32
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Self-Assembled Aggregated Structures of Natural Products for Oral Drug Delivery

, &
Pages 5931-5949 | Received 08 Mar 2024, Accepted 24 May 2024, Published online: 02 Jul 2024

References

  • Zhang L, Wang S, Zhang M, et al. Nanocarriers for oral drug delivery. J Drug Target. 2013;21(6):515–527. doi:10.3109/1061186X.2013.789033
  • Ekiert HM, Szopa A. Biological activities of natural products. Molecules. 2020;25(23):5769. doi:10.3390/molecules25235769
  • Yang X, Ma C, Chen Z, et al. Single small molecule-assembled nanoparticles mediate efficient oral drug delivery. Nano Res. 2019;12(10):2468–2476. doi:10.1007/s12274-019-2470-0
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–951. doi:10.1038/nbt.3330
  • Fan Y, Liu Y, Wu Y, et al. Natural polysaccharides based self-assembled nanoparticles for biomedical applications – a review. Int J Biol Macromol. 2021;192:1240–1255. doi:10.1016/j.ijbiomac.2021.10.074
  • Yadav S, Sharma AK, Kumar P. Nanoscale self-assembly for therapeutic delivery. Front Bioeng Biotechnol. 2020;8:500966. doi:10.3389/fbioe.2020.00127
  • Wang J, Zhao H, Qiao W, et al. Nanomedicine-cum-carrier by co-assembly of natural small products for synergistic enhanced antitumor with tissues protective actions. ACS Appl Mater Interfaces. 2020;12(38):42537–42550. doi:10.1021/acsami.0c12641
  • Bag BG, Majumdar R. Self-assembly of renewable nano-sized triterpenoids. Chem Rec. 2017;17(9):841–873. doi:10.1002/tcr.201600123
  • Zhi K, Zhao H, Yang X, et al. Natural product gelators and a general method for obtaining them from organisms. Nanoscale. 2018;10(8):3639–3643. doi:10.1039/C7NR08368H
  • Desiraju GR. A bond by any other name. Angew Chem Int Ed Engl. 2011;50(1):52–59. doi:10.1002/anie.201002960
  • Cai W, Xu D, Qian L, et al. Force-induced transition of π-π stacking in a single polystyrene chain. J Am Chem Soc. 2019;141(24):9500–9503. doi:10.1021/jacs.9b03490
  • Gao Y, Wang L, Zhang X, et al. Advances in self-assembled peptides as drug carriers. Pharmaceutics. 2023;15(2):482. doi:10.3390/pharmaceutics15020482
  • Berland K, Chakraborty D, Thonhauser T. van der Waals density functional with corrected C6 coefficients. Phys Rev B. 2019;99(19):195418. doi:10.1103/PhysRevB.99.195418
  • Hou Y, Zou L, Li Q, et al. Supramolecular assemblies based on natural small molecules: union would be effective. Mater Today Bio. 2022;15:100327. doi:10.1016/j.mtbio.2022.100327
  • Zhi K, Wang J, Zhao H, et al. Self-assembled small molecule natural product gel for drug delivery: a breakthrough in new application of small molecule natural products. Acta Pharm Sin B. 2020;10(5):913–927. doi:10.1016/j.apsb.2019.09.009
  • Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: from nanoformulation to clinical approval. Adv Drug Deliv Rev. 2020;156:80–118. doi:10.1016/j.addr.2020.09.009
  • Cabral H, Miyata K, Osada K, et al. Block copolymer micelles in nanomedicine applications. Chem Rev. 2018;118(14):6844–6892. doi:10.1021/acs.chemrev.8b00199
  • Zhang T, Luo J, Fu Y, et al. Novel oral administrated paclitaxel micelles with enhanced bioavailability and antitumor efficacy for resistant breast cancer. Colloids Surf B Biointerfaces. 2017;150:89–97. doi:10.1016/j.colsurfb.2016.11.024
