K, Popek S, Kruszewski M, Kapka-Skrzypczak L. Toxicity of titanium dioxide nanoparticles in central nervous system. Toxicol in vitro. 2015;29(5):1042–1052. doi:10.1016/j.tiv.2015.04.004
  • Hou J, Wang L, Wang C, et al. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J Environ Sci (China). 2019;75:40–53. doi:10.1016/j.jes.2018.06.010
  • Miller RA, Ro JY, Schwartz MR. Adverse tissue reactions after total Hip arthroplasty. Ann Diagn Pathol. 2017;27:83–87. doi:10.1016/j.anndiagpath.2016.07.006
  • Wu D, Bhalekar RM, Marsh JS, Langton DJ, Stewart AJ. Periarticular metal hypersensitivity complications of Hip bearings containing cobalt-chromium. EFORT Open Rev. 2022;7(11):758–771. doi:10.1530/EOR-22-0036
  • Rajamaki A, Lehtovirta L, Niemelainen M, et al. Mild aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL)-type reactions also present in patients with failed knee prostheses. Bone Joint Res. 2024;13(4):149–156. doi:10.1302/2046-3758.134.BJR-2023-0255.R1
  • Cohen MD, Kargacin B, Klein CB, Costa M. Mechanisms of chromium carcinogenicity and toxicity. Crit. Rev. Toxicol. 1993;23(3):255–281. doi:10.3109/10408449309105012
  • Gad SC. Acute and chronic systemic chromium toxicity. Sci Total Environ. 1989;86(1–2):149–157. doi:10.1016/0048-9697(89)90201-5
  • Pavesi T, Moreira JC. Mechanisms and individuality in chromium toxicity in humans. J Appl Toxicol. 2020;40(9):1183–1197. doi:10.1002/jat.3965
  • Wang Y, Su H, Gu Y, Song X, Zhao J. Carcinogenicity of chromium and chemoprevention: a brief update. Onco Targets Ther. 2017;10:4065–4079. doi:10.2147/OTT.S139262
  • Chen QY, DesMarais T, Costa M. Metals and Mechanisms of Carcinogenesis. Annu Rev Pharmacol Toxicol. 2019;59(1):537–554. doi:10.1146/annurev-pharmtox-010818-021031
  • Gomes CC, Moreira LM, Santos VJ, et al. Assessment of the genetic risks of a metallic alloy used in medical implants. Genetics Mol Biol. 2011;34(1):116–121. doi:10.1590/S1415-47572010005000118
  • Huang C, Sun M, Yang Y, et al. Titanium dioxide nanoparticles prime a specific activation state of macrophages. Nanotoxicology. 2017;11(6):737–750. doi:10.1080/17435390.2017.1349202
  • Santos Filho RD, Vicari T, Santos SA, et al. Genotoxicity of titanium dioxide nanoparticles and triggering of defense mechanisms in Allium cepa. Genet Mol Biol. 2019;42(2):425–435. doi:10.1590/1678-4685-gmb-2018-0205
  • Wakeman TP, Yang A, Dalal NS, et al. DNA mismatch repair protein Mlh1 is required for tetravalent chromium intermediate-induced DNA damage. Oncotarget. 2017;8(48):83975–83985. doi:10.18632/oncotarget.20150
  • Papis E, Gornati R, Prati M, Ponti J, Sabbioni E, Bernardini G. Gene expression in nanotoxicology research: analysis by differential display in BALB3T3 fibroblasts exposed to cobalt particles and ions. Toxicol Lett. 2007;170(3):185–192. doi:10.1016/j.toxlet.2007.03.005
  • Lison D, De Boeck M, Verougstraete V, Kirsch-Volders M. Update on the genotoxicity and carcinogenicity of cobalt compounds. Occup Environ Med. 2001;58(10):619–625. doi:10.1136/oem.58.10.619
  • De Boeck M, Kirsch-Volders M, Lison D. Cobalt and antimony: genotoxicity and carcinogenicity. Mutat Res. 2003;533(1–2):135–152. doi:10.1016/j.mrfmmm.2003.07.012
