30
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Stimulus-Responsive Nanodelivery and Release Systems for Cancer Gene Therapy: Efficacy Improvement Strategies

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 7099-7121 | Received 25 Mar 2024, Accepted 18 Jun 2024, Published online: 12 Jul 2024

References

  • Li X, Le Y. Viral Vector-Based Gene Therapy. Int J Mol Sci. 2023;24(9):7736. doi:10.3390/ijms24097736
  • Hald Albertsen C, Kulkarni JA, Witzigmann D, et al. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev. 2022;188:114416. doi:10.1016/j.addr.2022.114416
  • Zhang Y, Liu Q, Zhang X, et al. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. J Nanobiotechnology. 2022;20(1):279. doi:10.1186/s12951-022-01472-z
  • Maurer MS, Kale P, Fontana M, et al. Patisiran treatment in patients with transthyretin cardiac amyloidosis. N Engl J Med. 2023;389(17):1553–1565. doi:10.1056/NEJMoa2300757
  • Cao S, Lin C, Li X, et al. TME-responsive multistage nanoplatform for siRNA delivery and effective cancer therapy. Int J Nanomed. 2021;16:5909–5921. doi:10.2147/ijn.s322901
  • Wang Y, Wang C, Sylvers J, et al. Nanoenhancer for improving naked DNA electrotransfection In vivo. Front Bioeng Biotechnol. 2023;11:1181795. doi:10.3389/fbioe.2023.1181795
  • Ling Q, Herstine JA, Bradbury A, Gray SJ. AAV-based in vivo gene therapy for neurological disorders. Nat Rev Drug Discov. 2023;22(10):789–806. doi:10.1038/s41573-023-00766-7
  • Lundstrom K. Viral vectors in gene therapy: where do we stand in 2023? Viruses. 2023;15(3):698. doi:10.3390/v15030698
  • Malina J, Kostrhunova H, Novohradsky V, et al. Metallohelix vectors for efficient gene delivery via cationic DNA nanoparticles. Nucleic Acids Res. 2022;50(2):674–683. doi:10.1093/nar/gkab1277
  • Mao H, Angela S, Stephan T, et al. Stimulus-responsive assembly of nonviral nucleocapsids. Nat Commun. 2024;15(1):3576. doi:10.1038/s41467-024-47808-1
  • Wang C, Pan C, Yong H, et al. Emerging non-viral vectors for gene delivery. J Nanobiotechnology. 2023;21(1):272. doi:10.1186/s12951-023-02044-5
  • Guo C, Liu Y, Zhao Z, et al. Regulating inflammation and apoptosis: a smart microgel gene delivery system for repairing degenerative nucleus pulposus. J Control Release. 2023;365:1004–1018. doi:10.1016/j.jconrel.2023.12.029
  • Zhang Q, Kuang G, Li W, et al. Stimuli-responsive gene delivery nanocarriers for cancer therapy. Nanomicro Lett. 2023;15(1):44. doi:10.1007/s40820-023-01018-4
  • Yu C, Li L, Hu P, et al. Recent advances in stimulus-responsive nanocarriers for gene therapy. Adv Sci (Weinh). 2021;8(14):2100540. doi:10.1002/advs.202100540
  • Ji Y, Fan L, Qu S, et al. Stimuli-responsive delivery strategies for controllable gene editing in tumor therapeutics. J Mater Chem B. 2022;10(38):7694–7707. doi:10.1039/d2tb01055k
  • Ma B, Xiao Y, Lv Q, et al. Targeting theranostics of atherosclerosis by dual-responsive nanoplatform via photoacoustic imaging and three-in-one integrated lipid management. Adv Mater. 2023;35(5):e2206129. doi:10.1002/adma.202206129
  • Xie L, Wang J, Song L, et al. Cell-cycle dependent nuclear gene delivery enhances the effects of E-cadherin against tumor invasion and metastasis. Signal Transduct Target Ther. 2023;8(1):182. doi:10.1038/s41392-023-01398-4
  • Arnott S. Historical article: DNA polymorphism and the early history of the double helix. Trends Biochem Sci. 2006;31(6):349–354. doi:10.1016/j.tibs.2006.04.004
