45
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Apoptotic Extracellular Vesicles from Supernumerary Tooth-Derived Pulp Stem Cells Transfer COL1A1 to Promote Angiogenesis via PI3K/Akt/VEGF Pathway

ORCID Icon, , &
Pages 6811-6828 | Received 17 Apr 2024, Accepted 21 Jun 2024, Published online: 08 Jul 2024

References

  • Todorova D, Simoncini S, Lacroix R, Sabatier F, Dignat-George F. Extracellular Vesicles in Angiogenesis. Circ Res. 2017;120(10):1658–1673. doi:10.1161/CIRCRESAHA.117.309681
  • Eelen G, Treps L, Li X, Carmeliet P. Basic and Therapeutic Aspects of Angiogenesis Updated. Circ Res. 2020;127(2):310–329. doi:10.1161/circresaha.120.316851
  • Pan Z, Sun W, Chen Y, et al. Extracellular Vesicles in Tissue Engineering: biology and Engineered Strategy. Adv Healthc Mater. 2022;11(21):e2201384. doi:10.1002/adhm.202201384
  • Chen Y, Huang J, Chen R, et al. Sustained release of dermal papilla-derived extracellular vesicles from injectable microgel promotes hair growth. Theranostics. 2020;10(3):1454–1478. doi:10.7150/thno.39566
  • Lin R, Zhang T, Gao J. Apoptotic Vesicles of MSCs: the Natural Therapeutic Agents and Bio-Vehicles for Targeting Drug Delivery. Small. 2023;19:e2301671. doi:10.1002/smLl.202301671
  • Zheng C, Sui B, Zhang X, et al. Apoptotic vesicles restore liver macrophage homeostasis to counteract type 2 diabetes. J Extracell Vesicles. 2021;10(7):e12109. doi:10.1002/jev2.12109
  • Gregory CD, Dransfield I. Apoptotic Tumor Cell-Derived Extracellular Vesicles as Important Regulators of the Onco-Regenerative Niche. Front Immunol. 2018;9:1111. doi:10.3389/fimmu.2018.01111
  • Zhu Y, Chen X, Liao Y. Mesenchymal Stem Cells-Derived Apoptotic Extracellular Vesicles (ApoEVs): mechanism and Application in Tissue Regeneration. Stem Cells. 2023;41(9):837–849. doi:10.1093/stmcls/sxad046
  • Zou X, Lei Q, Luo X, et al. Advances in biological functions and applications of apoptotic vesicles. Cell Commun Signal. 2023;21(1):260. doi:10.1186/s12964-023-01251-9
  • Zhang X, Tang J, Kou X, et al. Proteomic analysis of MSC‐derived apoptotic vesicles identifies Fas inheritance to ameliorate haemophilia a via activating platelet functions. J Extracell Vesicles. 2022;11(7):e12240. doi:10.1002/jev2.12240
  • Xin L, Wei C, Tong X, et al. In situ delivery of apoptotic bodies derived from mesenchymal stem cells via a hyaluronic acid hydrogel: a therapy for intrauterine adhesions. Bioact Mater. 2022;12:107–119. doi:10.1016/j.bioactmat.2021.10.025
  • Liu H, Liu S, Qiu X, et al. Donor MSCs release apoptotic bodies to improve myocardial infarction via autophagy regulation in recipient cells. Autophagy. 2020;16(12):2140–2155. doi:10.1080/15548627.2020.1717128
  • Grant LR, Milic I, Devitt A. Apoptotic cell-derived extracellular vesicles: structure-function relationships. Biochem Soc Trans. 2019;47(2):509–516. doi:10.1042/bst20180080
  • Ma L, Chen C, Liu D, et al. Apoptotic extracellular vesicles are metabolized regulators nurturing the skin and hair. Bioact Mater. 2023;19:626–641. doi:10.1016/j.bioactmat.2022.04.022
  • Qu Y, He Y, Meng B, et al. Apoptotic vesicles inherit SOX2 from pluripotent stem cells to accelerate wound healing by energizing mesenchymal stem cells. Acta Biomater. 2022;149:258–272. doi:10.1016/j.actbio.2022.07.009
  • Kakarla R, Hur J, Kim YJ, Kim J, Chwae YJ. Apoptotic cell-derived exosomes: messages from dying cells. Exp Mol Med. 2020;52(1):1–6. doi:10.1038/s12276-019-0362-8
