316
Views
4
CrossRef citations to date
0
Altmetric
Review

Immunotherapy of Multiple Myeloma: Promise and Challenges

Pages 343-371 | Published online: 09 Sep 2021

References

  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. doi:10.3322/caac.21654
  • Ailawadhi S, Parikh K, Abouzaid S, et al. Racial disparities in treatment patterns and outcomes among patients with multiple myeloma: a SEER-Medicare analysis. Blood Advances. 2019;3(20):2986–2994. doi:10.1182/bloodadvances.2019000308
  • Waxman AJ, Mink PJ, Devesa SS, et al. Racial disparities in incidence and outcome in multiple myeloma: a population-based study. Blood. 2010;116(25):5501–5506. doi:10.1182/blood-2010-07-298760
  • Kyle RA, Therneau TM, Rajkumar SV, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med. 2002;346(8):564–569. doi:10.1056/NEJMoa01133202
  • Yavorkovsky LL. Smoldering multiple myeloma 40 years later: a story of unintended disease. Expert Rev Hematol. 2021;14(2):149–153. doi:10.1080/17474086.2021.1875815
  • Kyle RA, Remstein ED, Therneau TM, et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Engl J Med. 2007;356(25):2582–2590. doi:10.1056/NEJMoa070389
  • Kumar SK, Callander NS, Adekola K, et al. Multiple Myeloma, Version 3.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2020;18(12):1685–1717. doi:10.6004/jnccn.2020.0057
  • Chan HS, Chen CI, Reece DE. Current review on high-risk multiple myeloma. Curr Hematol Malig Rep. 2017;12:96–108. doi:10.1007/s11899-017-0368-z
  • Poczta A, Rogalska A, Marczak A. Treatment of multiple myeloma and the role of melphalan in the era of modern therapies-current research and clinical approaches. J Clin Med. 2021;10(9):1841. doi:10.3390/jcm10091841
  • Myeloma - Cancer stat facts; 2021. Available from: https://seer.cancer.gov/statfacts/html/mulmy.html. Accessed August 27, 2021.
  • Nandakumar B, Binder M, Dispenzieri A, et al. Continued improvement in survival in multiple myeloma (MM) including high-risk patients. J Clin Oncol. 2019;37(Supplement 15):8039. doi:10.1200/JCO.2019.37.15_suppl.8039
  • Braunstein M, Weltz J, Davies F. A new decade: novel immunotherapies on the horizon for relapsed/refractory multiple myeloma. Expert Rev Hematol. 2021;14(4):377–389. doi:10.1080/17474086.2021.1909469
  • Esfahani K, Roudaia L, Buhlaiga N, et al. A review of cancer immunotherapy: from the past, to the present, to the future. Curr Oncol. 2020;27(Suppl 2):S87–s97. doi:10.3747/co.27.5223
  • Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20(11):651–668. doi:10.1038/s41577-020-0306-5
  • Tan S, Li D, Zhu X. Cancer immunotherapy: pros, cons and beyond. Biomed Pharmacother. 2020;124:109821. doi:10.1016/j.biopha.2020.109821
  • Jiao Y, Yi M, Xu L, et al. CD38: targeted therapy in multiple myeloma and therapeutic potential for solid cancers. Expert Opin Investig Drugs. 2020;29(11):1295–1308. doi:10.1080/13543784.2020.181425
  • Deaglio S, Morra M, Mallone R, et al. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J Immunol. 1998;160(1):395–402.
  • Aarhus R, Graeff RM, Dickey DM, et al. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem. 1995;270(51):30327–30333. doi:10.1074/jbc.270.51.30327
  • Laubach JP, Richardson PG. CD38-targeted immunochemotherapy in refractory multiple myeloma: a new horizon. Clin Cancer Res. 2015;21(12):2660–2662. doi:10.1158/1078-0432.ccr-14-3190
  • van de Donk N. Immunomodulatory effects of CD38-targeting antibodies. Immunol Lett. 2018;199:16–22. doi:10.1016/j.imlet.2018.04.005
  • Palumbo A, Chanan-Khan A, Weisel K, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375(8):754–766. doi:10.1056/NEJMoa1606038
  • Dimopoulos MA, Oriol A, Nahi H, et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375(14):1319–1331. doi:10.1056/NEJMoa1607751
  • Moreau P, Attal M, Hulin C, et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, Phase 3 study. Lancet. 2019;394:29–38. doi:10.1016/s0140-6736(19)31240-1
  • Durie BGM, Kumar SK, Usmani SZ, et al. Daratumumab-lenalidomide-dexamethasone vs standard-of-care regimens: efficacy in transplant-ineligible untreated myeloma. Am J Hematol. 2020;95(12):1486–1494. doi:10.1002/ajh.25963
  • Chari A, Suvannasankha A, Fay JW, et al. Daratumumab plus pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. Blood. 2017;130(8):974–981. doi:10.1182/blood-2017-05-785246
  • Dimopoulos M, Quach H, Mateos MV, et al. Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for patients with relapsed or refractory multiple myeloma (CANDOR): results from a randomised, multicentre, open-label, phase 3 study. Lancet. 2020;396(10245):186–197. doi:10.1016/s0140-6736(20)30734-0
  • Janssen Pharmaceutical Co. U.S. FDA approves new DARZALEX® (daratumumab)-based combination regimen for patients with relapsed/refractory multiple myeloma [press release]. Horsham, PA; 2020. Available from:https://www.prnewswire.com/news-releases/us-fda-approves-new-darzalex-daratumumab-based-combination-regimen-for-patients-with-relapsedrefractory-multiple-myeloma-301116063.html. Accessed June 30, 2021.
  • Musto P, La Rocca F. Monoclonal antibodies in relapsed/refractory myeloma: updated evidence from clinical trials, real life studies and meta-analyses. Expert Rev Hematol. 2020;13(4):331–349. doi:10.1080/17474086.2020.1740084
  • Sanchez L, Richter J, Cho HJ, et al. Subcutaneous daratumumab and hyaluronidase-fihj in newly diagnosed or relapsed/refractory multiple myeloma. Ther Adv Hematol. 2021;12:2040620720987075. doi:10.1177/2040620720987075
  • Usmani SZ, Nahi H, Mateos MV, et al. Subcutaneous delivery of daratumumab in relapsed or refractory multiple myeloma. Blood. 2019;134(8):668–677. doi:10.1182/blood.2019000667
  • U.S. Food and Drug Administration. FDA approves daratumumab and hyaluronidase-fihj for multiple myeloma [press release]. Washington, DC; 2020. Available from:https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-daratumumab-and-hyaluronidase-fihj-multiple-myeloma. Accessed July 29, 2020.
  • Nooka AK, Gleason C, Sargeant MO, et al. Managing infusion reactions to new monoclonal antibodies in multiple myeloma: daratumumab and elotuzumab. J Oncol Pract. 2018;14(7):414–422. doi:10.1200/jop.18.00143
  • Chapuy CI, Nicholson RT, Aguad MD, et al. Resolving the daratumumab interference with blood compatibility testing. Transfusion. 2015;55(6 Pt 2):1545–1554. doi:10.1111/trf.13069
  • Boyle EM, Petillon MO, Herbaux C, et al. Daratumumab in combination with dexamethasone in resistant or refractory multiple myeloma: primary results of the IFM2014-04 trial. Blood. 2016;128(22):2138. doi:10.1182/blood.V128.22.2138.2138
  • Roussel M, Moreau P, Hebraud B, et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab for transplantation-eligible patients with newly diagnosed multiple myeloma (CASSIOPEIA): health-related quality of life outcomes of a randomised, open-label, phase 3 trial. Lancet Haematol. 2020;7(12):e874–e883. doi:10.1016/s2352-3026(20)30356-2
  • Chari A, Munder M, Weisel K, et al. Evaluation of cardiac repolarization in the randomized phase 2 study of intermediate- or high-risk smoldering multiple myeloma patients treated with daratumumab monotherapy. Adv Ther. 2021;38(2):1328–1341. doi:10.1007/s12325-020-01601-w
  • Leleu X, Beksac M, Chou T, et al. Efficacy and safety of weekly carfilzomib (70 mg/m(2)), dexamethasone, and daratumumab (KdD70) is comparable to twice-weekly KdD56 while being a more convenient dosing option: a cross-study comparison of the CANDOR and EQUULEUS studies. Leuk Lymphoma. 2021;62(2):358–367. doi:10.1080/10428194.2020.1832672
  • Usmani SZ, Quach H, Mateos MV, et al. Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for the treatment of patients with relapsed or refractory multiple myeloma (RRMM): primary analysis results from the randomized, open-label, phase 3 study CANDOR (NCT03158688). Blood. 2019;134:LBA–6. doi:10.1182/blood-2019-132629
  • Weisel K, Spencer A, Lentzsch S, et al. Daratumumab, bortezomib, and dexamethasone in relapsed or refractory multiple myeloma: subgroup analysis of CASTOR based on cytogenetic risk. J Hematol Oncol. 2020;13(1):115. doi:10.1186/s13045-020-00948-5
  • Rajkumar SV, Voorhees PM, Goldschmidt H, et al. Randomized, open-label, phase 3 study of subcutaneous daratumumab (DARA SC) versus active monitoring in patients (pts) with high-risk smoldering multiple myeloma (SMM): AQUILA. J Clin Oncol. 2018;36(15):2. doi:10.1200/JCO.2018.36.15_suppl.TPS8062
  • Dimopoulos MA, San-Miguel J, Belch A, et al. Daratumumab plus lenalidomide and dexamethasone versus lenalidomide and dexamethasone in relapsed or refractory multiple myeloma: updated analysis of POLLUX. Haematologica. 2018. doi:10.3324/haematol.2018.194282
  • Plesner T, Dimopoulos MA, Oriol A, et al. Health-related quality of life in patients with relapsed or refractory multiple myeloma: treatment with daratumumab, lenalidomide, and dexamethasone in the phase 3 POLLUX trial. Br J Haematol. 2021;194:132–139. doi:10.1111/bjh.17435
  • Sonneveld P, Terpos E, Dimopoulos MA, et al. Pomalidomide and dexamethasone (pom-dex) with or without daratumumab (DARA) in patients (pts) with relapsed or refractory multiple myeloma (RRMM): a multicenter, randomized, phase 3 study (APOLLO). J Clin Oncol. 2018;36(15):1. doi:10.1200/JCO.2018.36.15_suppl.TPS8059
  • Perrot A, Facon T, Plesner T, et al. Health-related quality of life in transplant-ineligible patients with newly diagnosed multiple myeloma: findings from the phase III MAIA trial. J Clin Oncol. 2021;39(3):227–237. doi:10.1200/jco.20.01370
  • Facon T, Kumar S, Plesner T, et al. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. N Engl J Med. 2019;380(22):2104–2115. doi:10.1056/NEJMoa1817249
  • Usmani SZ, Mateos MV, Hungria V, et al. Greater treatment satisfaction in patients receiving daratumumab subcutaneous vs. intravenous for relapsed or refractory multiple myeloma: COLUMBA clinical trial results. J Cancer Res Clin Oncol. 2021;147:619–631. doi:10.1007/s00432-020-03365-w
  • Iida S, Ishikawa T, Min CK, et al. Subcutaneous daratumumab in Asian patients with heavily pretreated multiple myeloma: subgroup analyses of the noninferiority, phase 3 COLUMBA study. Ann Hematol. 2021;100(4):1065–1077. doi:10.1007/s00277-021-04405-2
  • Mateos MV, Usmani SZ. Subcutaneous versus intravenous daratumumab in multiple myeloma - Authors’ reply. Lancet Haematol. 2020;7(8):e559. doi:10.1016/s2352-3026(20)30188-5
  • Moreno L, Perez C, Zabaleta A, et al. The mechanism of action of the anti-CD38 monoclonal antibody isatuximab in multiple myeloma. Clin Cancer Res. 2019;25(10):3176–3187. doi:10.1158/1078-0432.Ccr-18-1597
  • Dhillon S. Isatuximab: first approval. Drugs. 2020;80(9):905–912. doi:10.1007/s40265-020-01311-1
  • Attal M, Richardson PG, Rajkumar SV, et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. Lancet. 2019;394(10214):2096–2107. doi:10.1016/s0140-6736(19)32556-5
  • Richter J, Sanchez L, Thibaud S. Therapeutic potential of isatuximab in the treatment of multiple myeloma: evidence to date. Semin Oncol. 2020;47(2–3):155–164. doi:10.1053/j.seminoncol.2020.04.004
  • U.S. Food and Drug Administration. FDA approves isatuximab-irfc for multiple myeloma [press release]. Washington, DC; 2021. Available from:https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-isatuximab-irfc-multiple-myeloma. Accessed April 15, 2021.