  • Kang TH, Park Y, Bader JS, et al. The housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT) regulates multiple developmental and metabolic pathways of murine embryonic stem cell neuronal differentiation. PLoS One. 2013;8(10):e74967. doi:10.1371/journal.pone.0074967
  • Pai SY. Built to last: gene therapy for ADA SCID. Blood. 2021;138(15):1287–1288. doi:10.1182/blood.2021012300
  • Ballow M, Henderson T, Scalchunes C, et al. Seasonal viral influenza among persons with primary antibody immunodeficiency. J Allergy Clin Immunol Pract. 2019;7(3):1058–1060.e1053. doi:10.1016/j.jaip.2018.12.002
  • Barresi V, Musmeci C, Rinaldi A, et al. Transcript-targeted therapy based on RNA interference and antisense oligonucleotides: current applications and novel molecular targets. Int J Mol Sci. 2022;23(16):8875. doi:10.3390/ijms23168875
  • Marshall E. Gene therapy death prompts review of adenovirus vector. Science. 1999;286(5448):2244–2245. doi:10.1126/science.286.5448.2244
  • Braun CJ, Boztug K, Paruzynski A, et al. Gene therapy for Wiskott-Aldrich syndrome--long-term efficacy and genotoxicity. Sci Transl Med. 2014;6(227):227ra233. doi:10.1126/scitranslmed.3007280
  • Zhou S, Fatima S, Ma Z, et al. Evaluating the safety of retroviral vectors based on insertional oncogene activation and blocked differentiation in cultured thymocytes. Mol Ther. 2016;24(6):1090–1099. doi:10.1038/mt.2016.55
  • Pule MN, Glover ML, Fire AZ, et al. Ribosome clearance during RNA interference. RNA. 2019;25(8):963–974. doi:10.1261/rna.070813.119
  • Takkar B, Bansal P, Venkatesh P. Leber’s congenital amaurosis and gene therapy. Indian J Pediatr. 2018;85(3):237–242. doi:10.1007/s12098-017-2394-1
  • Hong M, Li T, Xue W, et al. Genetic engineering of baculovirus-insect cell system to improve protein production. Front Bioeng Biotechnol. 2022;10:994743. doi:10.3389/fbioe.2022.994743
  • Keeler AM, Flotte TR. Recombinant adeno-associated virus gene therapy in light of luxturna (and Zolgensma and Glybera): where are we, and how did we get here? Annu Rev Virol. 2019;6(1):601–621. doi:10.1146/annurev-virology-092818-015530
  • Hoy SM. Patisiran: first global approval. Drugs. 2018;78(15):1625–1631. doi:10.1007/s40265-018-0983-6
  • Hoy SM. Onasemnogene abeparvovec: first global approval. Drugs. 2019;79(11):1255–1262. doi:10.1007/s40265-019-01162-5
  • Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. doi:10.1126/science.1258096
  • Li J, Zeng H, Li L, et al. Biomembrane-wrapped gene delivery nanoparticles for cancer therapy. Front Bioeng Biotechnol. 2023;11:1211753. doi:10.3389/fbioe.2023.1211753
  • Zou L, Wang J, Fang Y, et al. PEG-mediated transduction of rAAV as a platform for spatially confined and efficient gene delivery. Biomater Res. 2022;26(1):69. doi:10.1186/s40824-022-00322-1
  • Miao G, He Y, Lai K, et al. Accelerated blood clearance of PEGylated nanoparticles induced by PEG-based pharmaceutical excipients. J Control Release. 2023;363:12–26. doi:10.1016/j.jconrel.2023.09.003
  • Sun W, Liu XY, Ma LL, et al. Tumor targeting gene vector for visual tracking of Bcl-2 siRNA transfection and anti-tumor therapy. ACS Appl Mater Interfaces. 2020;12(9):10193–10201. doi:10.1021/acsami.0c00652
  • Sindhwani S, Syed AM, Ngai J. The entry of nanoparticles into solid tumours. Nat Mater. 2020;19(5):566–575. doi:10.1038/s41563-019-0566-2
  • Villari G, Gioelli N, Valdembri D, et al. Vesicle choreographies keep up cell-to-extracellular matrix adhesion dynamics in polarized epithelial and endothelial cells. Matrix Biol. 2022;112:62–71. doi:10.1016/j.matbio.2022.08.003