  • Mao L, Lu Y, Cui M, et al. Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients. Crit Rev Food Sci Nutr. 2020;60(10):1651–1666. doi:10.1080/10408398.2019.1587737
  • Ma X, Li SJ, Liu Y, et al. Bioengineered nanogels for cancer immunotherapy. Chem Soc Rev. 2022;51(12):5136–5174. doi:10.1039/d2cs00247g
  • Wu H, Nan J, Yang L, et al. Insulin-loaded liposomes packaged in alginate hydrogels promote the oral bioavailability of insulin. J Control Release. 2023;353:51–62. doi:10.1016/j.jconrel.2022.11.032
  • Zhang H, Gu Z, Li W, et al. pH-sensitive O-carboxymethyl chitosan/sodium alginate nanohydrogel for enhanced oral delivery of insulin. Int J Biol Macromol. 2022;223:433–445. doi:10.1016/j.ijbiomac.2022.10.274
  • Nisini R, Poerio N, Mariotti S, et al. The multirole of liposomes in therapy and prevention of infectious diseases. Front Immunol. 2018;9:155. doi:10.3389/fimmu.2018.00155
  • He H, Lu Y, Qi J, et al. Adapting liposomes for oral drug delivery. Acta Pharm Sin B. 2019;9(1):36–48. doi:10.1016/j.apsb.2018.06.005
  • Werner J, Umstätter F, Hertlein T, et al. Oral delivery of the vancomycin derivative FU002 by a surface-modified liposomal nanocarrier. Adv Healthc Mater. 2024;13(14):e2303654. doi:10.1002/adhm.202303654
  • Arredondo-Ochoa T, Silva-Martínez GA. Microemulsion based nanostructures for drug delivery. Front Nanotechnol. 2021;3:753947. doi:10.3389/fnano.2021.753947
  • Noori Koopaei M, Khoshayand MR, Mostafavi SH, et al. Docetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in-vitro cytotoxicity and in-vivo antitumor effect. Iran J Pharm Res. 2014;13(3):819–833.
  • Palacio J, Monsalve Y, Villa-Pulgarin JA, et al. Preparation and evaluation of PLGA-PEG/Gusperimus nanoparticles as a controlled delivery anti-inflammatory drug. J Drug Delivery Sci Technol. 2022;77:103889. doi:10.1016/j.jddst.2022.103889
  • Uyen NTT, Hamid ZAA, Tram NXT, et al. Fabrication of alginate microspheres for drug delivery: a review. Int J Biol Macromol. 2020;153:1035–1046. doi:10.1016/j.ijbiomac.2019.10.233
  • Zhang F, Du Y, Zheng J, et al. Oral Administration of Multistage Albumin Nanomedicine Depots (MANDs) for targeted efficient alleviation of chronic inflammatory diseases. Adv Funct Mater. 2023;33(9):2211644. doi:10.1002/adfm.202211644
  • Liu S, Liang H, Sun T, et al. A recoverable dendritic polyamidoamine immobilized TEMPO for efficient catalytic oxidation of cellulose. Carbohydr Polym. 2018;202:563–570. doi:10.1016/j.carbpol.2018.09.016
  • Pedziwiatr-Werbicka E, Milowska K, Dzmitruk V, et al. Dendrimers and hyperbranched structures for biomedical applications. Eur Polym J. 2019;119:61–73. doi:10.1016/j.eurpolymj.2019.07.013
  • Santos AC, Veiga FJ, Sequeira JAD, et al. First-time oral administration of resveratrol-loaded layer-by-layer nanoparticles to rats - a pharmacokinetics study. Analyst. 2019;144(6):2062–2079. doi:10.1039/C8AN01998C
  • Chen L, Ge MD, Zhu YJ, et al. Structure, bioactivity and applications of natural hyperbranched polysaccharides. Carbohydr Polym. 2019;223:115076. doi:10.1016/j.carbpol.2019.115076
  • Nickels JD, Atkinson J, Papp-Szabo E, et al. Structure and hydration of highly-branched, monodisperse phytoglycogen nanoparticles. Biomacromolecules. 2016;17(3):735–743. doi:10.1021/acs.biomac.5b01393