  • Moreau P, Dimopoulos MA, Yong K, et al. Isatuximab plus carfilzomib/dexamethasone versus carfilzomib/dexamethasone in patients with relapsed/refractory multiple myeloma: IKEMA Phase III study design. Future Oncol. 2020;16(2):4347–4358. doi:10.2217/fon-2019-0431
  • Martin T, Mikhael J, Hajek R, et al. Depth of response and response kinetics of isatuximab plus carfilzomib and dexamethasone in relapsed multiple myeloma: ikema interim analysis. Blood. 2020;136(Supplement 1):7–8. doi:10.1182/blood-2020-137681
  • Bringhen S, Pour L, Vorobyev V, et al. Isatuximab plus pomalidomide and dexamethasone in patients with relapsed/refractory multiple myeloma according to prior lines of treatment and refractory status: ICARIA-MM subgroup analysis. Leuk Res. 2021;104:106576. doi:10.1016/j.leukres.2021.106576
  • Richardson PG, Attal M, Campana F, et al. Isatuximab plus pomalidomide/dexamethasone versus pomalidomide/dexamethasone in relapsed/refractory multiple myeloma: ICARIA Phase III study design. Future Oncol. 2018;14(11):1035–1047. doi:10.2217/fon-2017-0616
  • Richardson PG, Attal M, San Miguel J, et al. A phase III, randomized, open-label study of isatuximab (SAR650984) plus pomalidomide (Pom) and dexamethasone (Dex) versus Pom and Dex in relapsed/refractory multiple myeloma. J Clin Oncol. 2017;35 Supplement 15:TPS8057. doi:10.1200/JCO.2017.35.15_suppl.TPS8057
  • Harrison SJ, Perrot A, Alegre A, et al. Subgroup analysis of ICARIA-MM study in relapsed/refractory multiple myeloma patients with high-risk cytogenetics. Br J Haematol. 2021;184:120–131. doi:10.1111/bjh.17499
  • Chari A, Richter JR, Shah N, et al. Phase I-b study of isatuximab + carfilzomib in relapsed and refractory multiple myeloma (RRMM). J Clin Oncol. 2018;36(Supplement 15):8014. doi:10.1200/JCO.2018.36.15_suppl
  • Thai HT, Gaudel-Dedieu N, Cerou M, et al. Model based approach to evaluate isatuximab monthly dosing regimen in relapsed/refractory multiple myeloma patients. Blood. 2020;136(Supplement 1):44. doi:10.1182/blood-2020-139358
  • Manasanch EE, Jagannath S, Lee HC, et al. A multicenter phase II single arm trial of isatuximab in patients with high risk smoldering multiple myeloma (HRSMM). Blood. 2019;134(Supplement 1):3116. doi:10.1182/blood-2019-123205
  • Martin III TG, Mannis GN, Chari A, et al. Phase Ib study of isatuximab and carfilzomib in relapse and refractory multiple myeloma. Blood. 2016;128(22):2111. doi:10.1182/blood.V128.22.2111.2111
  • Orlowski RZ, Goldschmidt H, Cavo M, et al. Phase III (IMROZ) study design: isatuximab plus bortezomib (V), lenalidomide (R), and dexamethasone (d) vs VRd in transplant-ineligible patients (pts) with newly diagnosed multiple myeloma (NDMM). J Clin Oncol. 2018;36 Supplement 15:TPS8055. doi:10.1200/JCO.2018.36.15_suppl.TPS805
  • Martin T, Richter J, Vij R, et al. A dose finding phase II trial of isatuximab (SAR650984, anti-CD38 mAb) as a single agent in relapsed/refractory multiple myeloma. Blood. 2015;126(23):509. doi:10.1182/blood.V126.23.509.509
  • Martin T, Baz R, Benson DM, et al. A Phase 1b study of isatuximab plus lenalidomide and dexamethasone for relapsed/refractory multiple myeloma. Blood. 2017;129(25):3294–3303. doi:10.1182/blood-2016-09-740787
  • Mikhael J, Richardson PG, Usmani SZ, et al. A phase Ib study of isatuximab in combination with pomalidomide (Pom) and dexamethasone (Dex) in relapsed/refractory multiple myeloma (RRMM). J Clin Oncol. 2017;35(Supplement 15):8038. doi:10.1200/JCO.2018.36.15_suppl.8038
  • Mikhael J, Richardson PG, Usmani SZ, et al. Final results of a phase Ib study of isatuximab (ISA) plus pomalidomide (Pom) and dexamethasone (dex) in relapsed/refractory multiple myeloma (RRMM). J Clin Oncol. 2018;36:8038. doi:10.1200/JCO.2018.36.15_suppl.8038
  • Mikhael J, Richardson P, Usmani SZ, et al. A phase 1b study of isatuximab plus pomalidomide/dexamethasone in relapsed/refractory multiple myeloma. Blood. 2019;134(2):123–133. doi:10.1182/blood-2019-02-895193
  • Usmani SZ, Karanes C, Bensinger WI, et al. Final results of a phase 1b study of isatuximab short-duration fixed-volume infusion combination therapy for relapsed/refractory multiple myeloma. Leukemia. 2021. doi:10.1038/s41375-021-01262-w
  • Grosicki S, Bednarczyk M, Barchnicka A, et al. Elotuzumab in the treatment of relapsed and refractory multiple myeloma. Future Oncol. 2021;17(13):1581–1591. doi:10.2217/fon-2020-1088
  • Gavriatopoulou M, Terpos E, Kastritis E, et al. Efficacy and safety of elotuzumab for the treatment of multiple myeloma. Expert Opin Drug Saf. 2017;16(2):237–245. doi:10.1080/14740338.2017.1279603
  • Collins SM, Bakan CE, Swartzel GD, et al. Elotuzumab directly enhances NK cell cytotoxicity against myeloma via CS1 ligation: evidence for augmented NK cell function complementing ADCC. Cancer Immunol Immunother. 2013;62(12):1841–1849. doi:10.1007/s00262-013-1493-8
  • Hsi ED, Steinle R, Balasa B, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res. 2008;14(9):2775–2784. doi:10.1158/1078-0432.ccr-07-4246
  • Markham A. Elotuzumab: first global approval. Drugs. 2016;76(3):397–403. doi:10.1007/s40265-016-0540-0
  • Zonder JA, Mohrbacher AF, Singhal S, et al. A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood. 2012;120(3):552–559. doi:10.1182/blood-2011-06-360552
  • Lonial S, Dimopoulos M, Palumbo A, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med. 2015;373(7):621–631. doi:10.1056/NEJMoa1505654
  • Dimopoulos MA, Lonial S, Betts KA, et al. Elotuzumab plus lenalidomide and dexamethasone in relapsed/refractory multiple myeloma: extended 4-year follow-up and analysis of relative progression-free survival from the randomized ELOQUENT-2 trial. Cancer. 2018;124(20):4032–4043. doi:10.1002/cncr.31680
  • Dimopoulos MA, Dytfeld D, Grosicki S, et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N Engl J Med. 2018;379(19):1811–1822. doi:10.1056/NEJMoa1805762
  • Trudel S, Moreau P, Touzeau C. Update on elotuzumab for the treatment of relapsed/refractory multiple myeloma: patients’ selection and perspective. Onco Targets Ther. 2019;12:5813–5822. doi:10.2147/ott.S174640
  • Usmani SZ, Hoering A, Ailawadhi S, et al. Bortezomib, lenalidomide, and dexamethasone with or without elotuzumab in patients with untreated, high-risk multiple myeloma (SWOG-1211): primary analysis of a randomised, phase 2 trial. Lancet Haematol. 2021;8(1):e45–e54. doi:10.1016/s2352-3026(20)30354-9
  • Jakubowiak AJ, Benson DM, Bensinger W, et al. Phase I trial of anti-CS1 monoclonal antibody elotuzumab in combination with bortezomib in the treatment of relapsed/refractory multiple myeloma. J Clin Oncol. 2012;30(16):1960–1965. doi:10.1200/jco.2011.37.7069
  • Silvennoinen RH, Nahi H, Anttila P, et al. Carfilzomib, elotuzumab and dexamethasone for relapsed or refractory myeloma patients. Blood. 2020;136(Supplement 1):20. doi:10.1182/blood-2020-138447
  • Yee AJ, Laubach J, Campagnaro EL, et al. A phase II study of elotuzumab in combination with pomalidomide, bortezomib, and dexamethasone in relapsed and refractory multiple myeloma. J Clin Oncol. 2018;36(Supplement 15):8012. doi:10.1200/JCO.2018.36.15_suppl.8012
  • Berenson J, Manges R, Badarinath S, et al. A phase 2 safety study of accelerated elotuzumab infusion, over less than 1 h, in combination with lenalidomide and dexamethasone, in patients with multiple myeloma. Am J Hematol. 2017;92(5):460–466. doi:10.1002/ajh.24687