  • Cai X, Dou R, Guo C, et al. Cationic polymers as transfection reagents for nucleic acid delivery. Pharmaceutics. 2023;15(5):1502. doi:10.3390/pharmaceutics15051502
  • Yamamoto K, Venida A, Yano J, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100–105. doi:10.1038/s41586-020-2229-5
  • Yang Y, Ning H, Xia T, et al. Electrostatic attractive self-delivery of siRNA and Light-Induced Self-Escape for Synergistic Gene Therapy. Adv Mater. 2023;35(30):e2301409. doi:10.1002/adma.202301409
  • Chen S, Zhou Q, Wang G, et al. Effect of cationic charge density on transcytosis of polyethylenimine. Biomacromolecules. 2021;22(12):5139–5150. doi:10.1021/acs.biomac.1c01109
  • Lee J, Kwon YE, Edwards SD, et al. Improved biocompatibility of dendrimer-based gene delivery by histidine-modified nuclear localization signals. Int J Pharm. 2023;644:123299. doi:10.1016/j.ijpharm.2023.123299
  • Harini K, Srivastava A, Kulandaisamy A, et al. ProNAB: database for binding affinities of protein-nucleic acid complexes and their mutants. Nucleic Acids Res. 2022;50(D1):D1528–d1534. doi:10.1093/nar/gkab848
  • Largy E. Mass spectrometry of nucleic acid noncovalent complexes. Chem Rev. 2022;122(8):7720–7839. doi:10.1021/acs.chemrev.1c00386
  • Klein NP, Lewis N, Goddard K, et al. Surveillance for Adverse Events After COVID-19 mRNA Vaccination. JAMA. 2021;326(14):1390–1399. doi:10.1001/jama.2021.15072
  • Zhang Z, Mateus J, Coelho CH, et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell. 2022;185(14):2434–2451.e2417. doi:10.1016/j.cell.2022.05.022
  • Ertl HCJ. Mitigating serious adverse events in gene therapy with AAV vectors: vector dose and immunosuppression. Drugs. 2023;83(4):287–298. doi:10.1007/s40265-023-01836-1
  • Sato-Dahlman M, LaRocca CJ, Yanagiba C, Yamamoto M. Adenovirus and immunotherapy: advancing cancer treatment by combination. Cancers (Basel). 2020;12(5):1295. doi:10.3390/cancers12051295
  • Yao J, Atasheva S, Wagner N, et al. Targeted, safe, and efficient gene delivery to human hematopoietic stem and progenitor cells in vivo using the engineered AVID adenovirus vector platform. Mol Ther. 2024;32(1):103–123. doi:10.1016/j.ymthe.2023.10.023
  • Wang X, Ma C, Rodríguez Labrada R, et al. Recent advances in lentiviral vectors for gene therapy. Sci China Life Sci. 2021;64(11):1842–1857. doi:10.1007/s11427-021-1952-5
  • Toms M, Toualbi L, Almeida PV, et al. Successful large gene augmentation of USH2A with non-viral episomal vectors. Mol Ther. 2023;31(9):2755–2766. doi:10.1016/j.ymthe.2023.06.012
  • Bogaert B, Sauvage F, Guagliardo R, et al. A lipid nanoparticle platform for mRNA delivery through repurposing of cationic amphiphilic drugs. J Control Release. 2022;350:256–270. doi:10.1016/j.jconrel.2022.08.009
  • Liu C, Zhang L, Zhu W, et al. Barriers and strategies of cationic liposomes for cancer gene therapy. Mol Ther Methods Clin Dev. 2020;18:751–764. doi:10.1016/j.omtm.2020.07.015
  • Van Bruggen C, Hexum JK, Tan Z, Dalal RJ, Reineke TM. Nonviral gene delivery with cationic glycopolymers. Acc Chem Res. 2019;52(5):1347–1358. doi:10.1021/acs.accounts.8b00665
  • Wu Y, Wang L, Xiong Y, et al. Cell-based high-throughput screening of cationic polymers for efficient DNA and siRNA delivery. Acta Biomater. 2020;115:410–417. doi:10.1016/j.actbio.2020.08.029
  • Chuan D, Jin T, Fan R, et al. Chitosan for gene delivery: methods for improvement and applications. Adv Colloid Interface Sci. 2019;268:25–38. doi:10.1016/j.cis.2019.03.007
