70
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Recent Advances in Targeted Therapies for Infantile Hemangiomas

, , , , & ORCID Icon
Pages 6127-6143 | Received 08 Feb 2024, Accepted 02 Jun 2024, Published online: 19 Jun 2024

References

  • Sun Y, Qiu F, Hu C, Guo Y, Lei S. Hemangioma endothelial cells and hemangioma stem cells in infantile hemangioma. Ann Plast Surg. 2022;88(2):244–249. doi:10.1097/SAP.0000000000002835
  • Olsen GM, Nackers A, Drolet BA. Infantile and congenital hemangiomas. Semin Pediatr Surg. 2020;29(5):150969. doi:10.1016/j.sempedsurg.2020.150969
  • Hasbani DJ, Hamie L. Infantile Hemangiomas. Dermatol Clin. 2022;40(4):383–392. doi:10.1016/j.det.2022.06.004
  • Briones M, Adams D. Neonatal vascular tumors. Clin Perinatol. 2021;48(1):181–198. doi:10.1016/j.clp.2020.11.011
  • Krowchuk DP, Frieden IJ, Mancini AJ, et al. Clinical practice guideline for the management of infantile hemangiomas. Pediatrics. 2019;143(1). doi:10.1542/peds.2018-3475
  • Sebaratnam DF, Rodríguez Bandera AL, Wong LF, Wargon O. Infantile hemangioma. Part 2: management. J Am Acad Dermatol. 2021;85(6):1395–1404. doi:10.1016/j.jaad.2021.08.020
  • Waner M. The surgical management of infantile hemangiomas. Otolaryngol Clin North Am. 2018;51(1):125–131. doi:10.1016/j.otc.2017.09.011
  • Castaneda S, Melendez-Lopez S, Garcia E, De la Cruz H, Sanchez-Palacio J. The role of the pharmacist in the treatment of patients with infantile hemangioma using propranolol. Adv Ther. 2016;33(10):1831–1839. doi:10.1007/s12325-016-0391-9
  • Ji Y, Chen S, Yang K, et al. Efficacy and safety of propranolol vs atenolol in infants with problematic infantile hemangiomas: a randomized clinical trial. JAMA Otolaryngol Head Neck Surg. 2021;147(7):599–607. doi:10.1001/jamaoto.2021.0454
  • Pope E, Lara-Corrales I, Sibbald C, et al. Noninferiority and safety of nadolol vs propranolol in infants with infantile hemangioma: a randomized clinical trial. JAMA Pediatr. 2022;176(1):34–41. doi:10.1001/jamapediatrics.2021.4565
  • Droitcourt C, Kerbrat S, Rault C, et al. Safety of oral propranolol for infantile hemangioma. Pediatrics. 2018;141(6). doi:10.1542/peds.2017-3783
  • Raphael MF, Breur JMPJ, Vlasveld FAE, et al. Treatment of infantile hemangiomas: therapeutic options in regard to side effects and adverse events – a review of the literature. Expert Opin Drug Saf. 2016;15(2):199–214. doi:10.1517/14740338.2016.1130125
  • Koh SP, Leadbitter P, Smithers F, Tan ST. β-blocker therapy for infantile hemangioma. Expert Rev Clin Pharmacol. 2020;13(8):899–915. doi:10.1080/17512433.2020.1788938
  • Ashique S, Sandhu NK, Chawla V, Chawla PA. Targeted drug delivery: trends and perspectives. Curr Drug Deliv. 2021;18(10):1435–1455. doi:10.2174/1567201818666210609161301
  • Alsaggar M, Liu D. Organ-based drug delivery. J Drug Target. 2018;26(5–6):385–397. doi:10.1080/1061186X.2018.1437919
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20. doi:10.1021/nn900002m
  • Björnmalm M, Thurecht KJ, Michael M, Scott AM, Caruso F. Bridging bio-nano science and cancer nanomedicine. ACS Nano. 2017;11(10):9594–9613. doi:10.1021/acsnano.7b04855
  • Alavi M, Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab Pers Ther. 2019;34(1). doi:10.1515/dmpt-2018-0032
  • Aqeel R, Srivastava N, Kushwaha P. Micelles in cancer therapy: an update on preclinical and clinical status. Recent Pat Nanotechnol. 2022;16(4):283–294. doi:10.2174/1872210515666210720125717