  • Magaye R, Zhao J, Bowman L, Ding M. Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles. Exp Ther Med. 2012;4(4):551–561. doi:10.3892/etm.2012.656
  • Behl M, Stout MD, Herbert RA, et al. Comparative toxicity and carcinogenicity of soluble and insoluble cobalt compounds. Toxicology. 2015;333:195–205. doi:10.1016/j.tox.2015.04.008
  • Savarino L, Fotia C, Roncuzzi L, et al. Does chronic raise of metal ion levels induce oxidative DNA damage and hypoxia-like response in patients with metal-on-metal Hip resurfacing? J Biomed Mater Res Part B. 2017;105(2):460–466. doi:10.1002/jbm.b.33555
  • Christian WV, Oliver LD, Paustenbach DJ, Kreider ML, Finley BL. Toxicology-based cancer causation analysis of CoCr-containing Hip implants: a quantitative assessment of genotoxicity and tumorigenicity studies. J Appl Toxicol. 2014;34(9):939–967. doi:10.1002/jat.3039
  • Ollivere B, Wimhurst JA, Clark IM, Donell ST. Current concepts in osteolysis. J Bone Joint Surg Br Vol. 2012;94(1):10–15. doi:10.1302/0301-620X.94B1.28047
  • Purdue PE, Koulouvaris P, Nestor BJ, Sculco TP. The central role of wear debris in periprosthetic osteolysis. HSS J. 2006;2(2):102–113. doi:10.1007/s11420-006-9003-6
  • Sansone V, Pagani D, Melato M. The effects on bone cells of metal ions released from orthopaedic implants. A review. Clin Cases Miner Bone Metab. 2013;10(1):34–40. doi:10.11138/ccmbm/2013.10.1.034
  • Kudo O, Sabokbar A, Pocock A, Itonaga I, Fujikawa Y, Athanasou NA. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone. 2003;32(1):1–7. doi:10.1016/S8756-3282(02)00915-8
  • Niki Y, Matsumoto H, Suda Y, et al. Metal ions induce bone-resorbing cytokine production through the redox pathway in synoviocytes and bone marrow macrophages. Biomaterials. 2003;24(8):1447–1457. doi:10.1016/S0142-9612(02)00531-8
  • Cadosch D, Al-Mushaiqri MS, Gautschi OP, Meagher J, Simmen HP, Filgueira L. Biocorrosion and uptake of titanium by human osteoclasts. J Biomed Mater Res Part A. 2010;95(4):1004–1010. doi:10.1002/jbm.a.32914
  • Kim BJ, Koh JM. Coupling factors involved in preserving bone balance. Cell Mol Life Sci. 2019;76(7):1243–1253. doi:10.1007/s00018-018-2981-y
  • Vermes C, Glant TT, Hallab NJ, Fritz EA, Roebuck KA, Jacobs JJ. The potential role of the osteoblast in the development of periprosthetic osteolysis: review of in vitro osteoblast responses to wear debris, corrosion products, and cytokines and growth factors. J Arthroplasty. 2001;16(8 Suppl 1):95–100. doi:10.1054/arth.2001.28719
  • Hallab NJ. Concentration- and composition-dependent effects of metal ions on human MG-63 osteoblasts. J Biomed Mater Res. 2002;60(3):420–433. doi:10.1002/jbm.10106
  • Vermes C, Chandrasekaran R, Jacobs JJ, Galante JO, Roebuck KA, Glant TT. The effects of particulate wear debris, cytokines, and growth factors on the functions of MG-63 osteoblasts. J Bone Joint Surg Am Vol. 2001;83(2):201–211. doi:10.2106/00004623-200102000-00007
  • Rakow A, Schoon J, Dienelt A, et al. Influence of particulate and dissociated metal-on-metal Hip endoprosthesis wear on mesenchymal stromal cells in vivo and in vitro. Biomaterials. 2016;98:31–40. doi:10.1016/j.biomaterials.2016.04.023