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56–58. doi:10.1038/354056a0
  • Pardo J, Peng Z, Leblanc RM. Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules. 2018;23(2):378. doi:10.3390/molecules23020378
  • Wang B, Wang S, Wang Y, et al. Highly fluorescent carbon dots for visible sensing of doxorubicin release based on efficient nanosurface energy transfer. Biotechnol Lett. 2016;38(1):191–201. doi:10.1007/s10529-015-1965-3
  • Ahirwar S, Mallick S, Bahadur D. Electrochemical method to prepare graphene quantum dots and graphene oxide quantum dots. ACS Omega. 2017;2(11):8343–8353. doi:10.1021/acsomega.7b01539
  • Liao Y, Li Z, Zhou Q, et al. Saponin surfactants used in drug delivery systems: a new application for natural medicine components. Int J Pharm. 2021;603:120709. doi:10.1016/j.ijpharm.2021.120709
  • Wang P, Guo W, Huang G, et al. Berberine-based heterogeneous linear supramolecules neutralized the acute nephrotoxicity of aristolochic acid by the self-assembly strategy. ACS Appl Mater Interfaces. 2021;13(28):32729–32742. doi:10.1021/acsami.1c06968
  • Li Z, Xu X, Wang Y, et al. Carrier-free nanoplatforms from natural plants for enhanced bioactivity. J Adv Res. 2023;50:159–176. doi:10.1016/j.jare.2022.09.013
  • Cheng J, Fu S, Qin Z, et al. Self-assembled natural small molecule diterpene acids with favorable anticancer activity and biosafety for synergistically enhanced antitumor chemotherapy. J Mater Chem B. 2021;9(11):2674–2687. doi:10.1039/D0TB02995E
  • Li Y, Zhang W, Shi N, et al. Self-assembly and self-delivery of the pure nanodrug dihydroartemisinin for tumor therapy and mechanism analysis. Biomater Sci. 2023;11(7):2478–2485. doi:10.1039/D2BM01949C
  • Pang Z, Wei Y, Wang N, et al. Gel formation of puerarin and mechanistic study during its cooling process. Int J Pharm. 2018;548(1):625–635. doi:10.1016/j.ijpharm.2018.07.038
  • Zheng J, Fan R, Wu H, et al. Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation. Nat Commun. 2019;10(1):1604. doi:10.1038/s41467-019-09601-3
  • Wang L, Gao G, Zhou Y, et al. Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors. ACS Appl Mater Interfaces. 2019;11(3):3506–3515. doi:10.1021/acsami.8b20755
  • Christoff-Tempesta T, Cho Y, Kim DY, et al. Self-assembly of aramid amphiphiles into ultra-stable nanoribbons and aligned nanoribbon threads. Nat Nanotechnol. 2021;16(4):447–454. doi:10.1038/s41565-020-00840-w
  • Zhang C, Liu T, Wang W, et al. Tuning of the aggregation behavior of fluorinated polymeric nanoparticles for improved therapeutic efficacy. ACS Nano. 2020;14(6):7425–7434. doi:10.1021/acsnano.0c02954
  • Wang X, Yang B, Li L, et al. Probing the fluorination effect on the self-assembly characteristics, in vivo fate and antitumor efficacy of paclitaxel prodrug nanoassemblies. Theranostics. 2021;11(16):7896–7910. doi:10.7150/thno.61337
  • Sherrington DC, Taskinen KA. Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions. Chem Soc Rev. 2001;30(2):83–93. doi:10.1039/b008033k
  • Dobb MG, Johnson DJ, Saville BP. Supramolecular structure of a high-modulus polyaromatic fiber (Kevlar 49). J Polym Sci. 1977;15(12):2201–2211.
