1,066
Views
6
CrossRef citations to date
0
Altmetric
REVIEW

Novel Immunotherapies for Myasthenia Gravis

& ORCID Icon
Pages 25-45 | Received 08 Jan 2023, Accepted 03 Mar 2023, Published online: 04 Apr 2023

References

  • Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol. 2010;10:1–9. doi:10.1186/1471-2377-10-46
  • Lehnerer S, Jacobi J, Schilling R, et al, Burden of disease in myasthenia gravis: taking the patient’s perspective. J Neurol. 2022;269(6):3050–3063. doi:10.1007/s00415-021-10891-1
  • Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol. 2015;14(10):1023–1036. doi:10.1016/S1474-4422(15)00145-3
  • Huijbers MG, Marx A, Plomp JJ, Le Panse R, Phillips WD. Advances in the understanding of disease mechanisms of autoimmune neuromuscular junction disorders. Lancet Neurol. 2022;21(2):163–175. doi:10.1016/S1474-4422(21)00357-4
  • Evoli A, Iorio R. Controversies in ocular myasthenia gravis. Front Neurol. 2020;11. doi:10.3389/fneur.2020.605902
  • Lovelace RE, Younger DS. Myasthenia gravis with thymoma. Neurology. 1997;48(Suppl5):76S–81S. doi:10.1212/WNL.48.Suppl_5.76S
  • Romi F. Thymoma in myasthenia gravis: from diagnosis to treatment. Autoimmune Dis. 2011;2011:1–5. doi:10.4061/2011/474512
  • Guptill JT, Sanders DB, Evoli A. Anti-musk antibody myasthenia gravis: clinical findings and response to treatment in two large cohorts. Muscle Nerve. 2011;44(1):36–40. doi:10.1002/mus.22006
  • Levinson AI, Song D, Gaulton G, Zheng Y. The intrathymic pathogenesis of myasthenia gravis. Clin Dev Immunol. 2004;11(3–4):215–220. doi:10.1080/17402520400001769
  • Alahgholi-Hajibehzad M, Kasapoglu P, Jafari R, Rezaei N. The role of T regulatory cells in immunopathogenesis of myasthenia gravis: implications for therapeutics. Expert Rev Clin Immunol. 2015;11(7):859–870. doi:10.1586/1744666X.2015.1047345
  • Leite MI, Jones M, Ströbel P, et al. Myasthenia gravis thymus. Am J Pathol. 2007;171(3):893–905. doi:10.2353/ajpath.2007.070240
  • Rodríguez Cruz PM, Cossins J, Beeson D, Vincent A. The neuromuscular junction in health and disease: molecular mechanisms governing synaptic formation and homeostasis. Front Mol Neurosci. 2020;13:610964. doi:10.3389/fnmol.2020.610964
  • Borges LS, Richman DP. Muscle-specific kinase myasthenia gravis. Front Immunol. 2020;11:707. doi:10.3389/fimmu.2020.00707
  • Phillips WD, Vincent A. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms. F1000Res. 2016;5:1513. doi:10.12688/f1000research.8206.1
  • Huda R. New approaches to targeting B cells for myasthenia gravis therapy. Front Immunol. 2020;11:240. doi:10.3389/fimmu.2020.00240
  • Narayanaswami P, Sanders DB, Wolfe G, et al. International consensus guidance for management of myasthenia gravis: 2020 update. Neurology. 2021;96(3):114–122. doi:10.1212/WNL.0000000000011124
  • Wolfe GI, Kaminski HJ, Aban IB, et al. Randomized trial of thymectomy in myasthenia gravis. N Engl J Med. 2016;375(6):511–522. doi:10.1056/NEJMoa1602489
  • Wolfe GI, Kaminski HJ, Aban IB, et al. Long-term effect of thymectomy plus prednisone versus prednisone alone in patients with non-thymomatous myasthenia gravis: 2-year extension of the MGTX randomised trial. Lancet Neurol. 2019;18(3):259–268. doi:10.1016/S1474-4422(18)30392-2
