77
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

A Theoretical Exploration of Artificial Intelligence’s Impact on Feto-Maternal Health from Conception to Delivery

&
Pages 903-915 | Received 09 Dec 2023, Accepted 29 Apr 2024, Published online: 23 May 2024

References

  • Richardson L, Kim S, Menon R, Han A. Organ-on-chip technology: the future of feto-maternal interface research. Front Physiol. 2020;11:715. doi:10.3389/fphys.2020.00715
  • Mirzakhani K, Ebadi A, Faridhosseini F, Khadivzadeh T. Well-being in high-risk pregnancy: an integrative review. BMC Pregnancy Childbirth. 2020;20(1):526. doi:10.1186/s12884-020-03190-6
  • Alderdice F, McNeill J, Lynn F. A systematic review of systematic reviews of interventions to improve maternal mental health and well-being. Midwifery. 2013;29(4):389–399. doi:10.1016/j.midw.2012.05.010
  • Wu G, Imhoff-Kunsch B, Girard AW. Biological mechanisms for nutritional regulation of maternal health and fetal development. Paediatr Perinat Epidemiol. 2012;26(Suppl 1):4–26. doi:10.1111/j.1365-3016.2012.01291.x
  • Burton GJ, Fowden AL, Thornburg KL. Placental origins of chronic disease. Physiol Rev. 2016;96(4):1509–1565. doi:10.1152/physrev.00029.2015
  • Lassi ZS, Dean SV, Mallick D, Bhutta ZA. Preconception care: delivery strategies and packages for care. Reprod Health. 2014;11(Suppl 3):S7. doi:10.1186/1742-4755-11-S3-S7
  • David AL, Spencer RN. Clinical assessment of fetal well-being and fetal safety indicators. J Clin Pharmacol. 2022;62(Suppl 1):S67–S78. doi:10.1002/jcph.2126
  • Baschat AA, Galan HL, Lee W, et al. The role of the fetal biophysical profile in the management of fetal growth restriction. Am J Obstet Gynecol. 2022;226(4):475–486. doi:10.1016/j.ajog.2022.01.020
  • Swamy GK, Skjšrven R. Association of preterm birth with long-term survival, reproduction, and next-generation preterm birth. JAMA. 2008;299(12):1429–1436. doi:10.1001/jama.299.12.1429
  • Lawn JE, Gravett MG, Nunes TM, Rubens CE, Stanton C; GAPPS Review Group. Global report on preterm birth and stillbirth (1 of 7): definitions, description of the burden and opportunities to improve data. BMC Pregnancy Childbirth. 2010;10(S1):1–22. doi:10.1186/1471-2393-10-S1-S1
  • Guerby P, Bujold E. Early detection and prevention of intrauterine growth restriction and its consequences. JAMA Pediatr. 2020;174(8):749–750. doi:10.1001/jamapediatrics.2020.1106
  • Villar J, Carroli G, Wojdyla D, et al. Preeclampsia, gestational hypertension and intrauterine growth restriction, related or independent conditions? Am J Obstet Gynecol. 2006;194(4):921–931. doi:10.1016/j.ajog.2005.10.813
  • Ahmed Z, Mohamed K, Zeeshan S, Dong X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database. 2020;2020:baaa010. doi:10.1093/database/baaa010
  • Cohoon TJ, Bhavnani SP. Toward precision health: applying artificial intelligence analytics to digital health biometric datasets. Per Med. 2020;17(4):307–316. doi:10.2217/pme-2019-0113
  • Dwivedi YK, Hughes L, Ismagilova E, et al. Artificial Intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int J Info Manag. 2021;57:101994.
  • Lauriola I, Lavelli A, Aiolli F. An introduction to deep learning in natural language processing: models, techniques, and tools. Neurocomputing. 2022;470:443–456. doi:10.1016/j.neucom.2021.05.103
  • Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial intelligence in cardiology. J Am Coll Cardiol. 2018;71(23):2668–2679. doi:10.1016/j.jacc.2018.03.521
  • Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2018;2(1):35. doi:10.1186/s41747-018-0061-6
  • Delanerolle G, Yang X, Shetty S, et al. Artificial intelligence: a rapid case for advancement in the personalization of Gynaecology/Obstetric and Mental Health care. Womens Health. 2021;17:17455065211018111.