  • Roebuck KA, Vermes C, Carpenter LR, Fritz EA, Narayanan R, Glant TT. Down-regulation of procollagen alpha1[I]] messenger RNA by titanium particles correlates with nuclear factor kappaB (NF-kappaB) activation and increased rel A and NF-kappaB1 binding to the collagen promoter. J Bone Miner Res. 2001;16(3):501–510. doi:10.1359/jbmr.2001.16.3.501
  • Vermes C, Roebuck KA, Chandrasekaran R, Dobai JG, Jacobs JJ, Glant TT. Particulate wear debris activates protein tyrosine kinases and nuclear factor kappaB, which down-regulates type I collagen synthesis in human osteoblasts. J Bone Miner Res. 2000;15(9):1756–1765. doi:10.1359/jbmr.2000.15.9.1756
  • Ormsby RT, Solomon LB, Yang D, et al. Osteocytes respond to particles of clinically-relevant conventional and cross-linked polyethylene and metal alloys by up-regulation of resorptive and inflammatory pathways. Acta Biomater. 2019;87:296–306. doi:10.1016/j.actbio.2019.01.047
  • Minematsu H, Shin MJ, Celil AA, et al. Orthopedic implant particle-induced tumor necrosis factor-alpha production in macrophage-monocyte lineage cells is mediated by nuclear factor of activated T cells. Ann N Y Acad Sci. 2007;1117:143–150. doi:10.1196/annals.1402.026
  • Orhue V, Kanaji A, Caicedo MS, et al. Calcineurin/nuclear factor of activated T cells (NFAT) signaling in cobalt-chromium-molybdenum (CoCrMo) particles-induced tumor necrosis factor-alpha (TNFalpha) secretion in MLO-Y4 osteocytes. J Orthop Res. 2011;29(12):1867–1873. doi:10.1002/jor.21458
  • Kanaji A, Caicedo MS, Virdi AS, Sumner DR, Hallab NJ, Sena K. Co-Cr-Mo alloy particles induce tumor necrosis factor alpha production in MLO-Y4 osteocytes: a role for osteocytes in particle-induced inflammation. Bone. 2009;45(3):528–533. doi:10.1016/j.bone.2009.05.020
  • Ingham E, Fisher J. The role of macrophages in osteolysis of total joint replacement. Biomaterials. 2005;26(11):1271–1286. doi:10.1016/j.biomaterials.2004.04.035
  • Sun L, Blair HC, Peng Y, et al. Calcineurin regulates bone formation by the osteoblast. Proc Natl Acad Sci USA. 2005;102(47):17130–17135. doi:10.1073/pnas.0508480102
  • Winslow MM, Pan M, Starbuck M, et al. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell. 2006;10(6):771–782. doi:10.1016/j.devcel.2006.04.006
  • Yamanaka Y, Abu-Amer W, Foglia D, Otero J, Clohisy JC, Abu-Amer Y. NFAT2 is an essential mediator of orthopedic particle-induced osteoclastogenesis. J Orthop Res. 2008;26(12):1577–1584. doi:10.1002/jor.20714
  • Celil AA, Minematsu H, Gardner TR, Kim KO, Ahn JM, Lee FY. Nuclear factor of activated T cells mediates fluid shear stress- and tensile strain-induced Cox2 in human and murine bone cells. Bone. 2010;46(1):167–175. doi:10.1016/j.bone.2009.08.061
  • Magone K, Luckenbill D, Goswami T. Metal ions as inflammatory initiators of osteolysis. Arch Orthopaedic Trauma Surgery. 2015;135(5):683–695. doi:10.1007/s00402-015-2196-8
  • Gallo J, Slouf M, Goodman SB. The relationship of polyethylene wear to particle size, distribution, and number: a possible factor explaining the risk of osteolysis after Hip arthroplasty. J Biomed Mater Res Part B. 2010;94(1):171–177. doi:10.1002/jbm.b.31638
  • Gallo J, Raska M, Mrazek F, Petrek M. Bone remodeling, particle disease and individual susceptibility to periprosthetic osteolysis. Physiol Res. 2008;57(3):339–349. doi:10.33549/physiolres.931140