  • Clifford KM, Hobson-Webb LD, Benatar M, et al. Thymectomy may not be associated with clinical improvement in MuSK myasthenia gravis. Muscle Nerve. 2019;59(4):404–410. doi:10.1002/mus.26404
  • Mantegazza R, Antozzi C. When myasthenia gravis is deemed refractory: clinical signposts and treatment strategies. Ther Adv Neurol Disord. 2018;11:175628561774913. doi:10.1177/1756285617749134
  • Khadilkar S, Chaudhari C, Patil T, Desai N, Jagiasi K, Bhutada A. Once myasthenic, always myasthenic? Observations on the behavior and prognosis of myasthenia gravis in a cohort of 100 patients. Neurol India. 2014;62(5):492. doi:10.4103/0028-3886.144438
  • Schneider-Gold C, Hagenacker T, Melzer N, Ruck T. Understanding the burden of refractory myasthenia gravis. Ther Adv Neurol Disord. 2019;12:175628641983224. doi:10.1177/1756286419832242
  • Bacci ED, Coyne KS, Poon JL, Harris L, Boscoe AN. Understanding side effects of therapy for myasthenia gravis and their impact on daily life. BMC Neurol. 2019;19(1):335. doi:10.1186/s12883-019-1573-2
  • Menon D, Bril V. Pharmacotherapy of generalized myasthenia gravis with special emphasis on newer biologicals. Drugs. 2022;82(8):865–887. doi:10.1007/s40265-022-01726-y
  • Harris L, Graham S, MacLachlan S, Exuzides A, Jacob S. A retrospective longitudinal cohort study of the clinical burden in myasthenia gravis. BMC Neurol. 2022;22(1):172. doi:10.1186/s12883-022-02692-4
  • Howard JF, Utsugisawa K, Benatar M, et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 2017;16(12):976–986. doi:10.1016/S1474-4422(17)30369-1
  • Menon D, Barnett C, Bril V. Novel treatments in myasthenia gravis. Front Neurol. 2020;11:538. doi:10.3389/fneur.2020.00538
  • Schneider-Gold C, Gilhus NE. Advances and challenges in the treatment of myasthenia gravis. Ther Adv Neurol Disord. 2021;14:175628642110654. doi:10.1177/17562864211065406
  • Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part I - molecular mechanisms of activation and regulation. Front Immunol. 2015;6. doi:10.3389/fimmu.2015.00262
  • Albazli K, Kaminski HJ, Howard JF. Complement inhibitor therapy for myasthenia gravis. Front Immunol. 2020;11:917. doi:10.3389/fimmu.2020.00917
  • Dalakas MC. Role of complement, anti-complement therapeutics, and other targeted immunotherapies in myasthenia gravis. Expert Rev Clin Immunol. 2022;18(7):691–701. doi:10.1080/1744666X.2022.2082946
  • Zhou S, Dong X, Chen C. Efficacy and safety of eculizumab for paroxysmal nocturnal hemoglobinuria: a systematic review and meta-analysis. J Pediatr Hematol Oncol. 2021;43(6):203–210. doi:10.1097/MPH.0000000000002178
  • Mahat U, Matar RB, Rotz SJ. Use of complement monoclonal antibody eculizumab in Shiga toxin producing Escherichia coli associated hemolytic uremic syndrome: a review of current evidence. Pediatr Blood Cancer. 2019;66(11):e27913. doi:10.1002/pbc.27913
  • Levy M, Fujihara K, Palace J. New therapies for neuromyelitis optica spectrum disorder. Lancet Neurol. 2021;20(1):60–67. doi:10.1016/S1474-4422(20)30392-6
  • Benamu E, Montoya JG. Infections associated with the use of eculizumab: recommendations for prevention and prophylaxis. Curr Opin Infect Dis. 2016;29(4):319–329. doi:10.1097/QCO.0000000000000279
