29
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Ultrasound-Responsive Nanodelivery System of GPC3-Targeting and Sonosensitizer for Visualized Hepatocellular Carcinoma Therapy

ORCID Icon, , ORCID Icon, , , , , , , , , , & show all
Pages 7015-7031 | Received 26 Mar 2024, Accepted 28 Jun 2024, Published online: 11 Jul 2024

References

  • Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A. Hepatocellular carcinoma. Lancet. 2022;400(10360):1345–1362. doi:10.1016/s0140-6736(22)01200-4
  • Sung H, Ferlay J, Siegel RL, et al. global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. doi:10.3322/caac.21763
  • Maluccio M, Covey A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. CA Cancer J Clin. 2012;62(6):394–399. doi:10.3322/caac.21161
  • Yang JD, Heimbach JK. New advances in the diagnosis and management of hepatocellular carcinoma. BMJ. 371;<pg>m3544. doi:10.1136/bmj.m3544
  • Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391(10127):1301–1314. doi:10.1016/s0140-6736(18)30010-2
  • Yang B, Chen Y, Shi J. Reactive Oxygen Species (ROS)-Based Nanomedicine. Chem Rev. 2019;119(8):4881–4985. doi:10.1021/acs.chemrev.8b00626
  • Cheung EC, Vousden KH. The role of ROS in tumour development and progression. Nat Rev Cancer. 2022;22(5):280–297. doi:10.1038/s41568-021-00435-0
  • Nakamura H, Takada K. Reactive oxygen species in cancer: current findings and future directions. Can Scie. 2021;112(10):3945–3952. doi:10.1111/cas.15068
  • Liang S, Deng X, Ma P, Cheng Z, Lin J. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy. Adv Mater. 2020;32(47):e2003214. doi:10.1002/adma.202003214
  • Beguin E, Shrivastava S, Dezhkunov NV, McHale AP, Callan JF, Stride E. direct evidence of multibubble sonoluminescence using therapeutic ultrasound and microbubbles. ACS Appl Mater Interfac. 2019;11(22):19913–19919. doi:10.1021/acsami.9b07084
  • Gong Z, Dai Z. Design and challenges of sonodynamic therapy system for cancer theranostics: from equipment to sensitizers. Adv Sci. 2021;8(10):2002178. doi:10.1002/advs.202002178
  • Huang J, Liu F, Han X, et al. Nanosonosensitizers for highly efficient sonodynamic cancer theranostics. Theranostics. 2018;8(22):6178–6194. doi:10.7150/thno.29569
  • Liao S, Cai M, Zhu R, et al. Antitumor Effect of photodynamic therapy/sonodynamic therapy/sono-photodynamic therapy of chlorin e6 and other applications. Mol Pharm. 20(2):875–885. doi:10.1021/acs.molpharmaceut.2c00824
  • Jiang Q, Qiao B, Lin X, et al. A hydrogen peroxide economizer for on-demand oxygen production-assisted robust sonodynamic immunotherapy. Theranostics. 2022;12(1):59–75. doi:10.7150/thno.64862
  • Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems – the current state. Adv. Colloid Interface Sci. 2022;309. doi:10.1016/j.cis.2022.102757
  • Meng Z, Zhang Y, Shen E, et al. Marriage of virus‐mimic surface topology and microbubble‐assisted ultrasound for enhanced intratumor accumulation and improved cancer theranostics. Adv Sci. 2021;8(13).
  • Mossenta M, Busato D, Dal Bo M, Macor P, Toffoli G. Novel nanotechnology approaches to overcome drug resistance in the treatment of hepatocellular carcinoma: glypican 3 as a useful target for innovative therapies. Int J Mol Sci. 2022;23(17):10038.
  • Li D, Li N, Zhang Y-F, et al. Persistent polyfunctional chimeric antigen receptor T Cells that target glypican 3 eliminate orthotopic hepatocellular carcinomas in mice. Gastroenterology. 2020;158(8):2250–2265.e20. doi:10.1053/j.gastro.2020.02.011
  • Deng H, Shang W, Wang K, et al. Targeted-detection and sequential-treatment of small hepatocellular carcinoma in the complex liver environment by GPC-3-targeted nanoparticles. J Nanobiotechnol. 2022;20(1):156.
  • Feng K, Li X, Huang A, Wan M, Zong Y. Effect of tissue viscoelasticity and adjacent phase-changed microbubbles on vaporization process and direct growth threshold of nanodroplet in an ultrasonic field. Ultrason Sonochem. 2023;101:106665.
  • Namen AV, Jandhyala S, Jordan T, Luke GP. Repeated acoustic vaporization of perfluorohexane nanodroplets for contrast-enhanced ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(12):3497–3506. doi:10.1109/tuffc.2021.3093828
  • Fan K, Zeng L, Guo J, et al. Visualized podocyte-targeting and focused ultrasound responsive glucocorticoid nano-delivery system against immune-associated nephropathy without glucocorticoid side effect. Theranostics. 2021;11(6):2670–2690. doi:10.7150/thno.53083
  • Gao X, Guo D, Mao X, Shan X, He X, Yu C. Perfluoropentane-filled chitosan poly-acrylic acid nanobubbles with high stability for long-term ultrasound imaging in vivo. Nanoscale. 2021;13(10):5333–5343. doi:10.1039/d0nr06878k