  • Dartora VFC, Salata GC, Passos JS, et al. Hyaluronic acid nanoemulsions improve piplartine cytotoxicity in 2D and 3D breast cancer models and reduce tumor development after intraductal administration. Int J Biol Macromol. 2022;219:84–95. doi:10.1016/j.ijbiomac.2022.07.162
  • Grześkowiak BF, Maziukiewicz D, Kozłowska A, Kertmen A, Coy E, Mrówczyński R. Polyamidoamine dendrimers decorated multifunctional polydopamine nanoparticles for targeted chemo- and photothermal therapy of liver cancer model. Int J Mol Sci. 2021;22(2):738. doi:10.3390/ijms22020738
  • Chen Z, Zeng Y, Chen N, et al. A facile and universal method for preparing polyethylene glycol-metal hybrid nanoparticles and their application in tumor theranostics. Adv Healthc Mater. 2022;11(12):e2200044. doi:10.1002/adhm.202200044
  • Xu Y, Liu Y, Liu Q, et al. Co-delivery of bufalin and nintedanib via albumin sub-microspheres for synergistic cancer therapy. J Control Release. 2021;338:705–718. doi:10.1016/j.jconrel.2021.08.049
  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53(46):12320–12364. doi:10.1002/anie.201403036
  • Leung AKC, Lam JM, Leong KF, Hon KL. Infantile hemangioma: an updated review. Curr Pediatr Rev. 2021;17(1):55–69. doi:10.2174/1573396316666200508100038
  • Goelz R, Poets CF. Incidence and treatment of infantile haemangioma in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2015;100(1):F85–91. doi:10.1136/archdischild-2014-306197
  • Darrow DH, Greene AK, Mancini AJ, Nopper AJ. Diagnosis and management of infantile hemangioma. Pediatrics. 2015;136(4):e1060–1104. doi:10.1542/peds.2015-2485
  • North PE. Pediatric vascular tumors and malformations. Surg Pathol Clin. 2010;3(3):455–494. doi:10.1016/j.path.2010.07.002
  • Wang Z, Li J, Xu X, Duan X, Cao G. Urea immunoliposome inhibits human vascular endothelial cell proliferation for hemangioma treatment. World J Surg Oncol. 2013;11(1):300. doi:10.1186/1477-7819-11-300
  • Sohn CH, Park SP, Choi SH, et al. MRI molecular imaging using GLUT1 antibody-Fe3O4 nanoparticles in the hemangioma animal model for differentiating infantile hemangioma from vascular malformation. Nanomedicine. 2015;11(1):127–135. doi:10.1016/j.nano.2014.08.003
  • Guo X, Zhu X, Gao J, Liu D, Dong C, Jin X. PLGA nanoparticles with CD133 aptamers for targeted delivery and sustained release of propranolol to hemangioma. Nanomedicine. 2017;12(21):2611–2624. doi:10.2217/nnm-2017-0130
  • Zhu X, Guo X, Liu D, Gong Y, Sun J, Dong C. Promotion of propranolol delivery to hemangiomas by using anti-vegfr antibody-conjugated poly(lactic-co-glycolic acid) nanoparticles. J Biomed Nanotechnol. 2017;13(12):1694–1705. doi:10.1166/jbn.2017.2449
  • Li H, Teng Y, Sun J, Liu J. Inhibition of hemangioma growth using polymer-lipid hybrid nanoparticles for delivery of rapamycin. Biomed Pharmacother. 2017;95:875–884. doi:10.1016/j.biopha.2017.08.035
  • Guan Y, Zuo T, Chang M, et al. Propranolol hydrochloride-loaded liposomal gel for transdermal delivery: characterization and in vivo evaluation. Int J Pharm. 2015;487(1–2):135–141. doi:10.1016/j.ijpharm.2015.04.023
  • Guo X, Zhu X, Liu D, Gong Y, Sun J, Dong C. Continuous delivery of propranolol from liposomes-in-microspheres significantly inhibits infantile hemangioma growth. Int J Nanomed. 2017;12:6923–6936. doi:10.2147/IJN.S137634
  • Zhu X, Guo X, Liu D, Gong Y, Sun J, Dong C. Significant inhibition of infantile hemangioma growth by sustained delivery of urea from liposomes-in-microspheres. Oncol Rep. 2018;39(1):109–118. doi:10.3892/or.2017.6103
  • Wu H, Wang X, Zheng J, et al. Propranolol-loaded mesoporous silica nanoparticles for treatment of infantile hemangiomas. Adv Healthc Mater. 2019;8(9):e1801261. doi:10.1002/adhm.201801261