  • Howard JF, Barohn RJ, Cutter GR, et al. A randomized, double-blind, placebo-controlled Phase II study of eculizumab in patients with refractory generalized myasthenia gravis. Muscle Nerve. 2013;48(1):76–84. doi:10.1002/mus.23839
  • Mantegazza R, Wolfe GI, Muppidi S, et al. Post-intervention status in patients with refractory myasthenia gravis treated with eculizumab during REGAIN and its open-label extension. Neurology. 2021;96(4):e610–e618. doi:10.1212/WNL.0000000000011207
  • Muppidi S, Utsugisawa K, Benatar M, et al. Long-term safety and efficacy of eculizumab in generalized myasthenia gravis. Muscle Nerve. 2019;60(1):14–24. doi:10.1002/mus.26447
  • Howard JF, Karam C, Yountz M, O’Brien FL, Mozaffar T; For the REGAIN Study Group. Long‐term efficacy of eculizumab in refractory generalized myasthenia gravis: responder analyses. Ann Clin Transl Neurol. 2021;8(7):1398–1407. doi:10.1002/acn3.51376
  • Vissing J, Jacob S, Fujita KP, et al. ‘Minimal symptom expression’ in patients with acetylcholine receptor antibody-positive refractory generalized myasthenia gravis treated with eculizumab. J Neurol. 2020;267(7):1991–2001. doi:10.1007/s00415-020-09770-y
  • Jacob S, Murai H, Utsugisawa K, et al. Response to eculizumab in patients with myasthenia gravis recently treated with chronic IVIg: a subgroup analysis of REGAIN and its open-label extension study. Ther Adv Neurol Disord. 2020;13:175628642091178. doi:10.1177/1756286420911784
  • Siddiqi ZA, Nowak RJ, Mozaffar T, et al. Eculizumab in refractory generalized myasthenia gravis previously treated with rituximab: subgroup analysis of REGAIN and its extension study. Muscle Nerve. 2021;64(6):662–669. doi:10.1002/mus.27422
  • Usman U, Chrisman C, Houston D, Haws CC, Wang A, Muley S. The use of eculizumab in ventilator‐dependent myasthenia gravis patients. Muscle Nerve. 2021;64(2):212–215. doi:10.1002/mus.27326
  • Mantegazza R, Cavalcante P. Eculizumab for the treatment of myasthenia gravis. Expert Opin Biol Ther. 2020;20(9):991–998. doi:10.1080/14712598.2020.1786530
  • Tice JA, Touchette DR, Lien PW, Agboola F, Nikitin D, Pearson SD. The effectiveness and value of eculizumab and efgartigimod for generalized myasthenia gravis: a summary from the institute for clinical and economic review’s New England comparative effectiveness public advisory council. JMCP. 2022;28(1):119–124. doi:10.18553/jmcp.2022.28.1.119
  • McKeage K. Ravulizumab: first global approval. Drugs. 2019;79(3):347–352. doi:10.1007/s40265-019-01068-2
  • Vu T, Meisel A, Mantegazza R, et al. Terminal complement inhibitor ravulizumab in generalized myasthenia gravis. NEJM Evidence. 2022;1(5):EVIDoa2100066. doi:10.1056/EVIDoa2100066
  • Howard JF, Vissing J, Gilhus NE, et al. Zilucoplan: an investigational complement C5 inhibitor for the treatment of acetylcholine receptor autoantibody–positive generalized myasthenia gravis. Expert Opin Investig Drugs. 2021;30(5):483–493. doi:10.1080/13543784.2021.1897567
  • Howard JF, Nowak RJ, Wolfe GI, et al. Clinical effects of the self-administered subcutaneous complement inhibitor zilucoplan in patients with moderate to severe generalized myasthenia gravis: results of a phase 2 randomized, double-blind, placebo-controlled, multicenter clinical trial. JAMA Neurol. 2020;77(5):582–592. doi:10.1001/jamaneurol.2019.5125