  • Goodman SB, Ma T. Cellular chemotaxis induced by wear particles from joint replacements. Biomaterials. 2010;31(19):5045–5050. doi:10.1016/j.biomaterials.2010.03.046
  • Gallo J, Kaminek P, Ticha V, Rihakova P, Ditmar R. Particle disease. A comprehensive theory of periprosthetic osteolysis: a review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2002;146(2):21–28. doi:10.5507/bp.2002.004
  • Merkel KD, Erdmann JM, McHugh KP, Abu-Amer Y, Ross FP, Teitelbaum SL. Tumor necrosis factor-alpha mediates orthopedic implant osteolysis. Am J Pathol. 1999;154(1):203–210. doi:10.1016/S0002-9440(10)65266-2
  • Catelas I, Petit A, Zukor DJ, Antoniou J, Huk OL. TNF-alpha secretion and macrophage mortality induced by cobalt and chromium ions in vitro-qualitative analysis of apoptosis. Biomaterials. 2003;24(3):383–391. doi:10.1016/S0142-9612(02)00351-4
  • Queally JM, Devitt BM, Butler JS, et al. Cobalt ions induce chemokine secretion in primary human osteoblasts. J Orthop Res. 2009;27(7):855–864. doi:10.1002/jor.20837
  • Eltit F, Noble J, Sharma M, et al. Cobalt ions induce metabolic stress in synovial fibroblasts and secretion of cytokines/chemokines that may be diagnostic markers for adverse local tissue reactions to Hip implants. Acta Biomater. 2021;131:581–594. doi:10.1016/j.actbio.2021.06.039
  • Liu G, Wang X, Zhou X, et al. Modulating the cobalt dose range to manipulate multisystem cooperation in bone environment: a strategy to resolve the controversies about cobalt use for orthopedic applications. Theranostics. 2020;10(3):1074–1089. doi:10.7150/thno.37931
  • Baskey SJ, Lehoux EA, Catelas I. Effects of cobalt and chromium ions on lymphocyte migration. J Orthop Res. 2017;35(4):916–924. doi:10.1002/jor.23336
  • Caicedo MS, Pennekamp PH, McAllister K, Jacobs JJ, Hallab NJ. Soluble ions more than particulate cobalt-alloy implant debris induce monocyte costimulatory molecule expression and release of proinflammatory cytokines critical to metal-induced lymphocyte reactivity. J Biomed Mater Res Part A. 2010;93(4):1312–1321. doi:10.1002/jbm.a.32627
  • Schwab LP, Marlar J, Hasty KA, Smith RA. Macrophage response to high number of titanium particles is cytotoxic and COX-2 mediated and it is not affected by the particle’s endotoxin content or the cleaning treatment. J Biomed Mater Res Part A. 2011;99(4):630–637. doi:10.1002/jbm.a.33222
  • Hotchkiss KM, Reddy GB, Hyzy SL, Schwartz Z, Boyan BD, Olivares-Navarrete R. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater. 2016;31:425–434. doi:10.1016/j.actbio.2015.12.003
  • Rader CP, Sterner T, Jakob F, Schutze N, Eulert J. Cytokine response of human macrophage-like cells after contact with polyethylene and pure titanium particles. J Arthroplasty. 1999;14(7):840–848. doi:10.1016/S0883-5403(99)90035-9
  • Valles G, Gil-Garay E, Munuera L, Vilaboa N. Modulation of the cross-talk between macrophages and osteoblasts by titanium-based particles. Biomaterials. 2008;29(15):2326–2335. doi:10.1016/j.biomaterials.2008.02.011
  • Carter JD, Ghio AJ, Samet JM, Devlin RB. Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. Toxicol Appl Pharmacol. 1997;146(2):180–188. doi:10.1006/taap.1997.8254
  • Ye J, Ding M, Zhang X, et al. Induction of TNFalpha in macrophages by vanadate is dependent on activation of transcription factor NF-kappaB and free radical reactions. Mol Cell Biochem. 1999;198(1–2):193–200. doi:10.1023/A:1006969008056