  • Jakubowiak A, Offidani M, Pegourie B, et al. Randomized phase 2 study: elotuzumab plus bortezomib/dexamethasone vs bortezomib/dexamethasone for relapsed/refractory MM. Blood. 2016;127(23):2833–2840. doi:10.1182/blood-2016-01-694604
  • Jagannath S, Laubach J, Wong E, et al. Elotuzumab monotherapy in patients with smouldering multiple myeloma: a phase 2 study. Br J Haematol. 2018;182:495–503. doi:10.1111/bjh.15384
  • Passey C, Darbenzio R, Jou YM, et al. Effects of elotuzumab on QT interval and cardiac safety in patients with multiple myeloma. Cancer Chemother Pharmacol. 2016;78(6):1237–1244. doi:10.1007/s00280-016-3182-8
  • Salwender H, Bertsch U, Weisel K, et al. Rationale and design of the German-speaking myeloma multicenter group (GMMG) trial HD6: a randomized phase III trial on the effect of elotuzumab in VRD induction/consolidation and lenalidomide maintenance in patients with newly diagnosed myeloma. BMC Cancer. 2019;19(1):504. doi:10.1186/s12885-019-5600-x
  • Usmani SZ, Ailawadhi S, Sexton R, et al. Primary analysis of the randomized phase II trial of bortezomib, lenalidomide, dexamthasone with/without elotuzumab for newly diagnosed, high-risk multiple myeloma (SWOG-1211). J Clin Oncol. 2020;38 Supplement 15:8507. doi:10.1200/JCO.2020.38.15_suppl.8507
  • Passey C, Mora J, Dodge R, et al. An integrated assessment of the effects of immunogenicity on the pharmacokinetics, safety, and efficacy of elotuzumab. Aaps j. 2017;19(2):557–567. doi:10.1208/s12248-016-0033-9
  • Taniwaki M, Yoshida M, Matsumoto Y, et al. Elotuzumab for the treatment of relapsed or refractory multiple myeloma, with special reference to its modes of action and SLAMF7 signaling. Mediterr J Hematol Infect Dis. 2018;10(1):e2018014. doi:10.4084/mjhid.2018.014
  • Dimopoulos MA, Lonial S, White D, et al. Elotuzumab plus lenalidomide/dexamethasone for relapsed or refractory multiple myeloma: ELOQUENT-2 follow-up and post-hoc analyses on progression-free survival and tumour growth. Br J Haematol. 2017;178(6):896–905. doi:10.1111/bjh.14787
  • Dimopoulos MA, Lonial S, White D, et al. Elotuzumab, lenalidomide, and dexamethasone in RRMM: final overall survival results from the phase 3 randomized ELOQUENT-2 study. Blood Cancer J. 2020;10(9):91. doi:10.1038/s41408-020-00357-4
  • Richardson PG, Jagannath S, Moreau P, et al. Elotuzumab in combination with lenalidomide and dexamethasone in patients with relapsed multiple myeloma: final phase 2 results from the randomised, open-label, phase 1b-2 dose-escalation study. Lancet Haematol. 2015;2(12):e516–527. doi:10.1016/s2352-3026(15)00197-0
  • Lonial S, Richardson PG, Reece DE, et al. CheckMate 602: an open-label, randomized, phase 3 trial of combinations of nivolumab, elotuzumab, pomalidomide and dexamethasone in relapsed/refractory multiple myeloma. J Clin Oncol. 2017;35(15):8052. doi:10.1200/JCO.2017.35.15_suppl.TPS8052
  • Yu J, Song Y, Tian W. How to select IgG subclasses in developing anti-tumor therapeutic antibodies. J Hematol Oncol. 2020;13(1):45. doi:10.1186/s13045-020-00876-4
  • Pereira NA, Chan KF, Lin PC, et al. The “less-is-more” in therapeutic antibodies: afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. mAbs. 2018;10(5):693–711. doi:10.1080/19420862.2018.1466767
  • Pan J, Sun Y, Zhang N, et al. Characteristics of BAFF and APRIL factor expression in multiple myeloma and clinical significance. Oncol Lett. 2017;14(3):2657–2662. doi:10.3892/ol.2017.6528
  • Raje NS, Moreau P, Terpos E, et al. Phase 2 study of tabalumab, a human anti-B-cell activating factor antibody, with bortezomib and dexamethasone in patients with previously treated multiple myeloma. Br J Haematol. 2017;176(5):783–795. doi:10.1111/bjh.14483
  • Rossi J-F, Moreaux J, Hose D, et al. Atacicept in relapsed/refractory multiple myeloma or active Waldenström’s macroglobulinemia: a phase I study. Br J Cancer. 2009;101(7):1051–1058. doi:10.1038/sj.bjc.6605241
  • Laabi Y, Gras M-P, Brouet J-C, et al. The BCMA gene, preferentially expressed during B lymphoid maturation, is bidirectionally transcribed. Nucleic Acids Res. 1994;22(7):1147–1154. doi:10.1093/nar/22.7.1147
  • Kozlow EJ, Wilson GL, Fox CH, et al. Subtractive cDNA cloning of a novel member of the Ig gene superfamily expressed at high levels in activated B lymphocytes. Blood. 1993;81(2):454–461. doi:10.1182/blood.V81.2.454.454
  • Zhou LJ, Schwarting R, Smith HM, et al. A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily. J Immunol. 1992;149(2):735–742.
  • Laabi Y, Gras MP, Carbonnel F, et al. A new gene, BCM, on chromosome 16 is fused to the interleukin 2 gene by a t(4;16)(q26;p13) translocation in a malignant T cell lymphoma. EMBO J. 1992;11(11):3897–3904. doi:10.1002/j.1460-2075.1992.tb05482.x
  • Cho SF, Anderson KC, Tai YT. Targeting B cell maturation antigen (BCMA) in multiple myeloma: potential uses of BCMA-based immunotherapy. Front Immunol. 2018;9:1821. doi:10.3389/fimmu.2018.01821
  • Cho SF, Lin L, Xing L, et al. BCMA-targeting therapy: driving a new era of immunotherapy in multiple myeloma. Cancers. 2020;12(6):1473. doi:10.3390/cancers12061473
  • Fang Y, Hou J. Immunotherapeutic strategies targeting B cell maturation antigen in multiple myeloma. Mil Med Res. 2021;8(1):9. doi:10.1186/s40779-021-00302-x
  • Shah N, Chari A, Scott E, et al. B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia. 2020;34(4):985–1005. doi:10.1038/s41375-020-0734-z
  • Sanchez E, Tanenbaum EJ, Patil S, et al. The clinical significance of B-cell maturation antigen as a therapeutic target and biomarker. Expert Rev Mol Diagn. 2018;18(4):319–329. doi:10.1080/14737159.2018.1448269
  • Laurent SA, Hoffmann FS, Kuhn PH, et al. Gamma-secretase directly sheds the survival receptor BCMA from plasma cells. Nat Commun. 2015;6:7333. doi:10.1038/ncomms8333
  • Sanchez E, Li M, Kitto A, et al. Serum B-cell maturation antigen is elevated in multiple myeloma and correlates with disease status and survival. Br J Haematol. 2012;158(6):727–738. doi:10.1111/j.1365-2141.2012.09241.x
  • Pont MJ, Hill T, Cole GO, et al. Gamma-secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood. 2019;134(19):1585–1597. doi:10.1182/blood.2019000050
  • Sanchez E, Gillespie A, Tang G, et al. Soluble B-cell maturation antigen mediates tumor-induced immune deficiency in multiple myeloma. Clin Cancer Res. 2016;22(13):3383–3397. doi:10.1158/1078-0432.Ccr-15-2224
  • Lassiter G, Bergeron C, Guedry R, et al. Belantamab mafodotin to treat multiple myeloma: a comprehensive review of disease, drug efficacy and side effects. Curr Oncol. 2021;28(1):640–660. doi:10.3390/curroncol28010063
  • Tai YT, Anderson KC. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy. 2015;7(11):1187–1199. doi:10.2217/imt.15.77
  • Tai YT, Mayes PA, Acharya C, et al. Novel afucosylated anti-B cell maturation antigen-monomethyl auristatin F antibody-drug conjugate (GSK2857916) induces potent and selective anti-multiple myeloma activity. Blood. 2014;123(20):3128–3138. doi:10.1182/blood-2013-10-535088
  • U.S. Food and Drug Administration. FDA granted accelerated approval to belantamab mafodotin-blmf for multiple myeloma [press release]. Washington, DC; 2020. Available from:https://www.fda.gov/drugs/resources-information-approved-drugs/fda-granted-accelerated-approval-belantamab-mafodotin-blmf-multiple-myeloma. Accessed May 5, 2021.