  • Weyne J, Ni Y, DelGizzi R, et al. A randomized, double-blind, placebo-controlled phase 1 study of the pharmacokinetics and pharmacodynamics of REGN3918, a human antibody against complement factor C5, in healthy volunteers. Blood. 2018;132(Supplement1):1039. doi:10.1182/blood-2018-99-112262
  • Devalaraja-Narashimha K, Huang C, Cao M, et al. Pharmacokinetics and pharmacodynamics of pozelimab alone or in combination with cemdisiran in non-human primates. PLoS One. 2022;17(6):e0269749. doi:10.1371/journal.pone.0269749
  • Lünemann JD. Getting specific: targeting Fc receptors in myasthenia gravis. Nat Rev Neurol. 2021;17(10):597–598. doi:10.1038/s41582-021-00547-z
  • Ward ES, Gelinas D, Dreesen E, et al. Clinical significance of serum albumin and implications of FcRn inhibitor treatment in IgG-mediated autoimmune disorders. Front Immunol. 2022;13. doi:10.3389/fimmu.2022.892534
  • Wolfe GI, Ward ES, de Haard H, et al. IgG regulation through FcRn blocking: a novel mechanism for the treatment of myasthenia gravis. J Neurol Sci. 2021;430:118074. doi:10.1016/j.jns.2021.118074
  • Ulrichts P, Guglietta A, Dreier T, et al. Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J Clin Invest. 2018;128(10):4372–4386. doi:10.1172/JCI97911
  • Ling LE, Hillson JL, Tiessen RG, et al. M281, an Anti‐FcRn antibody: pharmacodynamics, pharmacokinetics, and safety across the full range of IgG reduction in a first‐in‐human study. Clin Pharmacol Ther. 2019;105(4):1031–1039. doi:10.1002/cpt.1276
  • Howard JF, Bril V, Burns TM, et al. Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis. Neurology. 2019;92(23):e2661–e2673. doi:10.1212/WNL.0000000000007600
  • Howard JF, Bril V, Vu T, et al. Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2021;20(7):526–536. doi:10.1016/S1474-4422(21)00159-9
  • Guptill J, Antozzi C, Bril V, et al. Vivacity-MG: a phase 2, multicenter, randomized, double-blind, placebo-controlled study to evaluate the safety, tolerability, efficacy, pharmacokinetics, pharmacodynamics, and immunogenicity of nipocalimab administered to adults with generalized myasthenia gravis Neurology ; 2021;96 (15 Supplement):2157.
  • Bril V, Benatar M, Andersen H, et al. Efficacy and safety of rozanolixizumab in moderate-to-severe generalised myasthenia gravis: a phase 2 RCT. Neurology. 2021;96(6):e853e865. doi:;96(6):e853e865. doi:10.1212/WNL.0000000000011108
  • Stathopoulos P, Kumar A, Heiden JAV, Pascual-Goñi E, Nowak RJ, O’Connor KC. Mechanisms underlying B cell immune dysregulation and autoantibody production in MuSK myasthenia gravis: B cell abnormalities in MuSK myasthenia gravis. Ann NY Acad Sci. 2018;1412(1):154–165. doi:10.1111/nyas.13535
  • Yi JS, Guptill JT, Stathopoulos P, Nowak RJ, O’Connor KC. B cells in the pathophysiology of myasthenia gravis:. Muscle Nerve. 2018;57(2):172–184. doi:10.1002/mus.25973
  • Behin A, Le Panse R. New pathways and therapeutic targets in autoimmune myasthenia gravis. JND. 2018;5(3):265–277. doi:10.3233/JND-170294