  • Yang S, Wong KH, Hua P, et al. ROS-responsive fluorinated polyethyleneimine vector to co-deliver shMTHFD2 and shGPX4 plasmids induces ferroptosis and apoptosis for cancer therapy. Acta Biomater. 2022;140:492–505. doi:10.1016/j.actbio.2021.11.042
  • Zhou Y, Liang Q, Wu X, et al. siRNA delivery against myocardial ischemia reperfusion injury mediated by reversibly camouflaged biomimetic nanocomplexes. Adv Mater. 2023;35(23):e2210691. doi:10.1002/adma.202210691
  • Liu F, Sheng S, Shao D. A cationic metal-organic framework to scavenge cell-free DNA for severe sepsis management. Nano Lett. 2021;21(6):2461–2469. doi:10.1021/acs.nanolett.0c04759
  • Charbe NB, Amnerkar ND, Ramesh B, et al. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharm Sin B. 2020;10(11):2075–2109. doi:10.1016/j.apsb.2020.10.005
  • Lin G, Revia RA, Zhang M. Inorganic nanomaterial-mediated gene therapy in combination with other antitumor treatment modalities. Adv Funct Mater. 2021;31(5):2007096. doi:10.1002/adfm.202007096
  • Dai X, Zhao X, Liu Y, et al. Controlled synthesis and surface engineering of janus chitosan-gold nanoparticles for photoacoustic imaging-guided synergistic gene/photothermal therapy. Small. 2021;17(11):e2006004. doi:10.1002/smll.202006004
  • Zhang J, Zhao T, Han F, et al. Photothermal and gene therapy combined with immunotherapy to gastric cancer by the gold nanoshell-based system. J Nanobiotechnology. 2019;17(1):80. doi:10.1186/s12951-019-0515-x
  • Ma X, Liang X, Li Y, et al. Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal manipulation by magnetic field. Nat Commun. 2023;14(1):1606. doi:10.1038/s41467-023-37225-1
  • Gong X, Wang H, Li R, et al. A smart multiantenna gene theranostic system based on the programmed assembly of hypoxia-related siRNAs. Nat Commun. 2021;12(1):3953. doi:10.1038/s41467-021-24191-9
  • Liu MX, Xu L, Jiang J-Y. Light controlled self-escape capability of non-cationic carbon nitride-based nanosheets in lysosomes for hepatocellular carcinoma targeting stimulus-responsive gene delivery. Bioeng Transl Med. 2023;8(5):e10558. doi:10.1002/btm2.10558
  • Ma P, Wang Q, Luo X, et al. Recent advances in stimuli-responsive polymeric carriers for controllable CRISPR/Cas9 gene editing system delivery. Biomater Sci. 2023;11(15):5078–5094. doi:10.1039/d3bm00529a
  • Fang T, Cao X, Ibnat M, et al. Stimuli-responsive nanoformulations for CRISPR-Cas9 genome editing. J Nanobiotechnology. 2022;20(1):354. doi:10.1186/s12951-022-01570-y
  • Ashrafizadeh M, Delfi M, Zarrabi A, et al. Stimuli-responsive liposomal nanoformulations in cancer therapy: pre-clinical & clinical approaches. J Control Release. 2022;351:50–80. doi:10.1016/j.jconrel.2022.08.001
  • Liang L, Cen H, Huang J, et al. The reversion of DNA methylation-induced miRNA silence via biomimetic nanoparticles-mediated gene delivery for efficient lung adenocarcinoma therapy. Mol Cancer. 2022;21(1):186. doi:10.1186/s12943-022-01651-4
  • Chen H, Fan X, Zhao Y, et al. Stimuli-responsive polysaccharide enveloped liposome for targeting and penetrating delivery of survivin-shRNA into breast tumor. ACS Appl Mater Interfaces. 2020;12(19):22074–22087. doi:10.1021/acsami.9b22440
  • Wang Z, Hao D, Wang Y. Peptidyl virus-like nanovesicles as reconfigurable ”trojan horse” for targeted siRNA delivery and synergistic inhibition of cancer cells. Small. 2023;19(1):e2204959. doi:10.1002/smll.202204959
  • Liufu C, Li Y, Tu J, et al. Echogenic PEGylated PEI-loaded microbubble as efficient gene delivery system. Int J Nanomed. 2019;14:8923–8941. doi:10.2147/ijn.s217338