  • Phan TK, Ozkocak DC, Poon IKH. Unleashing the therapeutic potential of apoptotic bodies. Biochem Soc Trans. 2020;48(5):2079–2088. doi:10.1042/BST20200225
  • Wang R, Hao M, Kou X, et al. Apoptotic vesicles ameliorate lupus and arthritis via phosphatidylserine-mediated modulation of T cell receptor signaling. Bioact Mater. 2023;25:472–484. doi:10.1016/j.bioactmat.2022.07.026
  • Fu Y, Sui B, Xiang L, et al. Emerging understanding of apoptosis in mediating mesenchymal stem cell therapy. Cell Death Dis. 2021;12(6):596. doi:10.1038/s41419-021-03883-6
  • Li Z, Wu M, Liu S, et al. Apoptotic vesicles activate autophagy in recipient cells to induce angiogenesis and dental pulp regeneration. Mol Ther. 2022;30(10):3193–3208. doi:10.1016/j.ymthe.2022.05.006
  • Li J, Wei C, Yang Y, Gao Z, Guo Z, Qi F. Apoptotic bodies extracted from adipose mesenchymal stem cells carry microRNA-21-5p to induce M2 polarization of macrophages and augment skin wound healing by targeting KLF6. Burns. 2022;48(8):1893–1908. doi:10.1016/j.burns.2021.12.010
  • Kerkis I, Kerkis A, Dozortsev D, et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs. 2006;184(3–4):105–116. doi:10.1159/000099617
  • Bernardi L, Luisi SB, Fernandes R, et al. The isolation of stem cells from human deciduous teeth pulp is related to the physiological process of resorption. J Endod. 2011;37(7):973–979. doi:10.1016/j.joen.2011.04.010
  • Makino Y, Yamaza H, Akiyama K, et al. Immune therapeutic potential of stem cells from human supernumerary teeth. J Dent Res. 2013;92(7):609–615. doi:10.1177/0022034513490732
  • Lu X, Liu SF, Wang HH, et al. A biological study of supernumerary teeth derived dental pulp stem cells based on RNA-seq analysis. Int Endod J. 2019;52(6):819–828. doi:10.1111/iej.13060
  • Guerrero-Jiménez M, Nic-Can GI, Castro-Linares N, et al. In vitro histomorphometric comparison of dental pulp tissue in different teeth. PeerJ. 2019;7:e8212. doi:10.7717/peerj.8212
  • Yang H, Gao LN, An Y, et al. Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions. Biomaterials. 2013;34(29):7033–7047. doi:10.1016/j.biomaterials.2013.05.025
  • Sun HH, Chen B, Zhu QL, et al. Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis. Biomaterials. 2014;35(35):9459–9472. doi:10.1016/j.biomaterials.2014.08.003
  • Ma Q, Liang M, Wu Y, et al. Osteoclast-derived apoptotic bodies couple bone resorption and formation in bone remodeling. Bone Res. 2021;9(1):5. doi:10.1038/s41413-020-00121-1
  • Deregibus MC, Cantaluppi V, Doublier S, et al. HIV-1-Tat protein activates phosphatidylinositol 3-kinase/ AKT-dependent survival pathways in Kaposi’s sarcoma cells. J Biol Chem. 2002;277(28):25195–25202. doi:10.1074/jbc.M200921200
  • Migneault F, Dieudé M, Turgeon J, et al. Apoptotic exosome-like vesicles regulate endothelial gene expression, inflammatory signaling, and function through the NF-κB signaling pathway. Sci Rep. 2020;10(1):12562. doi:10.1038/s41598-020-69548-0
  • Liu D, Kou X, Chen C, et al. Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors. Cell Res. 2018;28(9):918–933. doi:10.1038/s41422-018-0070-2
  • Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. doi:10.1080/20013078.2018.1535750
  • Wu SC, Kuo PJ, Rau CS, et al. Increased Angiogenesis by Exosomes Secreted by Adipose-Derived Stem Cells upon Lipopolysaccharide Stimulation. Int J Mol Sci. 2021;22(16):8877. doi:10.3390/ijms22168877