  • Fichtner ML, Jiang R, Bourke A, Nowak RJ, O’Connor KC. Autoimmune pathology in myasthenia gravis disease subtypes is governed by divergent mechanisms of immunopathology. Front Immunol. 2020;11:776. doi:10.3389/fimmu.2020.00776
  • Zografou C, Vakrakou AG, Stathopoulos P. Short- and long-lived autoantibody-secreting cells in autoimmune neurological disorders. Front Immunol. 2021;12:686466. doi:10.3389/fimmu.2021.686466
  • Stathopoulos P, Dalakas MC. Evolution of anti-B cell therapeutics in autoimmune neurological diseases. Neurotherapeutics. 2022;19(3):691–710. doi:10.1007/s13311-022-01196-w
  • Nowak RJ, Coffey CS, Goldstein JM, et al. Phase 2 trial of rituximab in acetylcholine receptor antibody-positive generalized myasthenia gravis: the BeatMG study. Neurology. 2022;98(4):e376–e389. doi:10.1212/WNL.0000000000013121
  • Iorio R, Damato V, Alboini P, Evoli A. Efficacy and safety of rituximab for myasthenia gravis: a systematic review and meta-analysis. J Neurol. 2014;262. doi:10.1007/s00415-014-7532-3
  • Tandan R, Hehir MK, Waheed W, Howard DB. Rituximab treatment of myasthenia gravis: a systematic review. Muscle Nerve. 2017;56(2):185–196. doi:10.1002/mus.25597
  • Di Stefano V, Lupica A, Rispoli MG, Di Muzio A, Brighina F, Rodolico C. Rituximab in AChR subtype of myasthenia gravis: systematic review. J Neurol Neurosurg Psychiatry. 2020;91(4):392–395. doi:10.1136/jnnp-2019-322606
  • Li T, Zhang GQ, Li Y, et al. Efficacy and safety of different dosages of rituximab for refractory generalized AChR myasthenia gravis: a meta-analysis. J Clin Neurosci. 2021;85:6–12. doi:10.1016/j.jocn.2020.11.043
  • Zhao C, Pu M, Chen D, et al. Effectiveness and safety of rituximab for refractory myasthenia gravis: a systematic review and single-arm meta-analysis. Front Neurol. 2021;12:736190. doi:10.3389/fneur.2021.736190
  • Anderson D, Phan C, Johnston WS, Siddiqi ZA. Rituximab in refractory myasthenia gravis: a prospective, open‐label study with long‐term follow‐up. Ann Clin Transl Neurol. 2016;3(7):552–555. doi:10.1002/acn3.314
  • Hehir MK, Hobson-Webb LD, Benatar M, et al. Rituximab as treatment for anti-MuSK myasthenia gravis: multicenter blinded prospective review. Neurology. 2017;89(10):1069–1077. doi:10.1212/WNL.0000000000004341
  • Jing S, Song Y, Song J, et al. Responsiveness to low-dose rituximab in refractory generalized myasthenia gravis. J Neuroimmunol. 2017;311:14–21. doi:10.1016/j.jneuroim.2017.05.021
  • Beecher G, Anderson D, Siddiqi ZA. Rituximab in refractory myasthenia gravis: extended prospective study results: rituximab in Refractory MG. Muscle Nerve. 2018;58(3):452–455. doi:10.1002/mus.26156
  • Landon-Cardinal O, Friedman D, Guiguet M, et al. Efficacy of rituximab in refractory generalized anti-achr myasthenia gravis. J Neuromuscul Dis. 2018;5(2):241–249. doi:10.3233/JND-180300
  • Du Y, Li C, Hao Y, et al. Individualized regimen of low-dose rituximab monotherapy for new-onset AChR-positive generalized myasthenia gravis. J Neurol. 2022;269(8):4229–4240. doi:10.1007/s00415-022-11048-4
  • Brauner S, Eriksson-Dufva A, Hietala MA, Frisell T, Press R, Piehl F. Comparison between rituximab treatment for new-onset generalized myasthenia gravis and refractory generalized myasthenia gravis. JAMA Neurol. 2020;77(8):974. doi:10.1001/jamaneurol.2020.0851