  • Lonial S, Lee HC, Badros A, et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2019;21(2):207–221. doi:10.1016/s1470-2045(19)30788-0
  • Farooq AV, Degli Esposti S, Popat R, et al. Corneal epithelial findings in patients with multiple myeloma treated with antibody-drug conjugate belantamab mafodotin in the pivotal, randomized, DREAMM-2 study. Ophthalmol Ther. 2020;9:889–911. doi:10.1007/s40123-020-00280-8
  • Eaton JS, Miller PE, Mannis MJ, et al. Ocular adverse events associated with antibody-drug conjugates in human clinical trials. J Ocul Pharmacol Ther. 2015;31(10):589–604. doi:10.1089/jop.2015.0064
  • Lee HC, Raje NS, Landgren O, et al. Letter: phase 1 study of the anti-BCMA antibody-drug conjugate AMG 224 in patients with relapsed/refractory multiple myeloma. Leukemia. 2020;35:255–258. doi:10.1038/s41375-020-0834-9
  • Joubert N, Beck A, Dumontet C, et al. Antibody-drug conjugates: the last decade. Pharmaceuticals. 2020;13(9):245. doi:10.3390/ph13090245
  • Pahl A, Lutz C, Hechler T. Amanitins and their development as a payload for antibody-drug conjugates. Drug Discov Today Technol. 2018;30:85–89. doi:10.1016/j.ddtec.2018.08.005
  • Spycher PR, Frei JC, Wehrmuller JE, et al. Overcoming limitations of current antibody-drug conjugates (ADCs) by a novel linker technology. Cancer Res. 2019;79(13):LB–106. doi:10.1158/1538-7445.Am2019-lb-106
  • Figueroa-Vazquez V, Ko J, Breunig C, et al. HDP-101, an anti-BCMA antibody-drug conjugate, safely delivers amanitin to induce cell death in proliferating and resting multiple myeloma cells. Mol Cancer Ther. 2021;20(2):367–378. doi:10.1158/1535-7163.Mct-20-0287
  • Heidelberg Pharma AG FDA allows Heidelberg Pharma to start a phase I/IIa clinical trial with ATAC candidate HDP-101 [press release]. Ladenburg, Germany; 2021. Available from:https://pipelinereview.com/index.php/2021020477353/Antibodies/FDA-Allows-Heidelberg-Pharma-to-Start-A-Phase-I/IIa-Clinical-Trial-with-ATAC-Candidate-HDP-101.html. Accessed: June 25, 2021.
  • Trudel S, Lendvai N, Popat R, et al. Deep and durable responses in patients (pts) with relapsed/refractory multiple myeloma (MM) treated with monotherapy GSK2857916, an antibody drug conjugate against B-cell maturation antigen (BCMA): preliminary results from part 2 of study BMA117159. Blood. 2017;130:741. doi:10.1182/blood.V130.Suppl_1.741.741
  • Popat R, Suvannasankha A, Kapetanakis V, et al. DREAMM-2: assessing efficacy via indirect comparison of single-agent belantamab mafodotin versus selinexor plus dexamethasone combination in anti-CD38 exposed relapsed/refractory multiple myeloma (RRMM). J Clin Oncol. 2020;38 Supplement 15:e20527. doi:10.1200/JCO.2020.38.15_suppl.e20527
  • Richardson PG, Lee HC, Abdallah AO, et al. Single-agent belantamab mafodotin for relapsed/refractory multiple myeloma: analysis of the lyophilised presentation cohort from the pivotal DREAMM-2 study. Blood Cancer J. 2020;10(10):106. doi:10.1038/s41408-020-00369-0
  • Weisel K, Hopkins TG, Fecteau D, et al. DREAMM-3: a phase 3, open-label, randomized study to evaluate the efficacy and safety of belantamab mafodotin (GSK2857916) monotherapy compared with pomalidomide plus low-dose dexamethasone (pom/dex) in participants with relapsed/refractory multiple myeloma (RRMM). Blood. 2019;134 Supplement 1:1900. doi:10.1182/blood-2019-129893
  • Trudel S, Nooka A, Fecteau D, et al. DREAMM 4: a phase I/II single-arm open-label study to explore safety and clinical activity of belantamab mafodotin (GSK2857916) administered in combination with pembrolizumab in patients with relapsed/refractory multiple myeloma (RRMM). Ann Oncol. 2019;30 Supplement 5:V447. doi:10.1093/annonc/mdz251.039
  • Nooka AK, Stockerl-Goldstein K, Quach H, et al. DREAMM-6: safety and tolerability of belantamab mafodotin in combination with bortezomib/dexamethasone in relapsed/refractory multiple myeloma (RRMM). J Clin Oncol. 2020;38 Supplement 15:8502. doi:10.1200/JCO.2020.38.15_suppl.8502
  • Popat R, Nooka A, Stockerl-Goldstein K, et al. DREAMM-6: safety, tolerability and clinical activity of belantamab mafodotin (belamaf) in combination with bortezomib/dexamethasone (bordex) in relapsed/refractory multiple myeloma. Blood. 2020;136(Supplement 1):19–20. doi:10.1182/blood-2020-139332
  • Rifkin RM, Boyd K, Grosicki S, et al. DREAMM-7: a phase III study of the efficacy and safety of belantamab mafodotin (belamaf) with bortezomib, and dexamethasone (B-Vd) in patients with relapsed/refractory multiple myeloma (RRMM). Blood. 2020;136(Supplement 1):53–54. doi:10.1182/blood-2020-139181
  • Trudel S, Davis R, Lewis NM, et al. DREAMM-8: a phase III study of the efficacy and safety of belantamab mafodotin with pomalidomide and dexamethasone (B-Pd) vs pomalidomide plus bortezomib and dexamethasone (PVd) in patients with relapsed/refractory multiple myeloma (RRMM). Blood. 2020;136(Supplement 1):4. doi:10.1182/blood-2020-139785
  • Usmani SZ, Terpos E, Janowski W, et al. DREAMM-9: phase III study of belantamab mafodotin plus VRd versus VRd alone in transplant-ineligible newly diagnosed multiple myeloma (TI NDMM). J Clinical Oncol. 2020;38(15):TPS8556. doi:10.1200/JCO.2020.38.15_suppl.TPS8556
  • Nisonoff A, Rivers MM. Recombination of a mixture of univalent antibody fragments of different specificity. Arch Biochem Biophys. 1961;93:460–462. doi:10.1016/0003-9861(61)90296-x
  • Huang S, van Duijnhoven SMJ, Sijts A, et al. Bispecific antibodies targeting dual tumor-associated antigens in cancer therapy. J Cancer Res Clin Oncol. 2020;146(12):3111–3122. doi:10.1007/s00432-020-03404-6
  • Rader C. Bispecific antibodies in cancer immunotherapy. Curr Opin Biotechnol. 2020;65:9–16. doi:10.1016/j.copbio.2019.11.020
  • Wang Q, Chen Y, Park J, et al. Design and production of bispecific antibodies. Antibodies. 2019;8(3):43. doi:10.3390/antib8030043
  • Spicer BA, Conroy PJ, Law RHP, et al. Perforin-A key (shaped) weapon in the immunological arsenal. Semin Cell Dev Biol. 2017;72:117–123. doi:10.1016/j.semcdb.2017.07.033
  • Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15(6):388–400. doi:10.1038/nri3839
  • Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 2009;69(12):4941–4944. doi:10.1158/0008-5472.Can-09-0547
  • Mandikian D, Takahashi N, Lo AA, et al. Relative target affinities of T-cell-dependent bispecific antibodies determine biodistribution in a solid tumor mouse model. Mol Cancer Ther. 2018;17(4):776–785. doi:10.1158/1535-7163.Mct-17-0657
  • Mazor Y, Sachsenmeier KF, Yang C, et al. Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence. Sci Rep. 2017;7:40098. doi:10.1038/srep40098
  • Velders MP, van Rhijn CM, Oskam E, et al. The impact of antigen density and antibody affinity on antibody-dependent cellular cytotoxicity: relevance for immunotherapy of carcinomas. Br J Cancer. 1998;78(4):478–483. doi:10.1038/bjc.1998.518
  • Jen EY, Xu Q, Schetter A, et al. FDA approval: blinatumomab for patients with B-cell precursor acute lymphoblastic leukemia in morphologic remission with minimal residual disease. Clin Cancer Res. 2019;25(2):473–477. doi:10.1158/1078-0432.Ccr-18-2337
  • Sanford M. Blinatumomab: first global approval. Drugs. 2015;75(3):321–327. doi:10.1007/s40265-015-0356-3
  • Haas KM, Tedder TF. Role of the CD19 and CD21/35 receptor complex in innate immunity, host defense and autoimmunity. Adv Exp Med Biol. 2005;560:125–139. doi:10.1007/0-387-24180-9_16
  • Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol. 2012;1(1):36. doi:10.1186/2162-3619-1-36
  • Nerreter T, Letschert S, Gotz R, et al. Super-resolution microscopy reveals ultra-low CD19 expression on myeloma cells that triggers elimination by CD19 CAR-T. Nat Commun. 2019;10(1):3137. doi:10.1038/s41467-019-10948-w
  • Abramson HN. B-cell maturation antigen (BCMA) as a target for new drug development in relapsed and/or refractory multiple myeloma. Int J Mol Sci. 2020;21(15):5192. doi:10.3390/ijms21155192
  • Caraccio C, Krishna S, Phillips DJ, et al. Bispecific antibodies for multiple myeloma: a review of targets, drugs, clinical trials, and future directions. Front Immunol. 2020;11:501. doi:10.3389/fimmu.2020.00501
  • Martino M, Paviglianiti A. An update on B-cell maturation antigen-targeted therapies in multiple myeloma. Expert Opin Biol Ther. 2021;1–10. doi:10.1080/14712598.2021.1872540
  • Sanchez L, Dardac A, Madduri D, et al. B-cell maturation antigen (BCMA) in multiple myeloma: the new frontier of targeted therapies. Ther Adv Hematol. 2021;12:2040620721989585. doi:10.1177/2040620721989585
  • Topp MS, Duell J, Zugmaier G, et al. Anti-B-cell maturation antigen BiTE molecule AMG 420 induces responses in multiple myeloma. J Clin Oncol. 2020;38(8):775–783. doi:10.1200/jco.19.02657
  • Cho SF, Lin L, Xing L, et al. The immunomodulatory drugs lenalidomide and pomalidomide enhance the potency of AMG 701 in multiple myeloma preclinical models. Blood Advances. 2020;4(17):4195–4207. doi:10.1182/bloodadvances.2020002524
  • Harrison SJ, Minnema MC, Lee HC, et al. A phase 1 first in human (FIH) study of AMG 701, an anti-B-cell maturation antigen (BCMA) half-life extended (HLE) BiTE (R) (bispecific T-cell engager) molecule, in relapsed/refractory (RR) multiple myeloma (MM). Blood. 2020;136 Supplement 1:28–29. doi:10.1182/blood-2020-134063
  • Amgen Inc. Amgen reports fourth quarter and full year 2020 financial results [press release]. Thousand Oaks, CA; 2021. Available from:https://investors.amgen.com/news-releases/news-release-details/amgen-reports-fourth-quarter-and-full-year-2020-financial/. Accessed May 21, 2021.