  • König N, Szostak SM, Nielsen JE, et al. Stability of nanopeptides: structure and molecular exchange of self-assembled peptide fibers. ACS Nano. 2023;17(13):12394–12408. doi:10.1021/acsnano.3c01811
  • An J, Liu M, Din ZU, et al. Toward function starch nanogels by self-assembly of polysaccharide and protein: from synthesis to potential for polyphenol delivery. Int J Biol Macromol. 2023;247:125697. doi:10.1016/j.ijbiomac.2023.125697
  • Mohammed ASA, Naveed M, Jost N. Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (A Review of Current Applications and Upcoming Potentialities). J Polym Environ. 2021;29(8):2359–2371. doi:10.1007/s10924-021-02052-2
  • Yu B, Sun Z, Li X, et al. Research progress of novel drug delivery systems of Chinese medicine monomers based on natural silk fibroin: a mini-review. Curr Drug Deliv. 2023;20(3):211–222. doi:10.2174/1567201819666220413111439
  • Wang B, Huang B, Yang B, et al. Structural elucidation of a novel polysaccharide from Ophiopogonis Radix and its self-assembly mechanism in aqueous solution. Food Chem. 2023;402:134165. doi:10.1016/j.foodchem.2022.134165
  • Yang B, Wu X, Zeng J, et al. A multi-component nano-co-delivery system utilizing astragalus polysaccharides as carriers for improving biopharmaceutical properties of astragalus flavonoids. Int J Nanomed. 2023;18:6705–6724. doi:10.2147/IJN.S434196
  • Zhao Y, Wan P, Wang J, et al. Polysaccharide from vinegar baked radix bupleuri as efficient solubilizer for water-insoluble drugs of Chinese medicine. Carbohydr Polym. 2020;229:115473. doi:10.1016/j.carbpol.2019.115473
  • Zhang M, Ma H, Wang X, et al. Polysaccharide-based nanocarriers for efficient transvascular drug delivery. J Control Release. 2023;354:167–187. doi:10.1016/j.jconrel.2022.12.051
  • Xue J, Luo Y. Properties and applications of natural dendritic nanostructures: phytoglycogen and its derivatives. Trends Food Sci Technol. 2020;107:432–444. doi:10.1016/j.tifs.2020.11.013
  • Chen H, Yao Y. Phytoglycogen improves the water solubility and Caco-2 monolayer permeation of quercetin. Food Chem. 2017;221:248–257. doi:10.1016/j.foodchem.2016.10.064
  • Xie Y, Yao Y. Octenylsuccinate hydroxypropyl phytoglycogen enhances the solubility and in-vitro antitumor efficacy of niclosamide. Int J Pharm. 2018;535(1–2):157–163. doi:10.1016/j.ijpharm.2017.11.004
  • Yan J, Wang Y, Zhang X, et al. Snakegourd root/Astragalus polysaccharide hydrogel preparation and application in 3D printing. Int J Biol Macromol. 2019;121:309–316. doi:10.1016/j.ijbiomac.2018.10.008
  • Yang L, Han Z, Chen C, et al. Novel probiotic-bound oxidized Bletilla striata polysaccharide-chitosan composite hydrogel. Mater Sci Eng C Mater Biol Appl. 2020;117:111265. doi:10.1016/j.msec.2020.111265
  • Zhao T, Dong S, Shao S, et al. Injectable hydroethanolic physical gels based on Codonopsis pilosula polysaccharide for sustained anticancer drug delivery. Int J Biol Macromol. 2023;230:123178. doi:10.1016/j.ijbiomac.2023.123178
  • Wang H, Deng H, Gao M, et al. Self-assembled nanogels based on ionic gelation of natural polysaccharides for drug delivery. Front Bioeng Biotechnol. 2021;9:703559. doi:10.3389/fbioe.2021.703559
  • Ding L, Shan X, Zhao X, et al. Spongy bilayer dressing composed of chitosan-Ag nanoparticles and chitosan-Bletilla striata polysaccharide for wound healing applications. Carbohydr Polym. 2017;157:1538–1547. doi:10.1016/j.carbpol.2016.11.040
  • Gong H, Li W, Sun J, et al. A review on plant polysaccharide based on drug delivery system for construction and application, with emphasis on traditional Chinese medicine polysaccharide. Int J Biol Macromol. 2022;211:711–728. doi:10.1016/j.ijbiomac.2022.05.087