  • Wu H, Wang X, Liang H, Zheng J, Huang S, Zhang D. Enhanced efficacy of propranolol therapy for infantile hemangiomas based on a mesoporous silica nanoplatform through mediating autophagy dysfunction. Acta Biomater. 2020;107:272–285. doi:10.1016/j.actbio.2020.02.033
  • Guo X, Yuan Z, Xu Y, Wei M, Fang Z, Yuan WE. A fluorinated low-molecular-weight PEI/HIF-1α shRNA polyplex system for hemangioma therapy. Biomater Sci. 2020;8(8):2129–2142. doi:10.1039/D0BM00171F
  • Zeng L, Tao C, Liu Z, et al. Preparation and evaluation of cubic nanoparticles for improved transdermal delivery of propranolol hydrochloride. AAPS Pharm Sci Tech. 2020;21(7):266. doi:10.1208/s12249-020-01809-7
  • Khalil RM, El Arini SK, AbouSamra MM, Zaki HS, El-Gazaerly ON, Elbary AA. Development of lecithin/chitosan nanoparticles for promoting topical delivery of propranolol hydrochloride: design, optimization and in-vivo evaluation. J Pharm Sci. 2021;110(3):1337–1348. doi:10.1016/j.xphs.2020.11.025
  • Liao S, Wu J, Li Z, et al. Study on the mechanism of targeted poly(lactic-coglycolic acid) nano-delivery carriers in the treatment of hemangiomas. J Nanosci Nanotechnol. 2021;21(2):1236–1243. doi:10.1166/jnn.2021.18689
  • Li X, Ren X, Liang J, Ma W, Wang Z, Yang Z. Delivery of sodium morrhuate to hemangioma endothelial cells using immunoliposomes conjugated with anti-VEGFR2/KDR antibody. Int J Nanomed. 2017;12:6963–6972. doi:10.2147/IJN.S144056
  • Li H, Teng Y, Xu X, Liu J. Enhanced rapamycin delivery to hemangiomas by lipid polymer nanoparticles coupled with anti-VEGFR antibody. Int J Mol Med. 2018;41(6):3586–3596. doi:10.3892/ijmm.2018.3518
  • Li H, Wang X, Guo X, Wan Q, Teng Y, Liu J. Development of rapamycin-encapsulated exosome-mimetic nanoparticles-in-PLGA microspheres for treatment of hemangiomas. Biomed Pharmacother. 2022;148:112737. doi:10.1016/j.biopha.2022.112737
  • Zhao ZL, Liu C, Wang QZ, Wu HW, Zheng JW. Engineered exosomes for targeted delivery of miR-187-3p suppress the viability of hemangioma stem cells by targeting Notch signaling. Ann Transl Med. 2022;10(11):621. doi:10.21037/atm-21-4138
  • Li Y, Lin TY, Luo Y, et al. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat Commun. 2014;5(1):4712. doi:10.1038/ncomms5712
  • Orbay H, Li Y, Xiao W, Cherry SR, Lam K, Sahar DE. Developing a nanoparticle-delivered high-efficacy treatment for infantile hemangiomas using a mouse hemangioendothelioma model. Plast Reconstr Surg. 2016;138(2):410–417. doi:10.1097/PRS.0000000000002403
  • Wu W, Wang H, Hao J, Gao Z, Li F, Chen Y. Therapeutic efficacy of propranolol for infantile hemangiomas. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;128(2):132–138. doi:10.1016/j.oooo.2019.04.014
  • Tang YJ, Zhang ZZ, Chen SQ, et al. Effect of topical propranolol gel on plasma renin, angiotensin II and vascular endothelial growth factor in superficial infantile hemangiomas. J Huazhong Univ Sci Technolog Med Sci. 2015;35(5):759–762. doi:10.1007/s11596-015-1503-5
  • Baveloni FG, Riccio BVF, Di Filippo LD, Fernandes MA, Meneguin AB, Chorilli M. Nanotechnology-based drug delivery systems as potential for skin application: a review. Curr Med Chem. 2021;28(16):3216–3248. doi:10.2174/0929867327666200831125656
  • Sharma G, Thakur K, Raza K, Singh B, Katare OP. Nanostructured lipid carriers: a new paradigm in topical delivery for dermal and transdermal applications. Crit Rev Ther Drug Carrier Syst. 2017;34(4):355–386. doi:10.1615/CritRevTherDrugCarrierSyst.2017019047
  • Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28(1):5–24. doi:10.1016/S0169-409X(97)00048-3
  • Swider E, Koshkina O, Tel J, Cruz LJ, de Vries IJM, Srinivas M. Customizing poly(lactic-co-glycolic acid) particles for biomedical applications. Acta Biomater. 2018;73:38–51. doi:10.1016/j.actbio.2018.04.006
  • Su H, Wang Y, Gu Y, Bowman L, Zhao J, Ding M. Potential applications and human biosafety of nanomaterials used in nanomedicine. J Appl Toxicol. 2018;38(1):3–24. doi:10.1002/jat.3476
  • Brouwer A, Knook DL. The reticuloendothelial system and aging: a review. Mech Ageing Dev. 1983;21(3–4):205–228. doi:10.1016/0047-6374(83)90042-8
  • Zhang Y, Liu Q, Zhang X, et al. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. J Nanobiotechnology. 2022;20(1):279. doi:10.1186/s12951-022-01472-z
  • Hager S, Fittler FJ, Wagner E, Bros M. Nucleic acid-based approaches for tumor therapy. Cells. 2020;9(9):2061. doi:10.3390/cells9092061
  • Zhang J, Tang H, Liu Z, Chen B. Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. Int J Nanomed. 2017;12:8483–8493. doi:10.2147/IJN.S148359
  • Mattheolabakis G, Rigas B, Constantinides PP. Nanodelivery strategies in cancer chemotherapy: biological rationale and pharmaceutical perspectives. Nanomedicine. 2012;7(10):1577–1590. doi:10.2217/nnm.12.128
  • Shi Y, van der Meel R, Chen X, Lammers T. The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics. 2020;10(17):7921–7924. doi:10.7150/thno.49577
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. doi:10.1186/s12951-018-0392-8
  • Liu J, Luo Z, Zhang J, et al. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials. 2016;83:51–65. doi:10.1016/j.biomaterials.2016.01.008
  • Watermann A, Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials. 2017;7(7):189. doi:10.3390/nano7070189
  • Rajagopal P, Duraiswamy S, Sethuraman S, Giridhara Rao J, Krishnan UM. Polymer-coated viral vectors: hybrid nanosystems for gene therapy. J Gene Med. 2018;20(4):e3011. doi:10.1002/jgm.3011
  • Zu H, Gao D. Non-viral vectors in gene therapy: recent development, challenges, and prospects. Aaps j. 2021;23(4):78. doi:10.1208/s12248-021-00608-7
  • Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–555. doi:10.1038/nrg3763
  • Jiang HL, Islam MA, Xing L, et al. Degradable polyethylenimine-based gene carriers for cancer therapy. Top Curr Chem. 2017;375(2):34. doi:10.1007/s41061-017-0124-9
  • de Jong S, Itinteang T, Withers AH, Davis PF, Tan ST. Does hypoxia play a role in infantile hemangioma? Arch Dermatol Res. 2016;308(4):219–227. doi:10.1007/s00403-016-1635-x
  • Sharp FR, Lu A, Tang Y, Millhorn DE. Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab. 2000;20(7):1011–1032. doi:10.1097/00004647-200007000-00001
  • Zhang W, Sun L, Gao H, Wang S. Mechanism of the HIF-1α/VEGF/VEGFR-2 pathway in the proliferation and apoptosis of human haemangioma endothelial cells. Int J Exp Pathol. 2023;104(5):258–268. doi:10.1111/iep.12485
  • Chim H, Armijo BS, Miller E, Gliniak C, Serret MA, Gosain AK. Propranolol induces regression of hemangioma cells through HIF-1α-mediated inhibition of VEGF-A. Ann Surg. 2012;256(1):146–156. doi:10.1097/SLA.0b013e318254ce7a
  • Patil YB, Swaminathan SK, Sadhukha T, Ma L, Panyam J. The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials. 2010;31(2):358–365. doi:10.1016/j.biomaterials.2009.09.048
  • Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm. 2021;601:120571. doi:10.1016/j.ijpharm.2021.120571
  • Carita AC, Eloy JO, Chorilli M, Lee RJ, Leonardi GR. Recent advances and perspectives in liposomes for cutaneous drug delivery. Curr Med Chem. 2018;25(5):606–635. doi:10.2174/0929867324666171009120154