  • Li H, Huang Z, Jia D, et al. Low-dose rituximab treatment for new-onset generalized myasthenia gravis. J Neuroimmunol. 2021;354:577528. doi:10.1016/j.jneuroim.2021.577528
  • Molimard A, Gitiaux C, Barnerias C, et al. Rituximab therapy in the treatment of juvenile Myasthenia gravis: the French experience. Neurology. 2022;98(23):e2368–e2376. doi:10.1212/WNL.0000000000200288
  • Zingariello CD, Elder ME, Kang PB. Rituximab as adjunct maintenance therapy for refractory juvenile myasthenia gravis. Pediatr Neurol. 2020;111:40–43. doi:10.1016/j.pediatrneurol.2020.07.002
  • Ramdas S, Della Marina A, Ryan MM, et al. Rituximab in juvenile myasthenia gravis-an international cohort study and literature review. Eur J Paediatr Neurol. 2022;40:5–10. doi:10.1016/j.ejpn.2022.06.009
  • Caballero-ávila M, Álvarez-Velasco R, Moga E, et al. Rituximab in myasthenia gravis: efficacy, associated infections and risk of induced hypogammaglobulinemia. Neuromuscular Disorders. 2022;32(8):664–671. doi:10.1016/j.nmd.2022.06.006
  • Afanasiev V, Demeret S, Bolgert F, Eymard B, Laforêt P, Benveniste O. Resistant myasthenia gravis and rituximab: a monocentric retrospective study of 28 patients. Neuromuscular Disorders. 2017;27(3):251–258. doi:10.1016/j.nmd.2016.12.004
  • Chen D, Gallagher S, Monson NL, Herbst R, Wang Y. Inebilizumab, a B cell-depleting anti-CD19 antibody for the treatment of autoimmune neurological diseases: insights from preclinical studies. J Clin Med. 2016;5(12):107. doi:10.3390/jcm5120107
  • Frampton JE. Inebilizumab: first approval. Drugs. 2020;80(12):1259–1264. doi:10.1007/s40265-020-01370-4
  • Mao Y. Structure, dynamics and function of the 26s proteasome. In: Harris JR, Marles-Wright J, editors. Macromolecular Protein Complexes III: Structure and Function. Subcellular Biochemistry. Springer International Publishing; 2021:1–151. doi:10.1007/978-3-030-58971-4_1
  • Kohler S, Märschenz S, Grittner U, Alexander T, Hiepe F, Meisel A. Bortezomib in antibody-mediated autoimmune diseases (TAVAB): study protocol for a unicentric, non-randomised, non-placebo controlled trial. BMJ Open. 2019;9(1):e024523. doi:10.1136/bmjopen-2018-024523
  • Gomez AM, Willcox N, Vrolix K, et al. Proteasome inhibition with bortezomib depletes plasma cells and specific autoantibody production in primary thymic cell cultures from early-onset myasthenia gravis patients. J Immunol. 2014;193(3):1055–1063. doi:10.4049/jimmunol.1301555
  • Schneider-Gold C, Reinacher-Schick A, Ellrichmann G, Gold R. Bortezomib in severe MuSK-antibody positive myasthenia gravis: first clinical experience. Ther Adv Neurol Disord. 2017;10(10):339–341. doi:10.1177/1756285617721093
  • Klimas R, Sgodzai M, Motte J, et al. Dose-dependent immunomodulatory effects of bortezomib in experimental autoimmune neuritis. Brain Communications. 2021;3(4):fcab238. doi:10.1093/braincomms/fcab238
  • Robak E, Robak T. Bruton’s kinase inhibitors for the treatment of immunological diseases: current status and perspectives. J Clin Med. 2022;11(10):2807. doi:10.3390/jcm11102807
  • Delves PJ. The immune system. Adv Immunol. 2000;34:37.