  • Zhang Y, Cui Z, Mei H, et al. Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer. Carbohydr Polym. 2019;219:143–154. doi:10.1016/j.carbpol.2019.04.041
  • Cai G, Jiang H, Chen Z, et al. Synthesis, characterization and self-assemble behavior of Chitosan-O-poly(ε-caprolactone). Eur Polym J. 2009;45(6):1674–1680. doi:10.1016/j.eurpolymj.2009.03.007
  • Meng Q, Zhong S, Gao Y, et al. Advances in polysaccharide-based nano/microcapsules for biomedical applications: a review. Int J Biol Macromol. 2022;220:878–891. doi:10.1016/j.ijbiomac.2022.08.129
  • Kasaai MR. Zein and Zein-based nano-materials for food and nutrition applications: a review. Trends Food Sci Technol. 2018;79:184–197. doi:10.1016/j.tifs.2018.07.015
  • Cuggino JC, Picchio ML, Gugliotta A, et al. Crosslinked casein micelles bound paclitaxel as enzyme activated intracellular drug delivery systems for cancer therapy. Eur Polym J. 2021;145:110237. doi:10.1016/j.eurpolymj.2020.110237
  • Liu Y, Yang R, Liu J, et al. Fabrication, structure, and function evaluation of the ferritin based nano-carrier for food bioactive compounds. Food Chem. 2019;299:125097. doi:10.1016/j.foodchem.2019.125097
  • Lin X, Huang X, Tian X, et al. Natural small-molecule-based carrier-free self-assembly library originated from traditional Chinese herbal medicine. ACS Omega. 2022;7(48):43510–43521. doi:10.1021/acsomega.2c04098
  • Gao Y, Dong Y, Guo Q, et al. Study on supramolecules in Traditional Chinese Medicine Decoction. Molecules. 2022;27(10):3268. doi:10.3390/molecules27103268
  • Zhao J, Zhao Q, Lu JZ, et al. Natural nano-drug delivery system in coptidis rhizoma extract with modified berberine hydrochloride pharmacokinetics. Int J Nanomed. 2021;16:6297–6311. doi:10.2147/IJN.S323685
  • Cao M, Diao N, Cai X, et al. Plant exosome nanovesicles (PENs): green delivery platforms. Mater Horiz. 2023;10(10):3879–3894. doi:10.1039/D3MH01030A
  • Dad HA, Gu TW, Zhu AQ, et al. Plant Exosome-like Nanovesicles: emerging Therapeutics and Drug Delivery Nanoplatforms. Mol Ther. 2021;29(1):13–31. doi:10.1016/j.ymthe.2020.11.030
  • Li Y, Buckhaults P, Li S, et al. Temporal efficacy of a sulforaphane-based broccoli sprout diet in prevention of breast cancer through modulation of epigenetic mechanisms. Cancer Prev Res. 2011;11(8):451–464. doi:10.1158/1940-6207.CAPR-17-0423
  • Gao C, Zhou Y, Chen Z, et al. Turmeric-derived nanovesicles as novel nanobiologics for targeted therapy of ulcerative colitis. Theranostics. 2022;12(12):5596–5614. doi:10.7150/thno.73650
  • Niu W, Xiao Q, Wang X, et al. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy. Nano Lett. 2021;21(3):1484–1492. doi:10.1021/acs.nanolett.0c04753
  • Wang B, Zhuang X, Deng ZB, et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther. 2014;22(3):522–534. doi:10.1038/mt.2013.190
  • Del Pozo-Acebo L, López de Las Hazas MC, Tomé-Carneiro J, et al. Therapeutic potential of broccoli-derived extracellular vesicles as nanocarriers of exogenous miRNAs. Pharmacol Res. 2022;185:106472. doi:10.1016/j.phrs.2022.106472
  • You JY, Kang SJ, Rhee WJ. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact Mater. 2021;6(12):4321–4332. doi:10.1016/j.bioactmat.2021.04.023
  • Murgia X, Loretz B, Hartwig O, et al. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv Drug Deliv Rev. 2018;124:82–97. doi:10.1016/j.addr.2017.10.009
  • Guo S, Liang Y, Liu L, et al. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: size, surface charge and pro-hydrophobics. J Nanobiotechnology. 2021;19(1):32. doi:10.1186/s12951-021-00770-2