  • Pammi M, Aghaeepour N, Neu J. Multiomics, artificial intelligence, and precision medicine in perinatology. Pediatr Res. 2023;93(2):308–315. doi:10.1038/s41390-022-02181-x
  • Hajirasouliha I, Elemento O. Precision medicine and artificial intelligence: overview and relevance to reproductive medicine. Fertil Steril. 2020;114(5):908–913. doi:10.1016/j.fertnstert.2020.09.156
  • Hill B, Skouteris H, Boyle JA, et al. Health in preconception, pregnancy and postpartum global alliance: international network pregnancy priorities for the prevention of maternal obesity and related pregnancy and long-term complications. J Clin Med. 2020;9(3):822. doi:10.3390/jcm9030822
  • Lassi ZS, Mansoor T, Salam RA, Das JK, Bhutta ZA. Essential pre-pregnancy and pregnancy interventions for improved maternal, newborn and child health. Reprod Health. 2014;11(Suppl 1):S2.
  • Shahbazi MN. Mechanisms of human embryo development: from cell fate to tissue shape and back. Development. 2020;147(14):dev190629. doi:10.1242/dev.190629
  • Boss AL, Chamley LW, James JL. Placental formation in early pregnancy: how is the centre of the placenta made? Hum Reprod Update. 2018;24(6):750–760. doi:10.1093/humupd/dmy030
  • Valladares DA, Rasmussen SA. An update on teratogens for pediatric healthcare providers. Curr Opin Pediatr. 2022;34(6):565–571. doi:10.1097/MOP.0000000000001177
  • Narain S, McEwan A. Antenatal assessment of fetal well-being. Obstet Gynaecol Reprod Med. 2023;33(8):217–224. doi:10.1016/j.ogrm.2023.05.002
  • Haug CJ, Drazen JM, Drazen JM, Kohane IS, Leong T-Y. Artificial intelligence and machine learning in clinical medicine, 2023. N Engl J Med. 2023;388(13):1201–1208. doi:10.1056/NEJMra2302038
  • Taye MM. Understanding of machine learning with deep learning: architectures, workflow, applications and future directions. Computers. 2023;12(5):91. doi:10.3390/computers12050091
  • Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol. 2020;9(2):14. doi:10.1167/tvst.9.2.14
  • Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 2022;23(1):40–55. doi:10.1038/s41580-021-00407-0
  • Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electron Mark. 2021;31(3):685–695. doi:10.1007/s12525-021-00475-2
  • Ramakrishnan R, Rao S, He JR. Perinatal health predictors using artificial intelligence: a review. Womens Health. 2021;17:17455065211046132.
  • Akazawa M, Hashimoto K. Prediction of preterm birth using artificial intelligence: a systematic review. J Obstet Gynaecol. 2022;42(6):1662–1668. doi:10.1080/01443615.2022.2056828
  • Dhombres F, Bonnard J, Bailly K, Maurice P, Papageorghiou AT, Jouannic JM. Contributions of artificial intelligence reported in obstetrics and gynecology journals: systematic review. J Med Internet Res. 2022;24(4):e35465. doi:10.2196/35465
  • Armero W, Gray KJ, Fields KG, Cole NM, Bates DW, Kovacheva VP. A survey of pregnant patients’ perspectives on the implementation of artificial intelligence in clinical care. J Am Med Inform Assoc. 2022;30(1):46–53. doi:10.1093/jamia/ocac200
  • Kim HY, Cho GJ, Kwon HS. Applications of artificial intelligence in obstetrics. Ultrasonography. 2023;42(1):2–9. doi:10.14366/usg.22063
  • Ahn KH, Lee KS. Artificial intelligence in obstetrics. Obstet Gynecol Sci. 2022;65(2):113–124. doi:10.5468/ogs.21234
  • Emin EI, Emin E, Papalois A, Willmott F, Clarke S, Sideris M. Artificial intelligence in obstetrics and gynaecology: is this the way forward? In Vivo. 2019;33(5):1547–1551. doi:10.21873/invivo.11635
  • Davidson L, Boland MR. Towards deep phenotyping pregnancy: a systematic review on artificial intelligence and machine learning methods to improve pregnancy outcomes. Brief Bioinform. 2021;22(5):bbaa369. doi:10.1093/bib/bbaa369
  • Mennickent D, Rodríguez A, Opazo MC, et al. Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications. Front Endocrinol. 2023;14:1130139. doi:10.3389/fendo.2023.1130139
  • Kazantsev A, Ponomareva J, Kazantsev P, Digilov R, Huang P. Development of e-health network for in-home pregnancy surveillance based on artificial intelligence. In: Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics. IEEE; January 5; 2012:82–84.