  • Lancman G, Richter J, Chari A. Bispecifics, trispecifics, and other novel immune treatments in myeloma. Hematology Am Soc Hematol Educ Program. 2020;2020(1):264–271. doi:10.1182/hematology.2020000110
  • Cooper D, Madduri D, Lentzsch S, et al. Safety and preliminary clinical activity of REGN5458, an anti-BCMA x anti-CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma. Blood. 2019;134:3176. doi:10.1182/blood-2019-126818
  • DiLillo DJ, Olson K, Mohrs K, et al. A BCMAxCD3 bispecific T cell-engaging antibody demonstrates robust antitumor efficacy similar to that of anti-BCMA CAR T cells. Blood Advances. 2021;5(5):1291–1304. doi:10.1182/bloodadvances.2020002736
  • Girgis S, Shetty S, Jiao T, et al. Exploratory pharmacokinetic/pharmacodynamic and tolerability study of BCMAxCD3 in cynomolgus monkeys. Blood. 2016;128:5668. doi:10.1182/blood.V128.22.5668.5668
  • Pillarisetti K, Powers G, Luistro L, et al. Teclistamab is an active T cell-redirecting bispecific antibody against B-cell maturation antigen for multiple myeloma. Blood Advances. 2020;4(18):4538–4549. doi:10.1182/bloodadvances.2020002393
  • Garfall AL, Usmani SZ, Mateos MV, et al. Updated phase 1 results of teclistamab, a B-cell maturation antigen (BCMA) x CD3 bispecific antibody, in relapsed and/or refractory multiple myeloma (RRMM). Blood. 2020;136:4. doi:10.1182/blood-2020-138831
  • Usmani SZ, Mateos MV, Nahi H, et al. Phase I study of teclistamab, a humanized B-cell maturation antigen (BCMA) x CD3 bispecific antibody, in relapsed/refractory multiple myeloma (R/R MM). J Clin Oncol. 2020;38(15Supplement):100. doi:10.1200/JCO.2020.38.15_suppl.100
  • Krishnan AY, Garfall AL, Mateos MV, et al. Updated phase 1 results of teclistamab, a B-cell maturation antigen (BCMA) × CD3 bispecific antibody, in relapsed/refractory multiple myeloma (MM). J Clin Oncol. 2021;39(15Supplement):8007. doi:10.1200/JCO.2021.39.15_suppl.8007
  • Suzuki S, Annaka H, Konno S, et al. Engineering the hinge region of human IgG1 Fc-fused bispecific antibodies to improve fragmentation resistance. Sci Rep. 2018;8(1):17253. doi:10.1038/s41598-018-35489-y
  • Lesokhin AM, Raje N, Gasparetto CJ, et al. A phase I, open-label study to evaluate the safety, pharmacokinetic, pharmacodynamic, and clinical activity of PF-06863135, a B-cell maturation antigen/CD3 bispecific antibody, in patients with relapsed/refractory advanced multiple myeloma. Blood. 2018;132 Supplement 1:3229. doi:10.1182/blood-2018-99-110427
  • Raje NS, Jakubowiak A, Gasparetto C, et al. Safety, clinical activity, pharmacokinetics, and pharmacodynamics from a phase I study of PF-06863135, a B-cell maturation antigen (BCMA)–CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM). Blood. 2019;128:1869. doi:10.1182/blood-2019-121805
  • Lesokhin AM, Levy MY, Dalovisio AP, et al. Preliminary safety, efficacy, pharmacokinetics, and pharmacodynamics of subcutaneously (SC) administered PF-06863135, a B-cell maturation antigen (BCMA)-CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM). Blood. 2020;136 Supplement 1:8–9. doi:10.1182/blood-2020-133355
  • Bahlis NJ, Raje NS, Costello C, et al. Efficacy and safety of elranatamab (PF-06863135), a B-cell maturation antigen (BCMA)-CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MM). J Clin Oncol. 2021;39 15 suppl:8006. doi:10.1200/JCO.2021.39.15_suppl.8006
  • Pfizer, Inc. Pfizer initiates pivotal phase 2 MAGNETISMM-3 trial of BCMA-CD3 bispecific antibody elranatamab (PF-06863135) in multiple myeloma [press release]. New York, NY; 2021. Available from:https://www.pfizer.com/news/press-release/press-release-detail/pfizer-initiates-pivotal-phase-2-magnetismm-3-trial-bcma. Accessed May 24, 2021.
  • Costa LJ, Wong SW, Bermúdez A, et al. First clinical study of the B-cell maturation antigen (BCMA) 2+1 T cell engager (TCE) CC-93269 in patients (pts) with relapsed/refractory multiple myeloma (RRMM): interim results of a phase 1 multicenter trial. Blood. 2019;134:143. doi:10.1182/blood-2019-122895
  • Trinklein ND, Pham D, Schellenberger U, et al. Efficient tumor killing and minimal cytokine release with novel T-cell agonist bispecific antibodies. mAbs. 2019;11(4):639–652. doi:10.1080/19420862.2019.1574521
  • Foureau DM, Bhutani M, Robinson M, et al. Ex vivo efficacy of BCMA-bispecific antibody TNB-383B in relapsed/refractory multiple myeloma. eJHaem. 2020;1(1):113–121. doi:10.1002/jha2.69
  • Buelow B, Choudry P, Clarke S, et al. Pre-clinical development of TNB-383B, a fully human T-cell engaging bispecific antibody targeting BCMA for the treatment of multiple myeloma. J Clin Oncol. 2018;36(15Supplement):8034. doi:10.1200/JCO.2018.36.15_suppl.8034
  • Buelow B, D’Souza A, Rodriguez C, et al. A multicenter, phase 1, open-label, dose-escalation and expansion study of TNB-383B, a bispecific antibody targeting BCMA in subjects with relapsed or refractory multiple myeloma. Blood. 2019;(134 Supplement 1):1874. doi:10.1182/blood-2019-123220
  • Rodriguez C, D’Souza A, Shah N, et al. Initial results of a phase I study of TNB-383B, a BCMA x CD3 bispecific T-cell redirecting antibody, in relapsed/refractory multiple myeloma. Blood. 2020;136 Supplement 1:43–44. doi:10.1182/blood-2020-139893
  • Law CL, Aaron W, Austin R, et al. Preclinical and nonclinical characterization of HPN217: a tri-specific T cell activating construct (TriTAC) targeting B cell maturation antigen (BCMA) for the treatment of multiple myeloma. Blood. 2018;132:3225. doi:10.1182/blood-2018-99-113921
  • Schade H, Madan S, Medvedova E, et al. HPN217-3001: a phase 1/2 open-label, multicenter, dose escalation and dose expansion study of the safety, tolerability, and pharmacokinetics of HPN217, a Bcma-targeting T-cell engager, in patients with relapsed/refractory multiple myeloma. Blood. 2020;136:10. doi:10.1182/blood-2020-136012
  • Smyth MJ, Cretney E, Kelly JM, et al. Activation of NK cell cytotoxicity. Mol Immunol. 2005;42(4):501–510. doi:10.1016/j.molimm.2004.07.034
  • Duell J, Lammers PE, Djuretic I, et al. Bispecific antibodies in the treatment of hematologic malignancies. Clin Pharmacol Ther. 2019;106(4):781–791. doi:10.1002/cpt.1396
  • Gantke T, Weichel M, Reusch U, et al. Trispecific antibodies for selective CD16A-directed NK-cell engagement in multiple myeloma. Blood. 2016;128:4513. doi:10.1182/blood.V128.22.4513.4513
  • Kakiuchi-Kiyota S, Schutten MM, Adedeji AO, et al. Preclinical pharmacology and safety of RO7297089, a novel anti-BCMA/CD16a bispecific antibody for the treatment of multiple myeloma. Cancer Res. 2020;80(16Supplement):4556. doi:10.1158/1538-7445.Am2020-4556
  • Draghi M, Schafer JL, Nelson A, et al. Preclinical development of a first-in-class NKp30xBCMA NK cell engager for the treatment of multiple myeloma. Cancer Res. 2019;79:4972. doi:10.1158/1538-7445.AM2019-4972
  • Watkins-Yoon J, Guzman W, Oliphant A, et al. CTX-8573, an innate-cell engager targeting BCMA, is a highly potent multispecific antibody for the treatment of multiple myeloma. Blood. 2019;134:3182. doi:10.1182/blood-2019-128749
  • Li J, Stagg NJ, Johnston J, et al. Membrane-proximal epitope facilitates efficient T cell synapse formation by anti-FcRH5/CD3 and is a requirement for myeloma cell killing. Cancer Cell. 2017;31(3):383–395. doi:10.1016/j.ccell.2017.02.001
  • Cohen AD, Harrison SJ, Krishnan A, et al. Initial clinical activity and safety of BFCR4350A, a FcRH5/CD3 T-cell-engaging bispecific antibody, in relapsed/refractory multiple myeloma. Blood. 2020;136 Supplement 1:42–43. doi:10.1182/blood-2020-136985
  • Nakamura R, Lear S, Wilson D, et al. Early pharmacodynamic changes in T-cell activation, proliferation, and cytokine production confirm the mode of action of BFCR4350A, a FcRH5/CD3 T-cell-engaging bispecific antibody, in patients with relapsed/refractory multiple myeloma. Blood. 2020;136 Supplement 1:14–15. doi:10.1182/blood-2020-136980
  • Richter JR, Landgren CO, Kauh JS, et al. Phase 1, multicenter, open-label study of single-agent bispecific antibody T-cell engager GBR 1342 in relapsed/refractory multiple myeloma. J Clin Oncol. 2018;36(15):2. doi:10.1200/JCO.2018.36.15_suppl.TPS3132
  • Lum LG, Thakur A, Al-Kadhimi Z, et al. Induction of anti-myeloma cellular and humoral immunity by pre-targeting clonogenic myeloma cells prior to stem cell transplant with T cells armed with anti-CD3 x anti-CD20 bispecific antibody leads to transfer of cellular and humoral anti-myeloma immunity. Blood. 2013;122(21):139. doi:10.1182/blood.V122.21.139.139
  • Lum LG, Archana T, Muneer A, et al. Targeting myeloma stem cells with T cells armed with anti-CD3 x anti-CD20 bispecific antibody (CD20BI) prior to ASCT leads to development of anti-myeloma immune responses post autologous stem cell transplant that can be boosted with targeted T cells. Biology Blood Marrow Transplantation. 2012;18(2Supplement 2):S259. doi:10.1016/j.bbmt.2011.12.162
  • Verkleij CPM, Broekmans MEC, van Duin M, et al. Preclinical activity and determinants of response of the GPRC5DxCD3 bispecific antibody talquetamab in multiple myeloma. Blood Advances. 2021;5(8):2196–2215. doi:10.1182/bloodadvances.2020003805