  • Ferreira Soares DC, Domingues SC, Viana DB, Tebaldi ML. Polymer-hybrid nanoparticles: current advances in biomedical applications. Biomed Pharmacother. 2020;131:110695. doi:10.1016/j.biopha.2020.110695
  • Narmani A, Jahedi R, Bakhshian-Dehkordi E, et al. Biomedical applications of PLGA nanoparticles in nanomedicine: advances in drug delivery systems and cancer therapy. Expert Opin Drug Deliv. 2023;20(7):937–954. doi:10.1080/17425247.2023.2223941
  • Dave V, Tak K, Sohgaura A, Gupta A, Sadhu V, Reddy KR. Lipid-polymer hybrid nanoparticles: synthesis strategies and biomedical applications. J Microbiol Methods. 2019;160:130–142. doi:10.1016/j.mimet.2019.03.017
  • Go YK, Leal C. Polymer-lipid hybrid materials. Chem Rev. 2021;121(22):13996–14030. doi:10.1021/acs.chemrev.1c00755
  • Tan KX, Danquah MK, Sidhu A, Yon LS, Ongkudon CM. Aptamer-mediated polymeric vehicles for enhanced cell-targeted drug delivery. Curr Drug Targets. 2018;19(3):248–258. doi:10.2174/1389450117666160617120926
  • Novio F. Design of targeted nanostructured coordination polymers (NCPs) for cancer therapy. Molecules. 2020;25(15):3449. doi:10.3390/molecules25153449
  • Mizrak D, Brittan M, Alison M. CD133: molecule of the moment. J Pathol. 2008;214(1):3–9. doi:10.1002/path.2283
  • Khan ZA, Boscolo E, Picard A, et al. Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest. 2008;118(7):2592–2599. doi:10.1172/JCI33493
  • Oszajca K, Szemraj J, Wyrzykowski D, Chrzanowska B, Salamon A, Przewratil P. Single-nucleotide polymorphisms of VEGF-A and VEGFR-2 genes and risk of infantile hemangioma. Int J Dermatol. 2018;57(10):1201–1207. doi:10.1111/ijd.14127
  • Eskens FA, Verweij J. The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer. 2006;42(18):3127–3139. doi:10.1016/j.ejca.2006.09.015
  • Tugues S, Koch S, Gualandi L, Li X, Claesson-Welsh L. Vascular endothelial growth factors and receptors: anti-angiogenic therapy in the treatment of cancer. Mol Aspects Med. 2011;32(2):88–111. doi:10.1016/j.mam.2011.04.004
  • Tu JB, Dong Q, Hu XY, et al. Proteomic analysis of mitochondria from infantile hemangioma endothelial cells treated with sodium morrhuate and its liposomal formulation. J Biochem Mol Toxicol. 2012;26(9):374–380. doi:10.1002/jbt.21436
  • Fukuta T, Kogure K. Biomimetic nanoparticle drug delivery systems to overcome biological barriers for therapeutic applications. Chem Pharm Bull. 2022;70(5):334–340. doi:10.1248/cpb.c21-00961
  • Wang R, Sha X. Biomimetic drug delivery systems oriented by biological function in tumor targeting. Curr Drug Targets. 2021;22(8):882–895. doi:10.2174/1389450122666210114095859
  • Liang T, Zhang R, Liu X, et al. Recent advances in macrophage-mediated drug delivery systems. Int J Nanomed. 2021;16:2703–2714. doi:10.2147/IJN.S298159
  • Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. 2017;17(1):20–37. doi:10.1038/nrc.2016.108
  • Kadkhoda J, Tarighatnia A, Barar J, Aghanejad A, Davaran S. Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagnosis Photodyn Ther. 2022;37:102697. doi:10.1016/j.pdpdt.2021.102697
  • Li Z, Cao Z, Li N, et al. M2 macrophage-derived exosomal lncrna lncRNA MIR4435-2HG progression of infantile hemangiomas by targeting HNRNPA1. Int J Nanomed. 2023;18:5943–5960. doi:10.2147/IJN.S435132
  • Wu Y, Li H, Xie J, Wang F, Cao D, Lou Y. MiR‑139‑5p affects cell proliferation, migration and adipogenesis by targeting insulin‑like growth factor 1 receptor in hemangioma stem cells. Int J Mol Med. 2020;45(2):569–577. doi:10.3892/ijmm.2019.4430