  • Kim HM, Ko T, Kang H, et al. Improved prediction of clinical pregnancy using artificial intelligence with enhanced inner cell mass and trophectoderm images. Sci Rep. 2024;14(1):3240. doi:10.1038/s41598-024-52241-x
  • VerMilyea M, Hall JMM, Diakiw SM, et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum Reprod. 2020;35(4):770–784. doi:10.1093/humrep/deaa013
  • Feduniw S, Golik D, Kajdy A, et al. Application of artificial intelligence in screening for adverse perinatal outcomes-a systematic review. Healthcare. 2022;10(11):2164. doi:10.3390/healthcare10112164
  • Jamshidnezhad A, Hosseini SM, Mohammadi-Asl J, Mahmudi M. An intelligent prenatal screening system for the prediction of Trisomy-21. Inf Med Unlocked. 2021;24:100625. doi:10.1016/j.imu.2021.100625
  • Gulzar Ahmad S, Iqbal T, Javaid A, et al. Sensing and artificial intelligent maternal-infant health care systems: a review. Sensors. 2022;22(12):4362. doi:10.3390/s22124362
  • Oti O, Azimi I, Anzanpour A, Rahmani AM, Axelin A, Liljeberg P. IoT-based healthcare system for real-time maternal stress monitoring. In: Proceedings of the 2018 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies. September 26; 2018:57–62.
  • Allen ME, Irizarry T, Einhorn J, et al. SMS-facilitated home blood pressure monitoring: a qualitative analysis of resultant health behavior change. Patient Educ Couns. 2019;102(12):2246–2253. doi:10.1016/j.pec.2019.06.015
  • Komatsu M, Sakai A, Komatsu R, et al. Detection of cardiac structural abnormalities in fetal ultrasound videos using deep learning. Appl Sci. 2021;11(1):371. doi:10.3390/app11010371
  • Rayhana T, Arefina AS, Chowdhury SA. Automatic detection of fetal health status from cardiotocography data using machine learning algorithms. J Bangladesh Acad Sci. 2021;45(2):155–167. doi:10.3329/jbas.v45i2.57206
  • Xiao S, Zhang J, Zhu Y, et al. Application and progress of artificial intelligence in fetal ultrasound. J Clin Med. 2023;12(9):3298. doi:10.3390/jcm12093298
  • Harrison MS, Goldenberg RL. Global burden of prematurity. Semin Fetal Neonatal Med. 2016;21(2):74–79. doi:10.1016/j.siny.2015.12.007
  • Walani SR. Global burden of preterm birth. Int J Gynaecol Obstet. 2020;150(1):31–33. doi:10.1002/ijgo.13195
  • Rocha TAH, de Thomaz EBAF, de Almeida DG, et al. Data-driven risk stratification for preterm birth in Brazil: a population-based study to develop of a machine learning risk assessment approach. Lancet Reg Health Am. 2021;3:100053. doi:10.1016/j.lana.2021.100053
  • Gao C, Osmundson S, Velez Edwards DR, Jackson GP, Malin BA, Chen Y. Deep learning predicts extreme preterm birth from electronic health records. J Biomed Inform. 2019;100:103334. doi:10.1016/j.jbi.2019.103334
  • Khatibi T, Kheyrikoochaksarayee N, Sepehri MM. Analysis of big data for prediction of provider-initiated preterm birth and spontaneous premature deliveries and ranking the predictive features. Arch Gynecol Obstet. 2019;300(6):1565–1582. doi:10.1007/s00404-019-05325-3
  • Pelícia SMC, Fekete SMW, Corrente JE, Rugolo LMSS. Impact of early-onset preeclampsia on feeding tolerance and growth of very low birth weight infants during hospitalization. Rev Paul Pediatr. 2022;41:e2021203.
