12
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Proteome analysis of muscadine grape leaves

, , &
Pages 161-173 | Published online: 30 Apr 2009

References

  • Kingston-Smith AH. Resource allocation. Trends Plant Sci. 2001;6: 48–49.
  • Swanson CA, Elshishiny EDH. Translocation of sugars in the Concord grape. Plant Physiol. 1958;33:33–37.
  • Boss PK, Davies C. Molecular biology of sugar and anthocyanin accumulation in grape berries. In: Roubelakis-Angelakis KA, editors. Molecular Biology and Biotechnology of the Grapevine. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2001. p. 1–33.
  • Castro AJ, Carapito C, Zorn N, et al. Proteomic analysis of grapevine (Vitis vinifera L.) tissues subjected to herbicide stress. J Exp Bot. 2005;56:2783–2795.
  • Jones AME, Thomas V, Truman W, Lilley K, Mansfield J, Grant M. Specific changes in the Arabidopsis proteome in response to bacterial challenge: differentiating basal and R-gene mediated resistance. Phytochemistry. 2004;65:1805–1816.
  • Rakwal R, Komatsu S. Role of jasmonate in the rice (Oryza sativa L.) self-defense mechanism using proteome analysis. Electrophoresis. 2000;21:2492–2500.
  • Schlesier B, Berna A, Bernier, F, Mock HP. Proteome analysis differentiates between two highly homologues germin-like proteins in Arabidopsis thaliana ecotypes Col-0 and Ws-2. Phytochemistry. 2004;65:1565–1574.
  • Wilson KA, McManus MT, Gordon ME, Jordan TW. The proteomics of senescence in white clover Trifolium repens leaves. Proteomics. 2002;2:1114–1122.
  • Rose JK, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS. Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J. 2004;39:715–733.
  • Koller A, Washburn MP, Lange BM, et al. Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci U S A. 2002;18:11969–11974.
  • Giavalisco P, Nordhoff E, Kreitler T, et al. Proteome analysis of Arabidopsis thaliana by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry. Proteomics. 2005;5:1902–1913.
  • Porubleva L, Vander Velden K, Kothari S, Oliver DO, Parag R, Chitnis PR. The proteome of maize leaves: Use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis. 2001;22:1724–1738.
  • Donelly BE, Madden RD, Ayoubi P, Porter DR, Dillwith JW. The wheat (Triticum aestivum L.) leaf proteome. Proteomics. 2005;5: 1624–1633.
  • Bahrman N, Le Gouis J, Negroni L, et al. Differential protein expression assessed by two-dimensional gel electrophoresis for two wheat varieties grown at four nitrogen levels. Proteomics. 2004;4:709–719.
  • Schiltz S, Gallardo K, Huart M, Negroni L, Sommerer N, Burstin J. Proteome reference maps of vegetative tissues in pea. An investigation of nitrogen mobilization from leaves during seed filling. Plant Physiol. 2004;135:2241–2260.
  • Negri AS, Prinsi B, Rossoni M, et al. Proteome changes in the skin of the grape cultivar Barbera among different stages of ripening. BMC Genomics. 2008;9:378–397.
  • Sarry JE, Sommerer N, Sauvage FX, et al. Grape berry biochemistry revisited upon proteomic analysis of the mesocarp. Proteomics. 2004;4:201–215.
  • Deytieux C, Geny L, Lapaillerie D, et al. Proteome analysis of grape skins during ripening. J Exp Bot. 2007;58:1851–1862.
  • Negri AS, Prinsi B, Scienza A, Morgutti S, Cocucci M, Espen L. Analysis of grape berry cell wall proteome: a comparative evaluation of extraction methods. J Plant Physiol. 2008;165:1379–1389.
  • Giribaldi M, Perugini I, Sauvage FX, Schubert A. Analysis of protein changes during grape berry ripening by 2-DE and MALDI-TOF. Proteomics. 2007;7:3154–3170.