  • Wang Z, Song L, Liu Q, et al. A Tubular DNA Nanodevice as a siRNA/chemo-drug co-delivery vehicle for combined cancer therapy. Angew Chem Int Ed Engl. 2021;60(5):2594–2598. doi:10.1002/anie.202009842
  • Ma Y, Lin H, Wang P, et al. A miRNA-based gene therapy nanodrug synergistically enhances pro-inflammatory antitumor immunity against melanoma. Acta Biomater. 2023;155:538–553. doi:10.1016/j.actbio.2022.11.016
  • Wang Y, Zheng X, Liu J, et al. Tumor-Targeted Anti-VEGF RNAi capable of sequentially responding to intracellular microenvironments for potent systemic tumor suppression. ACS Appl Bio Mater. 2020;3(12):9145–9155. doi:10.1021/acsabm.0c01427
  • Huang X, Li J, Li G, et al. Cation-free siRNA-cored nanocapsules for tumor-targeted RNAi therapy. Acta Biomater. 2023;161:226–237. doi:10.1016/j.actbio.2023.03.001
  • Shen X, Dirisala A, Toyoda M, et al. pH-responsive polyzwitterion covered nanocarriers for DNA delivery. J Control Release. 2023;360:928–939. doi:10.1016/j.jconrel.2023.07.038
  • Zhang X, Qin B, Wang M, et al. Dual pH-responsive and tumor-targeted nanoparticle-mediated anti-angiogenesis siRNA delivery for tumor treatment. Int J Nanomed. 2022;17:953–967. doi:10.2147/ijn.s340926
  • Wang Y, Xiong X, Zhu Y, et al. A pH-responsive nanoplatform based on fluorescent conjugated polymer dots for imaging-guided multitherapeutics delivery and combination cancer therapy. ACS Biomater Sci Eng. 2022;8(1):161–169. doi:10.1021/acsbiomaterials.1c01244
  • Gong C, Yu X, Zhang W, et al. Regulating the immunosuppressive tumor microenvironment to enhance breast cancer immunotherapy using pH-responsive hybrid membrane-coated nanoparticles. J Nanobiotechnology. 2021;19(1):58. doi:10.1186/s12951-021-00805-8
  • Qiao H, Zhang L, Fang D, et al. Surmounting tumor resistance to metallodrugs by co-loading a metal complex and siRNA in nanoparticles. Chem Sci. 2021;12(12):4547–4556. doi:10.1039/d0sc06680j
  • Li Y, Ding J, Xu X. Dual Hypoxia-Targeting RNAi Nanomedicine for Precision Cancer Therapy. Nano Lett. 2020;20(7):4857–4863. doi:10.1021/acs.nanolett.0c00757
  • Zhou H, Liao Y, Han X, et al. ROS-responsive nanoparticle delivery of mRNA and photosensitizer for combinatorial cancer therapy. Nano Lett. 2023;23(9):3661–3668. doi:10.1021/acs.nanolett.2c03784
  • Jia X, Lv M, Fei Y, et al. Facile one-step synthesis of NIR-Responsive siRNA-Inorganic hybrid nanoplatform for imaging-guided photothermal and gene synergistic therapy. Biomaterials. 2022;282:121404. doi:10.1016/j.biomaterials.2022.121404
  • Chen L, Li G, Wang X, et al. Spherical nucleic acids for near-infrared light-responsive self-delivery of small-interfering RNA and antisense oligonucleotide. ACS Nano. 2021;15(7):11929–11939. doi:10.1021/acsnano.1c03072
  • Feng Y, Fang J, Zhao Y, et al. NIR light-mediated mitochondrial RNA Modification for Cancer RNA interference therapeutics. Angew Chem Int Ed Engl. 2023;62(19):e202218969. doi:10.1002/anie.202218969
  • Hamner KL, Alexander CM, Coopersmith K, et al. Using temperature-sensitive smart polymers to regulate DNA-mediated nanoassembly and encoded nanocarrier drug release. ACS Nano. 2013;7(8):7011–7020. doi:10.1021/nn402214e
  • Chen C, Ma Y, Du S, et al. Controlled CRISPR-Cas9 ribonucleoprotein delivery for sensitized photothermal therapy. Small. 2021;17(33):e2101155. doi:10.1002/smll.202101155
  • Wang P, Zhang L, Zheng W, et al. Thermo-triggered release of CRISPR-cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy. Angew Chem Int Ed Engl. 2018;57(6):1491–1496. doi:10.1002/anie.201708689