  • Tsave O, Petanidis S, Kioseoglou E, et al. Role of Vanadium in Cellular and Molecular Immunology: association with Immune-Related Inflammation and Pharmacotoxicology Mechanisms. Oxid Med Cell Longev. 2016;2016:4013639. doi:10.1155/2016/4013639
  • Zwolak I. Vanadium carcinogenic, immunotoxic and neurotoxic effects: a review of in vitro studies. Toxicol Mech Methods. 2014;24(1):1–12. doi:10.3109/15376516.2013.843110
  • Pineton de Chambrun G, Body-Malapel M, Frey-Wagner I, et al. Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice. Mucosal Immunol. 2014;7(3):589–601. doi:10.1038/mi.2013.78
  • Johnson VJ, Sharma RP. Aluminum disrupts the pro-inflammatory cytokine/neurotrophin balance in primary brain rotation-mediated aggregate cultures: possible role in neurodegeneration. Neurotoxicology. 2003;24(2):261–268. doi:10.1016/S0161-813X(02)00194-8
  • Drynda A, Drynda S, Kekow J, Lohmann CH, Bertrand J. Differential Effect of Cobalt and Chromium Ions as Well as CoCr Particles on the Expression of Osteogenic Markers and Osteoblast Function. Int J Mol Sci. 2018;19(10):10. doi:10.3390/ijms19103034
  • Wang JY, Wicklund BH, Gustilo RB, Tsukayama DT. Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages in vitro. Biomaterials. 1996;17(23):2233–2240. doi:10.1016/0142-9612(96)00072-5
  • Lee YW, Cherng YG, Yang ST, Liu SH, Chen TL, Chen RM. Hypoxia Induced by Cobalt Chloride Triggers Autophagic Apoptosis of Human and Mouse Drug-Resistant Glioblastoma Cells through Targeting the PI3K-AKT-mTOR Signaling Pathway. Oxid Med Cell Longev. 2021;2021:5558618. doi:10.1155/2021/5558618
  • Zhang C, Chen M, Tao Q, Chi Z. Cobalt chloride-stimulated hypoxia promotes the proliferation of cholesteatoma keratinocytes via the PI3K/Akt signaling pathway. Int J Med Sci. 2021;18(15):3403–3411. doi:10.7150/ijms.60617
  • Xu J, Yang J, Nyga A, et al. Cobalt (II) ions and nanoparticles induce macrophage retention by ROS-mediated down-regulation of RhoA expression. Acta Biomater. 2018;72:434–446. doi:10.1016/j.actbio.2018.03.054
  • Zhang X, Wang Y, Chen M, Zeng M. Hexavalent chromium-induced apoptosis in Hep3B cells is accompanied by calcium overload, mitochondrial damage, and AIF translocation. Ecotoxicol Environ Saf. 2021;208:111391. doi:10.1016/j.ecoenv.2020.111391
  • Ganapathy S, Li P, Lafontant J, et al. Chromium IV exposure, via Src/Ras signaling, promotes cell transformation. Mol, Carcinog. 2017;56(7):1808–1815. doi:10.1002/mc.22639
  • Yang Q, Han B, Xue J, et al. Hexavalent chromium induces mitochondrial dynamics disorder in rat liver by inhibiting AMPK/PGC-1alpha signaling pathway. Environ Pollut. 2020;265(Pt A):114855. doi:10.1016/j.envpol.2020.114855
  • Bozinovic K, Nestic D, Centa UG, et al. In-vitro toxicity of molybdenum trioxide nanoparticles on human keratinocytes. Toxicology. 2020;444:152564. doi:10.1016/j.tox.2020.152564
  • Yang TY, Yen CC, Lee KI, et al. Molybdenum induces pancreatic beta-cell dysfunction and apoptosis via interdependent of JNK and AMPK activation-regulated mitochondria-dependent and ER stress-triggered pathways. Toxicol Appl Pharmacol. 2016;294:54–64. doi:10.1016/j.taap.2016.01.013