  • Chari A, Berdeja JG, Oriol A, et al. A phase 1, first-in-human study of talquetamab, a G protein-coupled receptor family C group 5 member D (GPRC5D) x CD3 bispecific antibody, in patients with relapsed and/or refractory multiple myeloma (RRMM). Blood. 2020;136:40–41. doi:10.1182/blood-2020-133873
  • Kodama T, Kochi Y, Nakai W, et al. Anti-GPRC5D/CD3 bispecific T cell-redirecting antibody for the treatment of multiple myeloma. Mol Cancer Ther. 2019;18(9):1555–1564. doi:10.1158/1535-7163.Mct-18-1216
  • Topp M, Duell J, Zugmaier G, et al. Evaluation of AMG 420, an anti-BCMA bispecific T-cell engager (Bite®) immunotherapy, in R/R multiple myeloma (MM) patients: updated results of a first-In-human (FIH) phase 1 dose escalation study. J Clin Oncol. 2019;37(15Supplement):8007. doi:10.1200/JCO.2019.37.15_suppl.8007
  • Cho S-F, Lin L, Xing L, et al. AMG 701, a half-life extended anti-BCMA BiTE®, potently induces T cell-redirected lysis of human multiple myeloma cells and can be combined with IMiDs to overcome the immunosuppressive bone marrow microenvironment. Clin Lymphoma Myeloma Leuk. 2019;19(10):e54. doi:10.1016/j.clml.2019.09.082
  • Madduri D, Rosko A, Brayer J, et al. REGN5458, a BCMA x CD3 bispecific monoclonal antibody, induces deep and durable responses in patients with relapsed/refractory multiple myeloma (RRMM). Blood. 2020;136 Supplement 1:41–42. doi:10.1182/blood-2020-139192
  • Wall DA, Krueger J. Chimeric antigen receptor T cell therapy comes to clinical practice. Curr Oncol. 2020;27(Suppl 2):S115–S123. doi:10.3747/co.27.5283
  • Rosenbaum L. Tragedy, perseverance, and chance - the story of CAR-T therapy. N Engl J Med. 2017;377(14):1313–1315. doi:10.1056/NEJMp1711886
  • Garfall AL, Stadtmauer EA, Hwang WT, et al. Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight. 2018;3(8):e120505. doi:10.1172/jci.insight.120505
  • Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–2544. doi:10.1056/NEJMoa1707447
  • Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019;20(1):31–42. doi:10.1016/s1470-2045(18)30864-7
  • Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380(1):45–56. doi:10.1056/NEJMoa1804980
  • Abramson JS, Gordon LI, Palomba ML, et al. Updated safety and long term clinical outcomes in TRANSCEND NHL 001, pivotal trial of lisocabtagene maraleucel (JCAR017) in R/R aggressive NHL. J Clin Oncol. 2018;36:7505. doi:10.1200/JCO.2018.36.15_suppl.7505
  • Muranski P, Boni A, Wrzesinski C, et al. Increased intensity lymphodepletion and adoptive immunotherapy–how far can we go? Nat Clin Pract Oncol. 2006;3(12):668–681. doi:10.1038/ncponc0666
  • Gattinoni L, Finkelstein SE, Klebanoff CA, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005;202(7):907–912. doi:10.1084/jem.20050732
  • Hirayama AV, Gauthier J, Hay KA, et al. The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood. 2019;133(17):1876–1887. doi:10.1182/blood-2018-11-887067
  • Shimizu T, Nomiyama S, Hirata F, et al. Indoleamine 2,3-dioxygenase. Purification and some properties. J Biol Chem. 1978;253(13):4700–4706.
  • Ninomiya S, Narala N, Huye L, et al. Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs. Blood. 2015;125(25):3905–3916. doi:10.1182/blood-2015-01-621474
  • Balog A, Lin TA, Maley D, et al. Preclinical characterization of linrodostat mesylate, a novel, potent, and selective oral indoleamine 2,3-dioxygenase 1 inhibitor. Mol Cancer Ther. 2021;20(3):467–476. doi:10.1158/1535-7163.Mct-20-0251
  • van de Donk N, Usmani SZ, Yong K. CAR T-cell therapy for multiple myeloma: state of the art and prospects. Lancet Haematol. 2021;8(6):e446–e461. doi:10.1016/s2352-3026(21)00057-0
  • Ali SA, Shi V, Maric I, et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood. 2016;128(13):1688–1700. doi:10.1182/blood-2016-04-711903
  • Brudno JN, Maric I, Hartman SD, et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol. 2018;36(22):2267–2280. doi:10.1200/jco.2018.77.8084
  • Friedman KM, Garrett TE, Evans JW, et al. Effective targeting of multiple B-cell maturation antigen-expressing hematological malignances by anti-B-cell maturation antigen chimeric antigen receptor T Cells. Hum Gene Ther. 2018;29(5):585–601. doi:10.1089/hum.2018.001
  • U.S. Food and Drug Administration. FDA approves idecabtagene vicleucel for multiple myeloma [press release]. Washington, DC; 2021. Available from:https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-idecabtagene-vicleucel-multiple-myeloma. Accessed April 15, 2021.
  • Munshi NC, Anderson LD, Shah N, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384(8):705–716. doi:10.1056/NEJMoa2024850
  • Zheng W, O’Hear CE, Alli R, et al. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia. 2018;32(5):1157–1167. doi:10.1038/s41375-017-0008-6
  • Berdeja JG, Alsina M, Shah ND, et al. 1. Blood. 2019;(134 Supplement 1):927. doi:10.1182/blood-2019-126660
  • Alsina M, Shah N, Raje NS, et al. Updated results from the phase I CRB-402 study of anti-Bcma CAR-T cell therapy bb21217 in patients with relapsed and refractory multiple myeloma: correlation of expansion and duration of response with T cell phenotypes. Blood. 2020;136 Supplement 1:25–26. doi:10.1182/blood-2020-140410
  • Xu J, Chen LJ, Yang SS, et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc Natl Acad Sci U S A. 2019;116(19):9543–9551. doi:10.1073/pnas.1819745116
  • Zhao WH, Liu J, Wang BY, et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol. 2018;11(1):141. doi:10.1186/s13045-018-0681-6
  • Zhao WH, Liu J, Wang BY, et al. Updated analysis of a phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B-cell maturation antigen, in patients with relapsed/refractory multiple myeloma. Blood. 2018;132 Supplement 1:955. doi:10.1182/blood-2018-99-110548
  • Madduri D, Berdeja JG, Usmani SZ, et al. CARTITUDE-1: phase 1b/2 study of ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T cell therapy, in relapsed/refractory multiple myeloma. Blood. 2020;(136 Supplement 1):22–25. doi:10.1182/blood-2020-136307
  • Legend Biotech Corp. U.S. Food and Drug Administration grants BCMA CAR-T cilta-cel priority review for the treatment for relapsed/refractory multiple myeloma [press release]. Somerset, NJ; 2021. Available from:https://www.businesswire.com/news/home/20210526006114/en/U.S.-Food-and-Drug-Administration-Grants-BCMA-CAR-T-Cilta-cel-Priority-Review-for-the-Treatment-for-RelapsedRefractory-Multiple-Myeloma. Accessed June 4, 2021.
  • Agha ME, Cohen AD, Madduri D, et al. CARTITUDE-2: efficacy and safety of ciltacabtagene autoleucel (cilta-cel), a BCMA-directed CAR T-cell therapy, in patients with progressive multiple myeloma (MM) after one to three prior lines of therapy. J Clin Oncol. 2021;39(15Supplement):8013. doi:10.1200/JCO.2021.39.15_suppl.8013
  • Goldberg SD, Cardoso RM, Lin T, et al. Engineering a targeted delivery platform using Centyrins. Protein Eng Des Sel. 2016;29(12):563–572. doi:10.1093/protein/gzw054
  • Gattinoni L, Speiser DE, Lichterfeld M, et al. T memory stem cells in health and disease. Nat Med. 2017;23(1):18–27. doi:10.1038/nm.4241
  • Amatya C, Pegues MA, Lam N, et al. Development of CAR T cells expressing a suicide gene plus a chimeric antigen receptor targeting signaling lymphocytic-activation molecule. Mol Ther. 2020;29(2):702–717. doi:10.1016/j.ymthe.2020.10.008
  • Costello CL, Cohen AD, Patel KK, et al. Phase 1/2 study of the safety and response of P-BCMA-101 CAR-T cells in patients with relapsed/refractory (R/R) multiple myeloma (MM) (PRIME) with novel therapeutic strategies. Blood. 2020;136 Supplement 1:29–30. doi:10.1182/blood-2020-142695
  • Mailankody S, Htut M, Lee KP, et al. JCARH125, anti-BCMA CAR T-cell therapy for relapsed/refractory multiple myeloma: initial proof of concept results from a phase 1/2 multicenter study (EVOLVE). Blood. 2018;132 Supplement 1:957. doi:10.1182/blood-2018-99-113548
  • Colonna L, Navarro G, Devries T, et al. Orvacabtagene autoleucel (orva-cel; JCARH125): a fully human BCMA-targeted second-generation CAR T cell product characterized by a predominant central memory phenotype with high in vitro and In vivo proliferative potential and sustained In vivo persistence. Blood. 2020;136 Supplement 1:957. doi:10.1182/blood-2020-136748
  • Mailankody S, Jakubowiak AJ, Htut M, et al. Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): update of the phase 1/2 EVOLVE study (NCT03430011). J Clin Oncol. 2020;38(15Spplement):8504. doi:10.1200/JCO.2020.38.15_suppl.8504
  • Jiang S, Jin J, Hao S, et al. Low dose of human scFv-derived BCMA-targeted CAR-T cells achieved fast response and high complete remission in patients with relapsed/refractory multiple myeloma. Blood. 2018;132(Supplement 1):960. doi:10.1182/blood-2018-99-113220
  • CARSgen Therapeutics Co. Ltd. CARsgen announces investigational CAR-T therapy CT053 granted RMAT designation by the U.S. FDA for R/R multiple myeloma [press release]. Shanghai, 2019. Available from:https://www.prnewswire.com/news-releases/carsgen-announces-investigational-car-t-therapy-ct053-granted-rmat-designation-by-the-us-fda-for-rr-multiple-myeloma-300945966.html. Accessed June 28, 2021.
