99
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Clinical Significance of Application of Chromosomal Karyotyping of Villus Tissues

, , , , , , & show all
Pages 1705-1710 | Received 06 Jun 2023, Accepted 07 Oct 2023, Published online: 06 Nov 2023

References

  • Griebel CP, Halvorsen J, Golemon TB, Day AA. Management of spontaneous abortion. Am Fam Physician. 2005;72(7):1243–1250.
  • Farquharson RG, Jauniaux E, Exalto N. Updated and revised nomenclature for description of early pregnancy events. Hum Reprod. 2005;20(11):3008–3011. doi:10.1093/humrep/dei167
  • Chen S, Liu D, Zhang J, et al. A copy number variation genotyping method for aneuploidy detection in spontaneous abortion specimens. Prenat Diagn. 2017;37(2):176–183. doi:10.1002/pd.4986
  • Yuan SM, Liao C, Li DZ, et al. Chorionic villus cell culture and karyotype analysis in 1 983 cases of spontaneous miscarriage. Zhonghua Fu Chan Ke Za Zhi. 2017;52(7):461–466. doi:10.3760/cma.j.issn.0529-567X.2017.07.006
  • Sugiura-Ogasawara M, Ozaki Y, Katano K, et al. Abnormal embryonic karyotype is the most frequent cause of recurrent miscarriage. Hum Reprod. 2012;27(8):2297–2303. doi:10.1093/humrep/des179
  • Xu C, Wang T, Liu C, et al. Noninvasive prenatal screening of fetal aneuploidy without massively parallel sequencing. Clin Chem. 2017;63(4):861–869. doi:10.1373/clinchem.2016.266247
  • Mao J, Wang H, Li H, et al. Genetic analysis of products of conception using a HLPA/SNP-array strategy. Mol Cytogenet. 2019;12:40. doi:10.1186/s13039-019-0452-2
  • Mccombie WR, Mcpherson JD, Mardis ER. Next-generation sequencing technologies. Cold Spring Harb Perspect Med. 2018;9(11):a036798. doi:10.1101/cshperspect.a036798
  • Wang Y, Zhou R, Jiang L, et al. Identification of chromosomal abnormalities in early pregnancy loss using a high-throughput ligation-dependent probe amplification-based assay. J Mol Diagn. 2021;23(1):38–45. doi:10.1016/j.jmoldx.2020.10.002
  • Du Y, Chen L, Lin J, et al. Chromosomal karyotype in chorionic villi of recurrent spontaneous abortion patients. Biosci Trends. 2018;12(1):32–39. doi:10.5582/bst.2017.01296
  • Soler A, Morales C, Mademont-Soler I, et al. Overview of chromosome abnormalities in first trimester miscarriages: a series of 1011 consecutive chorionic villi sample karyotypes. Cytogenet Genome Res. 2017;152(2):81–89. doi:10.1159/000477707
  • Zhang R, Chen X, Wang D, et al. Prevalence of chromosomal abnormalities identified by copy number variation sequencing in high-risk pregnancies, spontaneous abortions, and suspected genetic disorders. J Int Med Res. 2019;47(3):1169–1178. doi:10.1177/0300060518818020
  • Ohno M, Maeda T, Matsunobu A. A cytogenetic study of spontaneous abortions with direct analysis of chorionic villi. Obstet Gynecol. 1991;77(3):394–398.
  • Warburton D, Kline J, Stein Z, et al. Does the karyotype of a spontaneous abortion predict the karyotype of a subsequent abortion? Evidence from 273 women with two karyotyped spontaneous abortions. Am J Hum Genet. 1987;41(3):465–483.
  • Álvarez-Nava F, Lanes R. Epigenetics in turner syndrome. Clin Epigenetics. 2018;10:45. doi:10.1186/s13148-018-0477-0
  • Ogata T, Wakui K, Muroya K, et al. Microphthalmia with linear skin defects syndrome in a mosaic female infant with monosomy for the Xp22 region: molecular analysis of the Xp22 breakpoint and the X-inactivation pattern. Hum Genet. 1998;103(1):51–56. doi:10.1007/s004390050782
  • Yang L, Tao T, Zhao X, et al. Association between fetal chromosomal abnormalities and the frequency of spontaneous abortions. Exp Ther Med. 2020;19(4):2505–2510. doi:10.3892/etm.2020.8524
  • Yun Y, Lee S, So C, et al. Oocyte development and quality in young and old mice following exposure to atrazine. Environ Health Perspect. 2022;130(11):117007. doi:10.1289/EHP11343
  • du Fossé NA, van der Hoorn MP, van Lith JMM, le Cessie S, Lashley E. Advanced paternal age is associated with an increased risk of spontaneous miscarriage: a systematic review and meta-analysis. Hum Reprod Update. 2020;26(5):650–669. doi:10.1093/humupd/dmaa010