  • Gholinejad Z, Khadem Ansari MH, Rasmi Y. Titanium dioxide nanoparticles induce endothelial cell apoptosis via cell membrane oxidative damage and p38, PI3K/Akt, NF-kappaB signaling pathways modulation. J Trace Elem Med Biol. 2019;54:27–35. doi:10.1016/j.jtemb.2019.03.008
  • Xian G, Chen W, Gu M, et al. Titanium particles induce apoptosis by promoting autophagy in macrophages via the PI3K/Akt signaling pathway. J Biomed Mater Res Part A. 2020;108(9):1792–1805. doi:10.1002/jbm.a.36938
  • Yu X, Hong F, Zhang YQ. Cardiac inflammation involving in PKCepsilon or ERK1/2-activated NF-kappaB signalling pathway in mice following exposure to titanium dioxide nanoparticles. J Hazard Mater. 2016;313:68–77. doi:10.1016/j.jhazmat.2016.03.088
  • Gu Y, Wang Z, Shi J, et al. Titanium particle-induced osteogenic inhibition and bone destruction are mediated by the GSK-3beta/beta-catenin signal pathway. Cell Death Dis. 2017;8(6):e2878. doi:10.1038/cddis.2017.275
  • Zhu WQ, Ming PP, Zhang SM, Qiu J. Role of MAPK/JNK signaling pathway on the regulation of biological behaviors of MC3T3E1 osteoblasts under titanium ion exposure. Mol Med Rep. 2020;22(6):4792–4800. doi:10.3892/mmr.2020.11575
  • Zhu WQ, Ming PP, Qiu J, et al. Effect of titanium ions on the Hippo/YAP signaling pathway in regulating biological behaviors of MC3T3-E1 osteoblasts. J Appl Toxicol. 2018;38(6):824–833. doi:10.1002/jat.3590
  • Diaz D, Bartolo R, Delgadillo DM, Higueldo F, Gomora JC. Contrasting effects of Cd2+ and Co2+ on the blocking/unblocking of human Cav3 channels. J Membr Biol. 2005;207(2):91–105. doi:10.1007/s00232-005-0804-1
  • Li X, Han Y, Guan Y, Zhang L, Bai C, Li Y. Aluminum induces osteoblast apoptosis through the oxidative stress-mediated JNK signaling pathway. Biol. Trace Elem. Res. 2012;150(1–3):502–508. doi:10.1007/s12011-012-9523-5
  • Cao Z, Liu D, Zhang Q, Sun X, Li Y. Aluminum Chloride Induces Osteoblasts Apoptosis via Disrupting Calcium Homeostasis and Activating Ca(2+)/CaMKII Signal Pathway. Biol. Trace Elem. Res. 2016;169(2):247–253. doi:10.1007/s12011-015-0417-1
  • Sun X, Cao Z, Zhang Q, et al. Aluminum trichloride impairs bone and downregulates Wnt/beta-catenin signaling pathway in young growing rats. Food Chem Toxicol. 2015;86:154–162. doi:10.1016/j.fct.2015.10.005
  • Persson B, Carlenor E, Clyne N, et al. Binding of dietary cobalt to sarcoplasmic reticulum proteins. Scand J Clin Lab Invest. 1992;52(2):137–140. doi:10.3109/00365519209088777
  • Karovic O, Tonazzini I, Rebola N, et al. Toxic effects of cobalt in primary cultures of mouse astrocytes. Similarities with hypoxia and role of HIF-1alpha. Biochem Pharmacol. 2007;73(5):694–708. doi:10.1016/j.bcp.2006.11.008
  • Assem FL, Levy LS. A review of current toxicological concerns on vanadium pentoxide and other vanadium compounds: gaps in knowledge and directions for future research. J Toxicol Environ Health B Crit Rev. 2009;12(4):289–306. doi:10.1080/10937400903094166
  • Hao W, Hao C, Wu C, et al. Aluminum impairs cognitive function by activating DDX3X-NLRP3-mediated pyroptosis signaling pathway. Food Chem Toxicol. 2021;157:112591. doi:10.1016/j.fct.2021.112591
  • Li H, Xue X, Li Z, Pan B, Hao Y, Niu Q. Aluminium-induced synaptic plasticity injury via the PHF8-H3K9me2-BDNF signalling pathway. Chemosphere. 2020;244:125445. doi:10.1016/j.chemosphere.2019.125445
  • Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Vanadium Compounds as Pro-Inflammatory Agents: effects on Cyclooxygenases. Int J Mol Sci. 2015;16(6):12648–12668. doi:10.3390/ijms160612648
  • Gajski G, Jelcic Z, Orescanin V, Geric M, Kollar R, Garaj-Vrhovac V. Physico-chemical characterization and the in vitro genotoxicity of medical implants metal alloy (TiAlV and CoCrMo) and polyethylene particles in human lymphocytes. Biochim Biophys Acta. 2014;1840(1):565–576. doi:10.1016/j.bbagen.2013.10.015
  • Chen F, Shi X. Intracellular signal transduction of cells in response to carcinogenic metals. Crit Rev Oncol Hematol. 2002;42(1):105–121. doi:10.1016/S1040-8428(01)00211-6
  • Gulati K, Scimeca JC, Ivanovski S, Verron E. Double-edged sword: therapeutic efficacy versus toxicity evaluations of doped titanium implants. Drug Discov Today. 2021;26(11):2734–2742. doi:10.1016/j.drudis.2021.07.004
  • Hartwig A. Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxid Redox Signal. 2001;3(4):625–634. doi:10.1089/15230860152542970
  • Baldwin EL, Byl JA, Osheroff N. Cobalt enhances DNA cleavage mediated by human topoisomerase II alpha in vitro and in cultured cells. Biochemistry. 2004;43(3):728–735. doi:10.1021/bi035472f
  • Lloyd DR, Carmichael PL, Phillips DH. Comparison of the formation of 8-hydroxy-2’-deoxyguanosine and single- and double-strand breaks in DNA mediated by Fenton reactions. Chem Res Toxicol. 1998;11(5):420–427. doi:10.1021/tx970156l
  • Beyersmann D, Hartwig A. The genetic toxicology of cobalt. Toxicol Appl Pharmacol. 1992;115(1):137–145. doi:10.1016/0041-008X(92)90377-5
  • Paustenbach DJ, Tvermoes BE, Unice KM, Finley BL, Kerger BD. A review of the health hazards posed by cobalt. Crit. Rev. Toxicol. 2013;43(4):316–362. doi:10.3109/10408444.2013.779633
  • Lison D, van den Brule S, Van Maele-Fabry G. Cobalt and its compounds: update on genotoxic and carcinogenic activities. Crit. Rev. Toxicol. 2018;48(7):522–539. doi:10.1080/10408444.2018.1491023
  • Wang J, Stieglitz KA, Kantrowitz ER. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Biochemistry. 2005;44(23):8378–8386. doi:10.1021/bi050155p
  • Snow ET. Effects of chromium on DNA replication in vitro. Environ Health Perspect. 1994;102(Suppl 3):41–44. doi:10.1289/ehp.94102s341
  • Bijukumar DR, Segu A, Souza J, et al. Systemic and local toxicity of metal debris released from Hip prostheses: a review of experimental approaches. Nanomedicine. 2018;14(3):951–963. doi:10.1016/j.nano.2018.01.001
  • Chen L, Zhang J, Zhu Y, Zhang Y. Interaction of chromium(III) or chromium(VI) with catalase and its effect on the structure and function of catalase: an in vitro study. Food Chem. 2018;244:378–385. doi:10.1016/j.foodchem.2017.10.062
  • Aureliano M. Recent perspectives into biochemistry of decavanadate. World J Biol Chem. 2011;2(10):215–225. doi:10.4331/wjbc.v2.i10.215
  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1–40. doi:10.1016/j.cbi.2005.12.009
  • Terpilowska S, Siwicki AK. Interactions between chromium(III) and iron(III), molybdenum(III) or nickel(II): cytotoxicity, genotoxicity and mutagenicity studies. Chemosphere. 2018;201:780–789. doi:10.1016/j.chemosphere.2018.03.062