  • Huang X, Qiu W, Pan Y, et al. Exosomes from LPS-Stimulated hDPSCs Activated the Angiogenic Potential of HUVECs In Vitro. Stem Cells Int. 2021;2021:6685307. doi:10.1155/2021/6685307
  • Wu M, Liu X, Li Z, et al. SHED aggregate exosomes shuttled miR-26a promote angiogenesis in pulp regeneration via TGF-beta/SMAD2/3 signalling. Cell Prolif. 2021;54(7):e13074. doi:10.1111/cpr.13074
  • Sato M, Toriumi T, Watanabe N, et al. Characterization of mesenchymal progenitor cells in crown and root pulp from human mesiodentes. Oral Dis. 2015;21(1):e86–97. doi:10.1111/odi.12234
  • Ge L, Xun C, Li W, et al. Extracellular vesicles derived from hypoxia-preconditioned olfactory mucosa mesenchymal stem cells enhance angiogenesis via miR-612. J Nanobiotechnology. 2021;19(1):380. doi:10.1186/s12951-021-01126-6
  • Xian X, Gong Q, Li C, Guo B, Jiang H. Exosomes with Highly Angiogenic Potential for Possible Use in Pulp Regeneration. J Endod. 2018;44(5):751–758. doi:10.1016/j.joen.2017.12.024
  • Li B, Xian X, Lin X, et al. Hypoxia Alters the Proteome Profile and Enhances the Angiogenic Potential of Dental Pulp Stem Cell-Derived Exosomes. Biomolecules. 2022;12(4):575. doi:10.3390/biom12040575
  • Wu J, Chen L, Wang R, et al. Exosomes Secreted by Stem Cells from Human Exfoliated Deciduous Teeth Promote Alveolar Bone Defect Repair through the Regulation of Angiogenesis and Osteogenesis. ACS Biomater Sci Eng. 2019;5(7):3561–3571. doi:10.1021/acsbiomaterials.9b00607
  • Akhtar N, Dickerson EB, Auerbach R. The sponge/Matrigel angiogenesis assay. Angiogenesis. 2002;5(1–2):75–80. doi:10.1023/a:1021507031486
  • Aref Z, Quax PHA. In Vivo Matrigel Plug Assay as a Potent Method to Investigate Specific Individual Contribution of Angiogenesis to Blood Flow Recovery in Mice. Int J Mol Sci. 2021;22(16):8909. doi:10.3390/ijms22168909
  • Liu P, Qin L, Liu C, et al. Exosomes Derived From Hypoxia-Conditioned Stem Cells of Human Deciduous Exfoliated Teeth Enhance Angiogenesis via the Transfer of let-7f-5p and miR-210-3p. Front Cell Dev Biol. 2022;10:879877. doi:10.3389/fcell.2022.879877
  • Ge X, Li Z, Jing S, et al. Parathyroid hormone enhances the osteo/odontogenic differentiation of dental pulp stem cells via ERK and P38 MAPK pathways. J Cell Physiol. 2020;235(2):1209–1221. doi:10.1002/jcp.29034
  • Rode B, Bailey MA, Marthan R, Beech DJ, Guibert C. Orai Channels as Potential Therapeutic Targets in Pulmonary Hypertension. Physiology. 2018;33(4):261–268. doi:10.1152/physiol.00016.2018
  • Wang S, Xu L, Wu Y, et al. Parathyroid Hormone Promotes Human Umbilical Vein Endothelial Cell Migration and Proliferation Through Orai1-Mediated Calcium Signaling. Front Cardiovasc Med. 2022;9:844671. doi:10.3389/fcvm.2022.844671
  • Gu C, Lhamo T, Zou C, et al. Comprehensive analysis of angiogenesis-related genes and pathways in early diabetic retinopathy. BMC Med Genomics. 2020;13(1):142. doi:10.1186/s12920-020-00799-6
  • Paik JY, Ko BH, Jung KH, Lee KH. Fibronectin stimulates endothelial cell 18F-FDG uptake through focal adhesion kinase-mediated phosphatidylinositol 3-kinase/Akt signaling. J Nucl Med. 2009;50(4):618–624. doi:10.2967/jnumed.108.059386
  • Chen J, Zhang X, Liu X, et al. Ginsenoside Rg1 promotes cerebral angiogenesis via the PI3K/Akt/mTOR signaling pathway in ischemic mice. Eur J Pharmacol. 2019;856:172418. doi:10.1016/j.ejphar.2019.172418