  • Dalmina M, Pittella F, Sierra JA, et al. Magnetically responsive hybrid nanoparticles for in vitro siRNA delivery to breast cancer cells. Mater Sci Eng C Mater Biol Appl. 2019;99:1182–1190. doi:10.1016/j.msec.2019.02.026
  • Du M, Chen Y, Tu J, et al. Ultrasound responsive magnetic mesoporous silica nanoparticle-loaded microbubbles for efficient gene delivery. ACS Biomater Sci Eng. 2020;6(5):2904–2912. doi:10.1021/acsbiomaterials.0c00014
  • Sun W, Ji P, Zhou T, et al. Ultrasound responsive nanovaccine armed with engineered cancer cell membrane and RNA to prevent foreseeable metastasis. Adv Sci (Weinh). 2023;10(19):e2301107. doi:10.1002/advs.202301107
  • Lu Q, Chen R, Du S, et al. Activation of the cGAS-STING pathway combined with CRISPR-Cas9 gene editing triggering long-term immunotherapy. Biomaterials. 2022;291:121871. doi:10.1016/j.biomaterials.2022.121871
  • Tang H, Xue Y, Li B, et al. Membrane-camouflaged supramolecular nanoparticles for co-delivery of chemotherapeutic and molecular-targeted drugs with siRNA against patient-derived pancreatic carcinoma. Acta Pharm Sin B. 2022;12(8):3410–3426. doi:10.1016/j.apsb.2022.02.007
  • Liang J, Wu C, Zhou X, et al. Host-guest interaction-based dual response core/shell nanoparticles as efficient siRNA carrier for killing breast cancer cells. Colloids Surf B Biointerfaces. 2021;205:111918. doi:10.1016/j.colsurfb.2021.111918
  • Jing Z, Li Y, Song J, et al. Efficient TNBC immunotherapy by dual reprogramming tumor-infiltrating dendritic cells and tumor-associated macrophages with stimulus-responsive miR155 nanocomplexes. Int J Biol Macromol. 2023;253(Pt 3):126912. doi:10.1016/j.ijbiomac.2023.126912
  • Sahoo S, Maiti S, Poddar P, et al. Cationic cross-linked polymers containing labile disulfide and boronic ester linkages for effective triple responsive DNA release. Colloids Surf B Biointerfaces. 2020;191:110988. doi:10.1016/j.colsurfb.2020.110988
  • Deepak KGK, Vempati R, Nagaraju GP, et al. Tumor microenvironment: challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res. 2020;153:104683. doi:10.1016/j.phrs.2020.104683
  • Liu J, Chen T, Li S, et al. Targeting matrix metalloproteinases by E3 ubiquitin ligases as a way to regulate the tumor microenvironment for cancer therapy. Semin Cancer Biol. 2022;86(Pt 2):259–268. doi:10.1016/j.semcancer.2022.06.004
  • Liu Y, Dong W, Ma Y, et al. Nanomedicines with high drug availability and drug sensitivity overcome hypoxia-associated drug resistance. Biomaterials. 2023;294:122023. doi:10.1016/j.biomaterials.2023.122023
  • Cox TR. The matrix in cancer. Nat Rev Cancer. 2021;21(4):217–238. doi:10.1038/s41568-020-00329-7
  • Tang Q, Sun S, Wang P, et al. Genetically engineering cell membrane-coated BTO nanoparticles for MMP2-activated piezocatalysis-immunotherapy. Adv Mater. 2023;35(18):e2300964. doi:10.1002/adma.202300964
  • Shi J, Ren Y, Ma J, et al. Novel CD44-targeting and pH/redox-dual-stimuli-responsive core-shell nanoparticles loading triptolide combats breast cancer growth and lung metastasis. J Nanobiotechnology. 2021;19(1):188. doi:10.1186/s12951-021-00934-0
  • Hengyu L, Tianqi N, Xiao D, et al. Cerebral delivery of redox-responsive lenalidomide prodrug plus methotrexate for primary central nerve system lymphoma combination therapy. J Control Release. 2023;359:132–146. doi:10.1016/j.jconrel.2023.05.040
  • Xia C, Xing X, Zhang W, et al. Cysteine and homocysteine can be exploited by GPX4 in ferroptosis inhibition independent of GSH synthesis. Redox Biol. 2023;69:102999. doi:10.1016/j.redox.2023.102999