  • Sufriyana H, Wu YW, Su EC. Prediction of preeclampsia and intrauterine growth restriction: development of machine learning models on a prospective cohort. JMIR Med Inform. 2020;8(5):e15411. doi:10.2196/15411
  • Bennett R, Mulla ZD, Parikh P, Hauspurg A, Razzaghi T, Mohammadzadeh A. An imbalance-aware deep neural network for early prediction of preeclampsia. PLoS One. 2022;17(4):e0266042. doi:10.1371/journal.pone.0266042
  • Bosschieter TM, Xu Z, Lan H, et al. Interpretable predictive models to understand risk factors for maternal and fetal outcomes. J Healthc Inform Res. 2023;8(1):65–87. doi:10.1007/s41666-023-00151-4
  • Kovacheva VP, Eberhard BW, Cohen RY, Maher M, Saxena R, Gray KJ. Preeclampsia prediction using machine learning and polygenic risk scores from clinical and genetic risk factors in early and late pregnancies. Hypertension. 2024;81(2):264–272. doi:10.1161/HYPERTENSIONAHA.123.21053
  • Marić I, Tsur A, Aghaeepour N, et al. Early prediction of preeclampsia via machine learning. Am J Obstet Gynecol MFM. 2020;2(2):100100. doi:10.1016/j.ajogmf.2020.100100
  • Sakinah N, Tahir M, Badriyah T, Syarif I. LSTM with Adam optimization-powered high accuracy preeclampsia classification. In: 2019 International Electronics Symposium (IES). Surabaya, Indonesia; September 27–28; 2019:314–319.
  • Artzi NS, Shilo S, Hadar E, et al. Prediction of gestational diabetes based on nationwide electronic health records. Nat Med. 2020;26(1):71–76. doi:10.1038/s41591-019-0724-8
  • Wu YT, Zhang CJ, Mol BW, et al. Early prediction of gestational diabetes mellitus in the Chinese Population via Advanced Machine Learning. J Clin Endocrinol Metab. 2021;106(3):e1191–e1205. doi:10.1210/clinem/dgaa899
  • Wang J, Lv B, Chen X, et al. An early model to predict the risk of gestational diabetes mellitus in the absence of blood examination indexes: application in primary health care centres. BMC Pregnancy Childbirth. 2021;21(1):814. doi:10.1186/s12884-021-04295-2
  • Drukker L. Real-time identification of fetal anomalies on ultrasound using artificial intelligence: what’s next? Ultrasound Obstet Gynecol. 2022;59(3):285–287. doi:10.1002/uog.24869
  • Rawat V, Jain A, Shrimali V, Raghuvanshi S. Performance analysis of different learning algorithms of feed forward neural network regarding fetal abnormality detection. In: Thanh Nguyen N, Kowalczyk R, editors. Transactions on Computational Collective Intelligence XXX. Springer; 2018:118–132. Lecture Notes in Computer Science, vol 11120. Springer, Cham.
  • Gong Y, Zhang Y, Zhu H, et al. Fetal congenital heart disease echocardiogram screening based on DGACNN: adversarial one-class classification combined with video transfer learning. IEEE Trans Med Imaging. 2020;39(4):1206–1222. doi:10.1109/TMI.2019.2946059
  • Meshaka R, Gaunt T, Shelmerdine SC. Artificial intelligence applied to fetal MRI: a scoping review of current research. Br J Radiol. 2023;96(1147):20211205. doi:10.1259/bjr.20211205
  • Meskó B, Topol EJ. The imperative for regulatory oversight of large language models (or generative AI) in healthcare. NPJ Digit Med. 2023;6(1):120. doi:10.1038/s41746-023-00873-0
  • Zhang J, Zhang ZM. Ethics and governance of trustworthy medical artificial intelligence. BMC Med Inform Decis Mak. 2023;23(1):7. doi:10.1186/s12911-023-02103-9
  • Mithany RH, Aslam S, Abdallah S, et al. Advancements and challenges in the application of artificial intelligence in surgical arena: a literature review. Cureus. 2023;15(10):e47924.