9
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Comparative Analysis of Logistic Regression, Gradient Boosted Trees, SVM, and Random Forest Algorithms for Prediction of Acute Kidney Injury Requiring Dialysis After Cardiac Surgery

ORCID Icon, , , , , , , & show all
Pages 197-204 | Received 04 Mar 2024, Accepted 13 Jun 2024, Published online: 23 Jul 2024

References

  • Javaid M, Haleem A, Pratap Singh R, Suman R, Rab S. Significance of machine learning in healthcare: features, pillars and applications. Int J Intell Netw. 2022;3:58–73. doi:10.1016/j.ijin.2022.05.002
  • Russak AJ, Chaudhry F, De Freitas JK, et al. Machine learning in cardiology—ensuring clinical impact lives up to the hype. J Cardiovasc Pharmacol Therap. 2020;25(5):379–390. doi:10.1177/1074248420928651
  • Delen D, Davazdahemami B, Eryarsoy E, Tomak L, Valluru A. Using predictive analytics to identify drug-resistant epilepsy patients. Health Inform J. 2019;12:146045821983312. doi:10.1177/1460458219833120
  • Thakar CV, Worley S, Arrigain S, Yared JP, Paganini EP. Improved Survival in Acute Kidney Injury After Cardiac Surgery. Am J Kidney Dis. 2007;50(5):703–711. doi:10.1053/j.ajkd.2007.07.021
  • Che M, Wang X, Liu S, et al. A clinical score to predict severe acute kidney injury in Chinese patients after cardiac surgery. Nephron. 2019;142(4):291–300. doi:10.1159/000499345
  • Zhang Y, Yang D, Liu Z, et al. An explainable supervised machine learning predictor of acute kidney injury after adult deceased donor liver transplantation. J Transl Med. 2021;19(1):1–15. doi:10.1186/s12967-021-02990-4
  • Smith MT, Bruce JL, Clarke DL. Using machine learning to establish predictors of mortality in patients undergoing laparotomy for emergency general surgical conditions. World J Surg. 2022;46(2):339–346. doi:10.1007/s00268-021-06360-5
  • Qian Q, Wu J, Wang J, Sun H, Yang L. Prediction models for AKI in ICU: a comparative study. Int J Gene Med. 2021;14:623–632. doi:10.2147/IJGM.S289671
  • Xue X, Liu Z, Xue T, Chen W, Chen X. Machine learning for the prediction of acute kidney injury in patients after cardiac surgery. Front Surg. 2022;9:946610. doi:10.3389/fsurg.2022.946610
  • Jiang J, Liu X, Cheng Z, et al. Interpretable machine learning models for early prediction of acute kidney injury after cardiac surgery. BMC Nephrol. 2023;24(1):326. doi:10.1186/s12882-023-03324-w
  • Goh KW, Goh BL, Ibrahim FH, et al. 126 validating Cleveland clinic score to predict acute kidney injury requiring dialysis after cardiac surgery. Kidney Int Rep. 2017;2(4):S18. doi:10.1016/j.ekir.2017.06.066
  • Altair® RapidMiner® Data Analytics and AI Platform. Available from: https://rapidminer.com/. Accessed May 22, 2023.
  • Penny-Dimri JC, Bergmeir C, Reid CM, Williams-Spence J, Cochrane AD, Smith JA. Machine learning algorithms for predicting and risk profiling of cardiac surgery-associated acute kidney injury. Semin Thor Cardiovasc Surg. 2020;33(3):735–745. doi:10.1053/j.semtcvs.2020.09.028
  • Tseng PY, Chen YT, Wang CH, et al. Prediction of the development of acute kidney injury following cardiac surgery by machine learning. Crit Care. 2020;24(1). doi:10.1186/s13054-020-03179-9
  • Demirjian S, Schold JD, Navia J, et al. Predictive models for acute kidney injury following cardiac surgery. Am J Kidney Dis. 2012;59(3):382–389. doi:10.1053/j.ajkd.2011.10.046