  • Fu LH, Wan Y, Qi C, et al. Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy. Adv Mater. 2021;33(7):e2006892. doi:10.1002/adma.202006892
  • Na S, Zhe S, Bo W, et al. Suicide gene delivery by morphology-adaptable enantiomeric peptide assemblies for combined ovarian cancer therapy. Acta Biomater. 2024;175:250–261. doi:10.1016/j.actbio.2023.12.020
  • Elhanani O, Ben-Uri R, Keren L. Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell. 2023;41(3):404–420. doi:10.1016/j.ccell.2023.01.010
  • DeBerardinis RJ. Tumor microenvironment, metabolism, and immunotherapy. N Engl J Med. 2020;382(9):869–871. doi:10.1056/NEJMcibr1914890
  • Zhang Y, Wang J, Luo R, et al. Stimulus-responsive and dual-target DNA nanodrugs for rheumatoid arthritis treatment. Int J Pharm. 2023;632:122543. doi:10.1016/j.ijpharm.2022.122543
  • Li D, Ren T, Ge Y, et al. A multi-functional hypoxia/esterase dual stimulus responsive and hyaluronic acid-based nanomicelle for targeting delivery of chloroethylnitrosouea. J Nanobiotechnology. 2023;21(1):291. doi:10.1186/s12951-023-02062-3
  • Peng S, Xiao F, Chen M, et al. Tumor-microenvironment-responsive nanomedicine for enhanced cancer immunotherapy. Adv Sci. 2022;9(1):e2103836. doi:10.1002/advs.202103836
  • Shen C, Gao M, Chen H, et al. Reactive oxygen species (ROS)-responsive nanoprobe for bioimaging and targeting therapy of osteoarthritis. J Nanobiotechnology. 2021;19(1):395. doi:10.1186/s12951-021-01136-4
  • Jiang Q, Zhang S. Stimulus-responsive drug delivery nanoplatforms for osteoarthritis therapy. Small. 2023;19(23):e2206929. doi:10.1002/smll.202206929
  • Kang W, Liu Y, Wang W. Light-responsive nanomedicine for cancer immunotherapy. Acta Pharm Sin B. 2023;13(6):2346–2368. doi:10.1016/j.apsb.2023.05.016
  • Zhao Y, He P, Yao J, et al. pH/NIR-responsive and self-healing coatings with bacteria killing, osteogenesis, and angiogenesis performances on magnesium alloy. Biomaterials. 2023;301:122237. doi:10.1016/j.biomaterials.2023.122237
  • Sam R, Divanbeigi Kermani M, Ohadi M, et al. Different applications of temperature responsive nanogels as a new drug delivery system mini review. Pharm Dev Technol. 2023;28(5):492–500. doi:10.1080/10837450.2023.2209796
  • Hossain MS, Zhang Z, Ashok S, et al. Temperature-responsive nano-biomaterials from genetically encoded farnesylated disordered proteins. ACS Appl Bio Mater. 2022;5(5):1846–1856. doi:10.1021/acsabm.1c01162
  • Korpanty J, Wang C, Gianneschi NC. Upper critical solution temperature polymer assemblies via variable temperature liquid phase transmission electron microscopy and liquid resonant soft X-ray scattering. Nat Commun. 2023;14(1):3441. doi:10.1038/s41467-023-38781-2
  • Saranya M, da Silva AM, Karjalainen H, et al. Magnetic-responsive carbon nanotubes composite scaffolds for chondrogenic tissue engineering. Adv Healthc Mater. 2023;12(30):e2301787. doi:10.1002/adhm.202301787
  • Zhang Q, Xue H, Zhang H, et al. Enhanced thrombolytic effect induced by acoustic cavitation generated from nitrogen-doped annealed nanodiamond particles. Ultrason Sonochem. 2023;99:106563. doi:10.1016/j.ultsonch.2023.106563
  • Chen W, He H, Jiao P. Metal-organic framework for hypoxia/ROS/pH triple-responsive cargo release. Adv Healthc Mater. 2023;12(29):e2301785. doi:10.1002/adhm.202301785
  • Shu M, Tang J, Chen L, et al. Tumor microenvironment triple-responsive nanoparticles enable enhanced tumor penetration and synergetic chemo-photodynamic therapy. Biomaterials. 2021;268:120574. doi:10.1016/j.biomaterials.2020.120574