  • Ducros V. Chromium metabolism. A literature review. Biol. Trace Elem. Res. 1992;32(1–3):65–77. doi:10.1007/BF02784589
  • Merritt K, Brown SA. Release of hexavalent chromium from corrosion of stainless steel and cobalt-chromium alloys. J Biomed Mater Res. 1995;29(5):627–633. doi:10.1002/jbm.820290510
  • Braakhuis HM, Gosens I, Heringa MB, et al. Mechanism of Action of TiO 2: recommendations to Reduce Uncertainties Related to Carcinogenic Potential. Annu Rev Pharmacol Toxicol. 2021;61(1):203–223. doi:10.1146/annurev-pharmtox-101419-100049
  • Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro. 2011;25(1):231–241. doi:10.1016/j.tiv.2010.11.008
  • Liu M, Wu X, Cui Y, et al. Mitophagy and apoptosis mediated by ROS participate in AlCl3-induced MC3T3-E1 cell dysfunction. Food Chem Toxicol. 2021;155:112388. doi:10.1016/j.fct.2021.112388
  • Mandriota SJ, Tenan M, Nicolle A, et al. Genomic Instability Is an Early Event in Aluminium-Induced Tumorigenesis. Int J Mol Sci. 2020;21:23. doi:10.3390/ijms21239332
  • Rojas E, Valverde M, Herrera LA, Altamirano-Lozano M, Ostrosky-Wegman P. Genotoxicity of vanadium pentoxide evaluate by the single cell gel electrophoresis assay in human lymphocytes. Mutat Res. 1996;359(2):77–84. doi:10.1016/S0165-1161(96)90254-X
  • Ivancsits S, Pilger A, Diem E, Schaffer A, Rudiger HW. Vanadate induces DNA strand breaks in cultured human fibroblasts at doses relevant to occupational exposure. Mutat Res. 2002;519(1–2):25–35. doi:10.1016/S1383-5718(02)00138-9
  • Rodriguez-Mercado JJ, Mateos-Nava RA, Altamirano-Lozano MA. DNA damage induction in human cells exposed to vanadium oxides in vitro. Toxicol in vitro. 2011;25(8):1996–2002. doi:10.1016/j.tiv.2011.07.009
  • Shi X, Jiang H, Mao Y, Ye J, Saffiotti U. Vanadium(IV)-mediated free radical generation and related 2’-deoxyguanosine hydroxylation and DNA damage. Toxicology. 1996;106(1–3):27–38. doi:10.1016/0300-483X(95)03151-5
  • Tang H, Sun Y, Xiu Q, Lu H, Han H. Cyclooxygenase-2 induction requires activation of nuclear factor of activated T-cells in Beas-2B cells after vanadium exposure and plays an anti-apoptotic role. Arch Biochem Biophys. 2007;468(1):92–99. doi:10.1016/j.abb.2007.09.016
  • Zhang Z, Huang C, Li J, Shi X. Vanadate-induced cell growth arrest is p53-dependent through activation of p21 in C141 cells. J Inorg Biochem. 2002;89(1–2):142–148. doi:10.1016/S0162-0134(01)00409-3
  • Zhang Z, Huang C, Li J, et al. Vanadate-induced cell growth regulation and the role of reactive oxygen species. Arch Biochem Biophys. 2001;392(2):311–320. doi:10.1006/abbi.2001.2464
  • Rodriguez-Mercado JJ, Roldan-Reyes E, Altamirano-Lozano M. Genotoxic effects of vanadium(IV) in human peripheral blood cells. Toxicol Lett. 2003;144(3):359–369. doi:10.1016/S0378-4274(03)00255-8
  • Geyikoglu F, Turkez H. Boron compounds reduce vanadium tetraoxide genotoxicity in human lymphocytes. Environ Toxicol Pharmacol. 2008;26(3):342–347. doi:10.1016/j.etap.2008.07.002
  • Ramirez P, Eastmond DA, Laclette JP, Ostrosky-Wegman P. Disruption of microtubule assembly and spindle formation as a mechanism for the induction of aneuploid cells by sodium arsenite and vanadium pentoxide. Mutat Res. 1997;386(3):291–298. doi:10.1016/S1383-5742(97)00018-5