  • Chen K-W, Hsu P-H, Huang H-L, et al. Targeting nanoparticle-conjugated microbubbles combined with ultrasound-mediated microbubble destruction for enhanced tumor therapy. Pharmacol Res. 2022:186. doi:10.1016/j.phrs.2022.106532
  • Wang J, Zhang W, Xie Z, et al. Magnetic nanodroplets for enhanced deep penetration of solid tumors and simultaneous magnetothermal‐sensitized immunotherapy against tumor proliferation and metastasis. Adv Healthcare Mater. 2022;11(23). doi:10.1002/adhm.202201399
  • Xi L, Han Y, Liu C, et al. Sonodynamic therapy by phase-transition nanodroplets for reducing epidermal hyperplasia in psoriasis. J Control Release. 2022;350:435–447. doi:10.1016/j.jconrel.2022.08.038
  • Li J, Ji H, Jing Y, Wang S. pH- and acoustic-responsive platforms based on perfluoropentane-loaded protein nanoparticles for ovarian tumor-targeted ultrasound imaging and therapy. Nanoscale Res Lett. 15(1):31. doi:10.1186/s11671-020-3252-z
  • Wang G, Jiang Y, Xu J, et al. Unraveling the Plasma Protein Corona by Ultrasonic Cavitation Augments Active-Transporting of Liposome in Solid Tumor. Adv Mater. 2023;35(9):e2207271. doi:10.1002/adma.202207271
  • Yang Y, Zhang JY, Ma ZJ, et al. Visualization of therapeutic intervention for acute liver injury using low-intensity pulsed ultrasound-responsive phase variant nanoparticles. Biomater Sci. 2024. doi:10.1039/d3bm01423a
  • Mu W, Jiang D, Mu S, Liang S, Liu Y, Zhang N. Promoting early diagnosis and precise therapy of hepatocellular carcinoma by glypican-3-targeted synergistic chemo-photothermal theranostics. ACS Appl Mater Interfac. 2019;11(26):23591–23604. doi:10.1021/acsami.9b05526
  • Briuglia M-L, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Del Transl Res. 2015;5(3):231–242. doi:10.1007/s13346-015-0220-8
  • Li Y, Zhang X, Cao D. Nanoparticle hardness controls the internalization pathway for drug delivery. Nanoscale. 2015;7(6):2758–2769. doi:10.1039/c4nr05575f
  • Liu Y, Yang S, Zhou Q, et al. Nanobubble-based anti-hepatocellular carcinoma therapy combining immune check inhibitors and sonodynamic therapy. Nanoscale Adv. 4(22):4847–4862. doi:10.1039/d2na00322h
  • Perry JL, Reuter KG, Luft JC, Pecot CV, Zamboni W, DeSimone JM. Mediating Passive Tumor Accumulation through Particle Size, Tumor Type, and Location. Nano lett. 2017;17(5):2879–2886.
  • Pashizeh F, Mansouri A, Bazzazan S, et al. Bioresponsive gingerol-loaded alginate-coated niosomal nanoparticles for targeting intracellular bacteria and cancer cells. Int J Biol Macromol. 2024:258d7. doi:10.1016/j.ijbiomac.2023.128957
  • Dastneshan A, Rahiminezhad S, Naderi Mezajin M, et al. Cefazolin encapsulated UIO-66-NH2 nanoparticles enhance the antibacterial activity and biofilm inhibition against drug-resistant S. aureus: in vitro and in vivo studies. Chem Eng J. 2023:455. doi:10.1016/j.cej.2022.140544
  • Hu S, Xia K, Huang X, et al. Multifunctional CaCO3@Cur@QTX125@HA nanoparticles for effectively inhibiting growth of colorectal cancer cells. J Nanobiotech. 2023;21(1).
  • Dwivedi P, Kiran S, Han S, et al. Magnetic Targeting and Ultrasound Activation of Liposome–Microbubble Conjugate for Enhanced Delivery of Anticancer Therapies. ACS Appl Mater Interfac. 2020;12(21):23737–23751. doi:10.1021/acsami.0c05308
  • Chen Y, Luo X, Liu Y, et al. Targeted Nanobubbles of PD-L1 mAb Combined with Doxorubicin as a Synergistic Tumor Repressor in Hepatocarcinoma. Int j Nanomed. 2022;17:3989–4008. doi:10.2147/ijn.S376172
  • Cao Y, Chen Y, Yu T, et al. Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound. Theranostics. 2018;8(5):1327–1339. doi:10.7150/thno.21492
  • Yu L, Wang Z, Mo Z, et al. Synergetic delivery of triptolide and Ce6 with light-activatable liposomes for efficient hepatocellular carcinoma therapy. Acta Pharmaceutica Sinica B. 2021;11(7):2004–2015. doi:10.1016/j.apsb.2021.02.001
  • Żamojć K, Zdrowowicz M, Rudnicki-Velasquez PB, et al. The development of 1,3-diphenylisobenzofuran as a highly selective probe for the detection and quantitative determination of hydrogen peroxide. Free Radic Res. 2016;51(1):38–46. doi:10.1080/10715762.2016.1262541
  • Jin Y, Zhou Q, Geng J, et al. Sonodynamic effects of a novel ether-group modified porphyrin derivative combined with pulsed low-intensity ultrasound on PC-9 Cells. Front Pharmacol. 2021;12. doi:10.3389/fphar.2021.792360
  • Lin X, Song J, Chen X, Yang H. Ultrasound‐activated sensitizers and applications. Angew Chem Int Ed. 2020;59(34):14212–14233. doi:10.1002/anie.201906823
  • Kiesslich T, Plaetzer K, Oberdanner CB, Berlanda J, Obermair FJ, Krammer B. Differential effects of glucose deprivation on the cellular sensitivity towards photodynamic treatment‐based production of reactive oxygen species and apoptosis‐induction. FEBS Lett. 2004;579(1):185–190. doi:10.1016/j.febslet.2004.11.073