  • Mackay F, Browning JL. BAFF: a fundamental survival factor for B cells. Nat Rev Immunol. 2002;2(7):465–475. doi:10.1038/nri844
  • Ragheb S, Lisak RP. B-cell-activating factor and autoimmune myasthenia gravis. Autoimmune Dis. 2011;2011:1–10. doi:10.4061/2011/939520
  • Hewett K, Sanders DB, Grove RA, et al. Randomized study of adjunctive belimumab in participants with generalized myasthenia gravis. Neurology. 2018;90(16):e1425–e1434. doi:10.1212/WNL.0000000000005323
  • Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009;229(1):152–172. doi:10.1111/j.1600-065X.2009.00782.x
  • Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther. 2006;8(2):S3. doi:10.1186/ar1917
  • Uzawa A, Kuwabara S, Suzuki S, et al. Roles of cytokines and T cells in the pathogenesis of myasthenia gravis. Clin Exp Immunol. 2021;203(3):366–374. doi:10.1111/cei.13546
  • Aricha R, Mizrachi K, Fuchs S, Souroujon MC. Blocking of IL-6 suppresses experimental autoimmune myasthenia gravis. J Autoimmun. 2011;36(2):135–141. doi:10.1016/j.jaut.2010.12.001
  • Yamamura T, Kleiter I, Fujihara K, et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N Engl J Med. 2019;381(22):2114–2124. doi:10.1056/NEJMoa1901747
  • Traboulsee A, Greenberg BM, Bennett JL, et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol. 2020;19(5):402–412. doi:10.1016/S1474-4422(20)30078-8
  • Jonsson DI, Pirskanen R, Piehl F. Beneficial effect of tocilizumab in myasthenia gravis refractory to rituximab. Neuromuscular Disorders. 2017;27(6):565–568. doi:10.1016/j.nmd.2017.03.007
  • Abolhassani H, Sadaghiani MS, Aghamohammadi A, Ochs HD, Rezaei N. Home-based subcutaneous immunoglobulin versus hospital-based intravenous immunoglobulin in treatment of primary antibody deficiencies: systematic review and meta analysis. J Clin Immunol. 2012;32(6):1180–1192. doi:10.1007/s10875-012-9720-1
  • Hadden RDM, Marreno F. Switch from intravenous to subcutaneous immunoglobulin in CIDP and MMN: improved tolerability and patient satisfaction. Ther Adv Neurol Disord. 2015;8(1):14–19. doi:10.1177/1756285614563056
  • Beecher G, Anderson D, Siddiqi ZA. Subcutaneous immunoglobulin in myasthenia gravis exacerbation: a prospective, open-label trial. Neurology. 2017;89(11):1135–1141. doi:10.1212/WNL.0000000000004365
  • Barth D, Nouri MN, Ng E, Nwe P, Bril V. Comparison of IVIg and PLEX in patients with myasthenia gravis. Neurology. 2011;76(23):2017–2023. doi:10.1212/WNL.0b013e31821e5505
  • June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379(1):64–73. doi:10.1056/NEJMra1706169
  • Aghajanian H, Rurik JG, Epstein JA. CAR-based therapies: opportunities for immuno-medicine beyond cancer. Nat Metab. 2022;4(2):163–169. doi:10.1038/s42255-022-00537-5
  • Bryant A, Atkins H, Pringle CE, et al. Myasthenia gravis treated with autologous hematopoietic stem cell transplantation. JAMA Neurol. 2016;73(6):652. doi:10.1001/jamaneurol.2016.0113
  • Sharrack B, Saccardi R, Alexander T, et al. Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: updated guidelines and recommendations from the EBMT Autoimmune Diseases Working Party (ADWP) and the Joint Accreditation Committee of EBMT and ISCT (JACIE). Bone Marrow Transplant. 2020;55(2):283–306. doi:10.1038/s41409-019-0684-0
  • Das J, Sharrack B, Snowden JA. Autologous hematopoietic stem-cell transplantation in neurological disorders: current approach and future directions. Expert Rev Neurother. 2020;20(12):1299–1313. doi:10.1080/14737175.2020.1820325
  • Tsutsumi Y, Kamiishi T, Kikuchi R, Ito S, Matsuoka S, Teshima T. Myasthenia gravis after allogeneic bone marrow transplantation: a case report and literature review. Hematol Oncol Stem Cell Ther. 2019;12(2):110–114. doi:10.1016/j.hemonc.2017.04.001