155
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

High Strength and Shape Memory Spinal Fusion Device for Minimally Invasive Interbody Fusions

, , , , ORCID Icon, & ORCID Icon show all
Pages 5109-5123 | Received 28 Feb 2024, Accepted 22 May 2024, Published online: 31 May 2024

References

  • Laubach M, Kobbe P, Hutmacher DW. Biodegradable interbody cages for lumbar spine fusion: current concepts and future directions. Biomaterials. 2022;288:121699. doi:10.1016/j.biomaterials.2022.121699
  • Cruz A, Ropper AE, Xu DS, et al. Failure in Lumbar Spinal Fusion and Current Management Modalities. Seminars Plastic Surgery. 2021;35(1):54–62. doi:10.1055/s-0041-1726102
  • Smorgick Y, Baker KC, Bachison CC, Herkowitz HN, Montgomery DM, Fischgrund JS. Hidden blood loss during posterior spine fusion surgery. Spine J. 2013;13(8):877–881. doi:10.1016/j.spinee.2013.02.008
  • Elgafy H, Bransford RJ, McGuire RA, Dettori JR, Fischer D. Blood loss in major spine surgery: are there effective measures to decrease massive hemorrhage in major spine fusion surgery? Spine. 2010;35(9 Suppl):S47–56. doi:10.1097/BRS.0b013e3181d833f6
  • Delaey J, Dubruel P, Van Vlierberghe S. Shape-Memory Polymers for Biomedical Applications. Adv Funct Mater. 2020;30(44):1909047. doi:10.1002/adfm.201909047
  • Wang L, Zhang F, Liu Y, Leng J. Shape Memory Polymer Fibers: materials, Structures, and Applications. Adv Fiber Mater. 2022;4(1):5–23. doi:10.1007/s42765-021-00073-z
  • Lendlein A, Gould OEC. Reprogrammable recovery and actuation behaviour of shape-memory polymers. Nat Rev Mater. 2019;4(2):116–133. doi:10.1038/s41578-018-0078-8
  • Chen X, Tan P, Wen Y, et al. Facile scalable one-step wet-spinning of surgical sutures with shape memory function and antibacterial activity for wound healing. Chin Chem Lett. 2020;31(6):1499–1503. doi:10.1016/j.cclet.2019.11.006
  • Zhou W, Tan P, Chen X, et al. Berberine-Incorporated Shape Memory Fiber Applied as a Novel Surgical Suture. Front Pharmacol. 2020:10. doi:10.3389/fphar.2019.01506
  • Lin C, Liu L, Liu Y, Leng J. 4D printing of shape memory polybutylene succinate/polylactic acid (PBS/PLA) and its potential applications. Compos Struct. 2022;279:114729. doi:10.1016/j.compstruct.2021.114729
  • Zhang C, Cai D, Liao P, et al. 4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation. Acta Biomater. 2021;122:101–110. doi:10.1016/j.actbio.2020.12.042
  • Zhang Q, Zhao Z, Wu D, Chen K, Weng S. Mechanics-guided design of inflatable heterogeneous shape memory polymer vascular stents. Int J Mech Sci. 2023;254:108405. doi:10.1016/j.ijmecsci.2023.108405
  • Chen Y, Garces IT, Tang T, Ayranci C. Cellulose nanocrystals reinforced shape memory polymer cardiovascular stent. Rapid Prototyp J. 2021;27(1):37–44. doi:10.1108/RPJ-01-2020-0019
  • Chen L, Li W, Liu Y, Leng J. Nanocomposites of epoxy-based shape memory polymer and thermally reduced graphite oxide: mechanical, thermal and shape memory characterizations. Compos Part B. 2016;91:75–82. doi:10.1016/j.compositesb.2016.01.019
  • Wang Y, Cui H, Wang Y, et al. 4D Printed Cardiac Construct with Aligned Myofibers and Adjustable Curvature for Myocardial Regeneration. ACS Appl Mater Interfaces. 2021;13(11):12746–12758. doi:10.1021/acsami.0c17610
  • Miao S, Cui H, Esworthy T, et al. 4D Self-Morphing Culture Substrate for Modulating Cell Differentiation. Adv Sci. 2020;7(6):1902403. doi:10.1002/advs.201902403
  • Wang C, Yue H, Liu J, et al. Advanced reconfigurable scaffolds fabricated by 4D printing for treating critical-size bone defects of irregular shapes. Biofabrication. 2020;12(4):045025. doi:10.1088/1758-5090/abab5b
  • Xie H, Shao J, Ma Y, et al. Biodegradable near-infrared-photoresponsive shape memory implants based on black phosphorus nanofillers. Biomaterials. 2018;164:11–21. doi:10.1016/j.biomaterials.2018.02.040
  • Dai S, Yue S, Ning Z, Jiang N, Gan Z. Polydopamine Nanoparticle-Reinforced Near-Infrared Light-Triggered Shape Memory Polycaprolactone–Polydopamine Polyurethane for Biomedical Implant Applications. ACS Appl Mater Interfaces. 2022;14(12):14668–14676. doi:10.1021/acsami.2c03172
  • Yan N, Zheng Z, Liu Y, et al. Photo-responsive shape memory polymer composites enabled by doping with biomass-derived carbon nanomaterials. Nano Res. 2022;15(2):1383–1392. doi:10.1007/s12274-021-3674-7
  • Vakil AU, Ramezani M, Monroe MBB. Magnetically Actuated Shape Memory Polymers for On-Demand Drug Delivery. Materials. 2022;15(20):7279. doi:10.3390/ma15207279