  • Bandi SP, Kumbhar YS, Venuganti VVK, et al. Effect of particle size and surface charge of nanoparticles in penetration through intestinal mucus barrier. J Nanopart Res. 2020;22(3):62. doi:10.1007/s11051-020-04785-y
  • Li Q, Liu CG, Yu Y. Separation of monodisperse alginate nanoparticles and effect of particle size on transport of vitamin E. Carbohydr Polym. 2015;124:274–279. doi:10.1016/j.carbpol.2015.02.007
  • Xu M, Qi Y, Liu G, et al. Size-dependent in vivo transport of nanoparticles: implications for delivery, targeting, and clearance. ACS Nano. 2023;17(21):20825–20849. doi:10.1021/acsnano.3c05853
  • Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;6(15):2713–2722. doi:10.1016/j.biomaterials.2004.07.050
  • Dawson M, Wirtz D, Hanes J. Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. J Biol Chem. 2003;278(50):50393–50401. doi:10.1074/jbc.M309026200
  • Rose MC, Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev. 2006;86(1):245–278. doi:10.1152/physrev.00010.2005
  • Wang J, Kong M, Zhou Z, et al. Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery. Carbohydr Polym. 2017;157:596–602. doi:10.1016/j.carbpol.2016.10.021
  • Boegh M, Nielsen HM. Mucus as a barrier to drug delivery – understanding and mimicking the barrier properties. Basic Clin Pharmacol Toxicol. 2015;116(3):179–186. doi:10.1111/bcpt.12342
  • Yuan H, Chen CY, Chai GH, et al. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles. Mol Pharm. 2013;10(5):1865–1873. doi:10.1021/mp300649z
  • Banerjee A, Qi J, Gogoi R, et al. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control Release. 2016;238:176–185. doi:10.1016/j.jconrel.2016.07.051
  • Muro S, Garnacho C, Champion JA, et al. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther. 2008;16(8):1450–1458. doi:10.1038/mt.2008.127
  • Gelli R, Tempesti P, Ridi F, et al. Formation and properties of amorphous magnesium-calcium phosphate particles in a simulated intestinal fluid. J Colloid Interface Sci. 2019;546:130–138. doi:10.1016/j.jcis.2019.03.060
  • Lu J, Ormes JD, Lowinger M, et al. Impact of endogenous bile salts on the thermodynamics of supersaturated active pharmaceutical ingredient solutions. Cryst Growth Des. 2017;17(3):1264–1275. doi:10.1021/acs.cgd.6b01664
  • Hanafy AF, Abdalla AM, Guda TK, et al. Ocular anti-inflammatory activity of prednisolone acetate loaded chitosan-deoxycholate self-assembled nanoparticles. Int J Nanomed. 2019;14:3679–3689. doi:10.2147/IJN.S195892
  • Mo Y, Yang Y, Zeng J, et al. Enhancing the biopharmacological characteristics of asperosaponin VI: unveiling dynamic self-assembly phase transitions in the gastrointestinal environment. Int J Nanomed. 2023;18:7335–7358. doi:10.2147/IJN.S436372
  • Li X, Geng M. Probing the binding of procyanidin B3 to trypsin and pepsin: a multi-technique approach. Int J Biol Macromol. 2016;85:168–178. doi:10.1016/j.ijbiomac.2015.12.075
  • Li X, Liu H, Wu X, et al. Exploring the interactions of naringenin and naringin with trypsin and pepsin: experimental and computational modeling approaches. Spectrochim Acta A Mol Biomol Spectrosc. 2021;258:119859. doi:10.1016/j.saa.2021.119859
  • Martinez-Gonzalez AI, Díaz-Sánchez ÁG, Rosa LA, et al. Polyphenolic compounds and digestive enzymes: in vitro non-covalent interactions. Molecules. 2017;22(4):669. doi:10.3390/molecules22040669
  • Jiao Q, Wang R, Jiang Y, et al. Study on the interaction between active components from traditional Chinese medicine and plasma proteins. Chem Cent J. 2018;12(1):48. doi:10.1186/s13065-018-0417-2