  • Jellouli N, Ben JH, Skouri H, Ghorbel A, Gourgouri A, Mliki A. Proteomic analysis of Tunisian grapevine cultivar Razegui under salt stress. J Plant Physiol. 2008;165:471–481.
  • Sauvage FX, Pradal M, Chatelet P, Tesniere C. Proteome changes in leaves from grapevine (Vitis vinifera L.) transformed for alcohol dehydrogenase activity. J Agric Food Chem. 2007;55:2597–2603.
  • Vincent D, Ergul A, Bohlman MC, et al. Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. J Exp Bot. 2007;58:1873–1892.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.
  • Basha SM. Identification of cultivar differences in seed polypeptide composition of peanuts (Arachis hypogaea L.) by two-dimensional polyacrylamide gel electrophoresis. Plant Physiol. 1979;63:301–306.
  • Mujahid S, Pechan T, Wang C. Improved solubilization of surface proteins from Listeria monocytogenes for 2-DE. Electrophoresis. 2007;28:3998–4007.
  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–3567.
  • Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402.
  • Basha SM, Roberts RM. The glycoproteins of plant seeds: Analysis by two-dimensional polyacrylamide gel electrophoresis and by their lectin-binding properties. Plant Physiol. 1981;67:936–939.
  • Shen S, Yuxiang J, Kuang T. Proteomics approach to identify wound-response related proteins from rice leaf sheath. Proteomics. 2003;3:527–535.
  • Ferri M, Tassoni A, Franceschetti M, et al. Chitosan treatment induces changes of protein expression profile and stilbene distribution in Vitis vinifera cell suspensions. Proteomics. 2009;9:1–15.
  • Marmagne A, Rouet MA, Ferro M, et al. Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome. Mol Cell Proteomics. 2004;3:675–691.
  • Komatsu S, Konishi H, Hashimoto M. The proteomics of plant cell membranes. J Exp Bot. 2007;58:103–112.
  • Boorstein WR, Ziegelhoffer T, Craig EA. Molecular evolution of the HSP70 multigene family. J Mol Evol. 1994;38:1–17.
  • Hartl FU. Molecular chaperones in cellular protein folding. Nature. 1996;381:571–580.
  • Rüdiger S, Buchberger A, Bukau B. Interaction of Hsp70 chaperones with 4 substrates. Nature Struct Biol. 1997;4:342–349.
  • Portis AR Jr. Rubisco activase. Biochim Biophys Acta. 1990;1015:15–28.
  • Cren M, Hirel B. Glutamine synthetase in higher plants: regulation of gene and protein expression from the organ to the cell. Plant Cell Physiol. 1999;40:1187–1193.
  • McNally SF, Hirel B, Gadal P, Mann AF, Stewart GR. Glutamine synthetase in higher plants: evidence for a specific isoform content related to their possible physiological role and their compartmentation within the leaf. Plant Physiol. 1983;72:22–25.
  • Robinson C, Klösgen RB. Targeting of proteins into and across the thylakoid membrane: a multitude of mechanisms. Plant Mol Biol. 1994;26:15–24.
  • Cerff R, Chambers SE. Subunit structure of higher plant glyceraldehyde-3-phosphate dehydrogenases. J Biol Chem. 1979;254:6094–6098.
  • Cornish-Bowden A. Critical values for testing the significance of amino acid composition indexes. Anal Biochem. 1980;105:233–238.
  • Cerff R. Quaternary structure of higher plant glyceraldehyde-3-phosphate dehydrogenases. Eur J Biochem. 1979;94:243–247.
  • Hassan HM. Determination of microbial damage caused by oxygen free radicals, and the protective role of superoxide dismutase. Methods Enzymol. 1984;105:405–412.
  • Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A. 1993;90:1629–1933.
  • Fridovich I. Superoxide dismutases. Adv Enzymol. 1986;58:61–97.
  • Perl-Treves R, Galun E. The tomato Cu/Zn superoxide dismutase genes are developmentally regulated and respond to light and stress. Plant Mol Biol. 1991;17:745–760.