  • Kumar SK, Baz RC, Orlowski RZ, et al. Results from Lummicar-2: a phase 1b/2 study of fully human B-cell maturation antigen-specific CAR T cells (CT053) in patients with relapsed and/or refractory multiple myeloma. Blood. 2020;136 Supplement 1:28–29. doi:10.1182/blood-2020-139802
  • Wang D, Wang J, Hu G, et al. A phase 1 study of a novel fully human BCMA-targeting CAR (CT103A) in patients with relapsed/refractory multiple myeloma. Blood. 2021;137(21):2890–2901. doi:10.1182/blood.2020008936
  • Xu J, Melenhorst J. CT103A, a forward step in multiple myeloma immunotherapies. Blood Science. 2021;3(2):59–61. doi:10.1097/BS9.0000000000000068
  • Frigault MJ, O’Donnell E, Raje NS, et al. Phase 1 study of CART-ddBCMA, a CAR-T therapy utilizing a novel synthetic binding domain, for the treatment of subjects with relapsed and refractory multiple myeloma. J Clin Oncol. 2021;1(15Supplement):8015. doi:10.1200/JCO.2021.39.15_suppl.8015
  • An G, Sui WW, Wang TY, et al. An anti-Bcma CAR T-cell therapy (C-CAR088) shows promising safety and efficacy profile in relapsed or refractory multiple myeloma. Blood. 2020;136 Supplement 1:29–30. doi:10.1182/blood-2020-138734
  • Lam N, Trinklein ND, Buelow B, et al. Anti-BCMA chimeric antigen receptors with fully human heavy-chain-only antigen recognition domains. Nat Commun. 2020;11(1):283. doi:10.1038/s41467-019-14119-9
  • Mikkilineni L, Manasanch EE, Vanasse D, et al. Deep and durable remissions of relapsed multiple myeloma on a first-in-humans clinical trial of T cells expressing an anti-B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) with a fully-human heavy-chain-only antigen recognition domain. Blood. 2020;136(Supplement 1):50–51. doi:10.1182/blood-2020-138839
  • Zah E, Nam E, Bhuvan V, et al. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nat Commun. 2020;11(1):2283. doi:10.1038/s41467-020-16160-5
  • Timmers M, Roex G, Wang Y, et al. Chimeric antigen receptor-modified T cell therapy in multiple myeloma: beyond B cell maturation antigen. Front Immunol. 2019;10:1613. doi:10.3389/fimmu.2019.01613
  • Jindal V, Khoury J, Gupta R, et al. Current status of chimeric antigen receptor T-cell therapy in multiple myeloma. Am J Clin Oncol. 2020;43(5):371–377. doi:10.1097/coc.0000000000000669
  • Huang H, Wu HW, Hu YX. Current advances in chimeric antigen receptor T-cell therapy for refractory/relapsed multiple myeloma. J Zhejiang Univ Sci B. 2020;21(1):29–41. doi:10.1631/jzus.B1900351
  • Li CG, Mei H, Hu Y, et al. A bispecific CAR-T cell therapy targeting BCMA and CD38 for relapsed/refractory multiple myeloma: updated results from a phase 1 dose-climbing trial. Blood. 2019;134 Supplement 1:930. doi:10.1182/blood-2019-130340
  • van der Schans JJ, van de Donk N, Mutis T. Dual targeting to overcome current challenges in multiple myeloma CAR T-cell treatment. Front Oncol. 2020;10:1362. doi:10.3389/fonc.2020.01362
  • Tang F, Lu Y, Ge Y, et al. Infusion of chimeric antigen receptor T cells against dual targets of CD19 and B-cell maturation antigen for the treatment of refractory multiple myeloma. J Int Med Res. 2020;48(1):300060519893496. doi:10.1177/0300060519893496
  • Yan L, Qu S, Shang J, et al. Sequential CD19 and BCMA-specific CAR T-cell treatment elicits sustained remission of relapsed and/or refractory myeloma. Cancer Med. 2021;10:563–574. doi:10.1002/cam4.3624
  • Jiang H, Dong BX, Gao L, et al. Clinical results of a multicenter study of the first-in-human dual BCMA and CD19 targeted novel platform fast CAR-T cell therapy for patients with relapsed/refractory multiple myeloma. Blood. 2020;136 Supplement 1:25–26. doi:10.1182/blood-2020-138614
  • Prommersberger S, Reiser M, Beckmann J, et al. CARAMBA: a first-in-human clinical trial with SLAMF7 CAR-T cells prepared by virus-free Sleeping Beauty gene transfer to treat multiple myeloma. Gene Ther. 2021. doi:10.1038/s41434-021-00254-w
  • Wang X, Walter M, Urak R, et al. Lenalidomide enhances the function of CS1 chimeric antigen receptor-redirected T cells against multiple myeloma. Clin Cancer Res. 2018;24(1):106–119. doi:10.1158/1078-0432.Ccr-17-0344
  • Shah UA, Mailankody S. CAR T and CAR NK cells in multiple myeloma: expanding the targets. Best Pract Res Clin Haematol. 2020;33(1):101141. doi:10.1016/j.beha.2020.101141
  • Rodríguez-Lobato LG, Ganzetti M, Fernández de Larrea C. CAR T-cells in multiple myeloma: state of the art and future directions. Front Oncol. 2020;10:1243. doi:10.3389/fonc.2020.01243
  • Lamb MG, Rangarajan HG, Tullius BP, et al. Natural killer cell therapy for hematologic malignancies: successes, challenges, and the future. Stem Cell Res Ther. 2021;12:1. doi:10.1186/s13287-021-02277-x
  • Rubio MT, Dhuyser A, Nguyen S. Role and modulation of NK cells in multiple myeloma. hemato. 2021;2(2):167–181. doi:10.3390/hemato2020010
  • Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov. 2020;19(3):200–218. doi:10.1038/s41573-019-0052-1
  • Chu J, Deng Y, Benson DM, et al. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia. 2014;28(4):917–927. doi:10.1038/leu.2013.279
  • Jiang H, Zhang W, Shang P, et al. Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Mol Oncol. 2014;8(2):297–310. doi:10.1016/j.molonc.2013.12.001
  • Sachdeva M, Busser BW, Temburni S, et al. Repurposing endogenous immune pathways to tailor and control chimeric antigen receptor T cell functionality. Nat Commun. 2019;10(1):5100. doi:10.1038/s41467-019-13088-3
  • Sommer C, Bentley T, Sutton J, et al. Off-the-shelf AlloCAR T (TM) cells targeting BCMA for the treatment of multiple myeloma. Clin Lymphoma Myeloma Leuk. 2019;19(10):E24. doi:10.1016/j.clml.2019.09.035
  • Allogene Therapeutics, Inc. Allogene Therapeutics announces FDA Regenerative Medicine Advanced Therapy (RMAT) designation granted to ALLO-715, an AlloCAR T™ cell therapy in development for relapsed/refractory multiple myeloma [press release]. South San Francisco, CA, 2021. Available from:https://www.globenewswire.com/news-release/2021/04/21/2214140/0/en/Allogene-Therapeutics-Announces-FDA-Regenerative-Medicine-Advanced-Therapy-RMAT-Designation-Granted-to-ALLO-715-an-AlloCAR-T-Cell-Therapy-in-Development-for-Relapsed-Refractory-Mul.html. Accessed June 10, 2021.
  • Mailankody S, Matous JV, Liedtke M, et al. Universal: an allogeneic first-in-human study of the anti-Bcma ALLO-715 and the anti-CD52 ALLO-647 in relapsed/refractory multiple myeloma. Blood. 2020;1:24–25. doi:10.1182/blood-2020-140641
  • Tees MT, Neelapu SS, Hari P, et al. Safety and PK/PD of ALLO-647, an anti-CD52 antibody, with fludarabine (flu)/cyclophosphamide (cy) for lymphodepletion in the setting of allogeneic CAR-T cell therapy. J Clin Oncol. 2021;39(15supplement):2527. doi:10.1200/JCO.2021.39.15_suppl.2527
  • Prieto J, Redondo P, Lopez-Mendez B, et al. Understanding the indirect DNA read-out specificity of I-CreI meganuclease. Sci Rep. 2018;8(1):10286. doi:10.1038/s41598-018-28599-0
  • Jurica MS, Monnat RJ, Stoddard BL. DNA recognition and cleavage by the LAGLIDADG homing endonuclease I-CreI. Mol Cell. 1998;2(4):469–476. doi:10.1016/s1097-2765(00)80146-x
  • Precision Biosciences, Inc. Precision BioSciences receives fast track designation from U.S. Food and Drug Administration for PBCAR269A, an investigational allogeneic CAR T therapy for relapsed/refractory multiple myeloma [press release]. Durham, NC, 2020. Available from:https://investor.precisionbiosciences.com/news-releases/news-release-details/precision-biosciences-receives-fast-track-designation-us-food. Accessed June 11, 2021.
  • Da Vià MC, Dietrich O, Truger M, et al. Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma. Nat Med. 2021;27:616–619. doi:10.1038/s41591-021-01245-5
  • Madduri D, Parekh S, Campbell TB, et al. Anti-BCMA CAR T administration in a relapsed and refractory multiple myeloma patient after COVID-19 infection: a case report. J Med Case Rep. 2021;15(1):90. doi:10.1186/s13256-020-02598-0
  • Costa LJ, Lin Y, Martin TG, et al. Cilta-cel versus conventional treatment in patients with relapse/refractory multiple myeloma. Blood. 2021;39(Supplement 15):8030. DOI:10.1200/JCO.2021.39.15_suppl.8030
  • Strohl WR, Naso M. Bispecific T-cell redirection versus chimeric antigen receptor (CAR)-T cells as approaches to kill cancer cells. Antibodies. 2019;8(3):41. doi:10.3390/antib8030041
  • Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin. 2020;70(2):86–104. doi:10.3322/caac.21596
  • Shimabukuro-Vornhagen A, Godel P, Subklewe M, et al. Cytokine release syndrome. J Immunother Cancer. 2018;6(1):56. doi:10.1186/s40425-018-0343-9
  • Yu J, Wang W, Huang H. Efficacy and safety of bispecific T-cell engager (BiTE) antibody blinatumomab for the treatment of relapsed/refractory acute lymphoblastic leukemia and non-Hodgkin’s lymphoma: a systemic review and meta-analysis. Hematology. 2019;24(1):199–207. doi:10.1080/16078454.2018.1549802
  • Aamir S, Anwar MY, Khalid F, et al. Systematic review and meta-analysis of CD19-specific CAR-T cell therapy in relapsed/refractory acute lymphoblastic leukemia in the pediatric and young adult population: safety and efficacy outcomes. Clin Lymphoma Myeloma Leuk. 2021;21(4):E334–E347. doi:10.1016/j.clml.2020.12.010
  • Wang Z, Han W. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy. Biomarker Research. 2018;6:4. doi:10.1186/s40364-018-0116-0
  • Billiau AD, Roskams T, Van Damme-lombaerts R, et al. Macrophage activation syndrome: characteristic findings on liver biopsy illustrating the key role of activated, IFN-gamma-producing lymphocytes and IL-6- and TNF-alpha-producing macrophages. Blood. 2005;105(4):1648–1651. doi:10.1182/blood-2004-08-2997
  • Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi:10.1016/s0140-6736(20)30628-0
  • Felsenstein S, Herbert JA, McNamara PS, et al. COVID-19: immunology and treatment options. Clin Immunol. 2020;215:108448. doi:10.1016/j.clim.2020.108448
  • Soy M, Keser G, Atagündüz P, et al. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol. 2020:1–10. doi:10.1007/s10067-020-05190-5.
  • Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620–2629. doi:10.1172/jci137244
  • U.S. Food and Drug Administration. FDA approves tisagenlecleucel for B-cell ALL and tocilizumab for cytokine release syndrome [press release]. Washington, DC, 2017. Available from:https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-tisagenlecleucel-b-cell-all-and-tocilizumab-cytokine-release-syndrome. Accessed June 26, 2021.
  • Neelapu SS. Managing the toxicities of CAR T-cell therapy. Hematol Oncol. 2019;37(Suppl 1):48–52. doi:10.1002/hon.2595
  • Si S, Teachey DT. Spotlight on tocilizumab in the treatment of CAR-T-cell-induced cytokine release syndrome: clinical evidence to date. Ther Clin Risk Manag. 2020;16:705–714. doi:10.2147/tcrm.S223468
  • Freyer CW, Porter DL. Cytokine release syndrome and neurotoxicity following CAR T-cell therapy for hematologic malignancies. J Allergy Clin Immunol. 2020;146(5):940–948. doi:10.1016/j.jaci.2020.07.025
  • Santomasso BD, Park JH, Salloum D, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 2018;8(8):958–971. doi:10.1158/2159-8290.Cd-17-1319
  • Gust J, Hay KA, Hanafi LA, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017;7(12):1404–1419. doi:10.1158/2159-8290.Cd-17-0698
  • Yu S, Yi M, Qin S, et al. Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Mol Cancer. 2019;18(1):125. doi:10.1186/s12943-019-1057-4
  • Griffioen M, van Egmond EH, Kester MG, et al. Retroviral transfer of human CD20 as a suicide gene for adoptive T-cell therapy. Haematologica. 2009;94(9):1316–1320. doi:10.3324/haematol.2008.001677
  • Liu YR, Chen Z, Fang HL, et al. Durable remission achieved from Bcma-directed CAR-T therapy against relapsed or refractory multiple myeloma. Blood. 2018;132(Supplement 1):956. doi:10.1182/blood-2018-99-112786
  • Fu WJ, Du J, Jiang H, et al. Efficacy and safety of CAR-T therapy with safety switch targeting Bcma for patients with relapsed/refractory multiple myeloma in a phase 1 clinical study. Blood. 2019;134 Supplement 1:3154. doi:10.1182/blood-2019-127608
  • Di Stasi A, Tey SK, Dotti G, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011;365(18):1673–1683. doi:10.1056/NEJMoa1106152
  • Diaconu I, Ballard B, Zhang M, et al. Inducible caspase-9 selectively modulates the toxicities of CD19-specific chimeric antigen receptor-modified T cells. Mol Ther. 2017;25(3):580–592. doi:10.1016/j.ymthe.2017.01.011
  • Gargett T, Brown MP. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol. 2014;5:235. doi:10.3389/fphar.2014.00235
  • Moghanloo E, Mollanoori H, Talebi M, et al. Remote controlling of CAR-T cells and toxicity management: molecular switches and next generation CARs. Transl Oncol. 2021;14(6):101070. doi:10.1016/j.tranon.2021.101070
  • Liao D, Wang M, Liao Y, et al. A review of efficacy and safety of checkpoint inhibitor for the treatment of acute myeloid leukemia. Front Pharmacol. 2019;10:609. doi:10.3389/fphar.2019.00609
  • Skarbnik AP, Donato ML, Feinman R, et al. Safety and efficacy of consolidation therapy with ipilimumab plus nivolumab after autologous stem cell transplantation. Transplant Cell Ther. 2021;27(5):391–403. doi:10.1016/j.jtct.2020.12.026
  • Mateos M-V, Orlowski RZ, Siegel DS, et al. Pembrolizumab in combination with lenalidomide and low-dose dexamethasone for relapsed/refractory multiple myeloma (RRMM): final efficacy and safety analysis. J Clin Oncol. 2016;34((15 Supplement):8010). doi:10.1200/JCO.2016.34.15_suppl.8010
  • Pant A, Medikonda R, Lim M. Alternative checkpoints as targets for immunotherapy. Curr Oncol Rep. 2020;22(12):126. doi:10.1007/s11912-020-00983-y
  • Zhang C, Liu Y. Targeting NK cell checkpoint receptors or molecules for cancer immunotherapy. Front Immunol. 2020;11:1295. doi:10.3389/fimmu.2020.01295
  • Sun J, Muz B, Alhallak K, et al. Targeting CD47 as a novel immunotherapy for multiple myeloma. Cancers. 2020;12(2):305. doi:10.3390/cancers12020305
  • Patel K, Maris MB, Cheson BD, et al. Ongoing, first-in-human, phase I dose escalation study of the investigational CD47-blocker TTI-622 in patients with advanced relapsed or refractory lymphoma. J Clin Oncol. 2020;38:15. doi:10.1200/JCO.2020.38.15_suppl.3030
  • Lucas F, Pennell M, Huang Y, et al. T-cell transcriptional profiling and immunophenotyping uncover LAG3 as a potential significant target of immune modulation in multiple myeloma. Biol Blood Marrow Transplant. 2019;26(1):7–15. doi:10.1016/j.bbmt.2019.08.009
  • Guillerey C, Harjunpää H, Carrié N, et al. TIGIT immune checkpoint blockade restores CD8(+) T-cell immunity against multiple myeloma. Blood. 2018;132(16):1689–1694. doi:10.1182/blood-2018-01-825265
  • Asimakopoulos F. TIGIT checkpoint inhibition for myeloma. Blood. 2018;132(16):1629–1630. doi:10.1182/blood-2018-08-864231
  • Harjunpää H, Guillerey C. TIGIT as an emerging immune checkpoint. Clin Exp Immunol. 2020;200(2):108–119. doi:10.1111/cei.13407
  • Alfarra H, Weir J, Grieve S, et al. Targeting NK cell inhibitory receptors for precision multiple myeloma immunotherapy. Front Immunol. 2020;11:575609. doi:10.3389/fimmu.2020.575609
  • Paul B, Symanowski J, Osipoff P, et al. A phase 2 trial of daratumumab and pembrolizumab in refractory multiple myeloma. Blood. 2020;136 Supplement 1:2. doi:10.1182/blood-2020-141623
  • Cho HJ, Costa LJ, Davies FE, et al. Atezolizumab in combination with daratumumab with or without lenalidomide or pomalidomide: a phase Ib study in patients with multiple myeloma. Blood. 2018;132:3. doi:10.1182/blood-2018-99-114960
  • Branagan A, Lei M, Lou U, et al. Current treatment strategies for multiple myeloma. JCO Oncol Pract. 2020;16(1):5–14. doi:10.1200/jop.19.00244
  • Cohen AD, Garfall AL, Stadtmauer EA, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest. 2019;129(6):2210–2221. doi:10.1172/jci126397
  • Cohen AD, Garfall AL, Stadtmauer EA, et al. Safety and efficacy of B-cell maturation antigen (BCMA)-specific chimeric antigen receptor T cells (CART-BCMA) with cyclophosphamide conditioning for refractory multiple myeloma (MM). Blood. 2017;130(Supplement 1):505. doi:10.1182/blood.V130.Suppl_1.505.505
  • Green DJ, Pont M, Sather BD, et al. Fully human BCMA targeted chimeric antigen receptor T cells administered in a defined composition demonstrate potency at low doses in advanced stage high risk multiple myeloma. Blood. 2018;132(Supplement 1):1011. doi:10.1182/blood-2018-99-117729
  • Hamieh M, Dobrin A, Cabriolu A, et al. CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature. 2019;568:112–116. doi:10.1038/s41586-019-1054-1
  • Simoes RD, Shirasaki R, Downey-Kopyscinski SL, et al. Systematic characterization of genes representing preferential molecular vulnerabilities for myeloma cells compared to other neoplasias - implications for the biology and therapeutic targeting of myeloma. Blood. 2019;134(Supplement 1):4407. doi:10.1182/blood-2019-130901
  • Smith EL, Harrington K, Staehr M, et al. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci Transl Med. 2019;11:485. doi:10.1126/scitranslmed.aau7746
  • Atamaniuk J, Gleiss A, Porpaczy E, et al. Overexpression of G protein-coupled receptor 5D in the bone marrow is associated with poor prognosis in patients with multiple myeloma. Eur J Clin Invest. 2012;42(9):953–960. doi:10.1111/j.1365-2362.2012.02679.x
  • Bonello F, Grasso M, D’Agostino M, et al. The role of monoclonal antibodies in the first-line treatment of transplant-ineligible patients with newly diagnosed multiple myeloma. Pharmaceuticals. 2020;14(1):20. doi:10.3390/ph14010020
  • Holthof LC, Mutis T. Challenges for immunotherapy in multiple myeloma: bone marrow microenvironment-mediated immune suppression and immune resistance. Cancers. 2020;12(4):988. doi:10.3390/cancers12040988
  • Kostopoulos IV, Ntanasis-Stathopoulos I, Gavriatopoulou M, et al. Minimal residual disease in multiple myeloma: current landscape and future applications with immunotherapeutic approaches. Front Oncol. 2020;10:860. doi:10.3389/fonc.2020.00860