  • Cui H, Miao S, Esworthy T, et al. A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation. Nano Res. 2019;12:1381–1388. doi:10.1007/s12274-019-2340-9
  • Hampel GA, Yilmaz E, Massrey C, et al. History of Bone Grafts in Spine Surgery. Cureus. 2022;14(5):e24655. doi:10.7759/cureus.24655
  • Gruskay JA, Basques BA, Bohl DD, Webb ML, Grauer JN. Short-term adverse events, length of stay, and readmission after iliac crest bone graft for spinal fusion. Spine. 2014;39(20):1718–1724. doi:10.1097/brs.0000000000000476
  • Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine j. 2011;11(6):471–491. doi:10.1016/j.spinee.2011.04.023
  • Sun H, Liu C, Li X, et al. A novel calcium phosphate–based nanocomposite for the augmentation of cement-injectable cannulated pedicle screws fixation: a cadaver and biomechanical study. J Orthop Translat. 2020;20:56–66. doi:10.1016/j.jot.2019.08.001
  • Lin C, Lv J, Li Y, et al. 4D-Printed Biodegradable and Remotely Controllable Shape Memory Occlusion Devices. Adv Funct Mater. 2019;29(51):1906569. doi:10.1002/adfm.201906569
  • Liu H, Zhang Z, Gao C, et al. Enhancing effects of radiopaque agent BaSO4 on mechanical and biocompatibility properties of injectable calcium phosphate composite cement. Mater Sci Eng C. 2020;116:110904. doi:10.1016/j.msec.2020.110904
  • Gao C, Liu H, Yang H, Yang L. Fabrication and Characterization of Injectable Calcium Phosphate-based Cements for Kyphoplasty. Mater Technol. 2015;30(sup8):B256–B263. doi:10.1080/10667857.2015.1104828
  • Jia C, Zhang Z, Cao S, et al. A biomimetic gradient porous cage with a micro-structure for enhancing mechanical properties and accelerating osseointegration in spinal fusion. Bioact Mater. 2023;23:234–246. doi:10.1016/j.bioactmat.2022.11.003
  • Volpe RH, Mistry D, Patel VV, Patel RR, Yakacki CM. Dynamically Crystalizing Liquid-Crystal Elastomers for an Expandable Endplate-Conforming Interbody Fusion Cage. Adv Healthcare Mater. 2020;9(1):1901136. doi:10.1002/adhm.201901136
  • Sadat ME, Kaveh Baghbador M, Dunn AW, et al. Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy. Appl Phys Lett. 2014;105(9). doi:10.1063/1.4895133
  • Liu H, Wang F, Wu W, Dong X, Sang L. 4D printing of mechanically robust PLA/TPU/Fe3O4 magneto-responsive shape memory polymers for smart structures. Compos Part B. 2023;248:110382. doi:10.1016/j.compositesb.2022.110382
  • Yue C, Li M, Liu Y, et al. Three-dimensional printing of cellulose nanofibers reinforced PHB/PCL/Fe3O4 magneto-responsive shape memory polymer composites with excellent mechanical properties. Addit Manuf. 2021;46:102146. doi:10.1016/j.addma.2021.102146
  • Zhang F, Wang L, Zheng Z, Liu Y, Leng J. Magnetic programming of 4D printed shape memory composite structures. Compos Part A. 2019;125:105571. doi:10.1016/j.compositesa.2019.105571
  • Sun Z, Li T, Wu F, et al. Precise Synergistic Photothermal Therapy Guided by Accurate Temperature-Dependent NIR-II Fluorescence Imaging. Adv Funct Mater. 2024;34(14):2311622. doi:10.1002/adfm.202311622
  • Liu H, Liu B, Gao C, et al. Injectable, biomechanically robust, biodegradable and osseointegrative bone cement for percutaneous kyphoplasty and vertebroplasty. Int Orthopaedics. 2018;42(1):125–132. doi:10.1007/s00264-017-3674-0
  • Chen P, Su J, Wang H, et al. Mechanical properties and microstructure characteristics of lattice-surfaced PEEK cage fabricated by high-temperature laser powder bed fusion. J Mater Sci Technol. 2022;125:105–117. doi:10.1016/j.jmst.2022.03.009
  • Wang H, Wan Y, Li Q, et al. Multiscale design and biomechanical evaluation of porous spinal fusion cage to realize specified mechanical properties. Bio-Des Manuf. 2022;5(2):277–293. doi:10.1007/s42242-021-00162-3
  • Barba D, Alabort E, Reed RC. Synthetic bone: design by additive manufacturing. Acta Biomater. 2019;97:637–656. doi:10.1016/j.actbio.2019.07.049
  • Lee MJ, Mok J, Patel P. Transforaminal Lumbar Interbody Fusion: traditional Open Versus Minimally Invasive Techniques. J Am Acad Orthop Surg. 2018;26(4):124–131.
  • Phan K, Mobbs RJ. Evolution of Design of Interbody Cages for Anterior Lumbar Interbody Fusion. Orthop Surg. 2016;8(3):270–277. doi:10.1111/os.12259
  • Hawasli AH, Khalifeh JM, Chatrath A, Yarbrough CK, Ray WZ. Minimally invasive transforaminal lumbar interbody fusion with expandable versus static interbody devices: radiographic assessment of sagittal segmental and pelvic parameters. Neurosurgical Focus FOC. 2017;43(2):E10. doi:10.3171/2017.5.FOCUS17197