276
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Globoid Cell Leukodystrophy (Krabbe Disease): An Update

ORCID Icon
Pages 105-111 | Received 14 Jul 2023, Accepted 12 Oct 2023, Published online: 31 Oct 2023

References

  • Maghazachi AA, Knudsen E, Jin Y, Jenstad M, Chaudhry FA. D-galactosyl-beta1-1’-sphingosine and D-glucosyl-beta1-1’-sphingosine induce human natural killer cell apoptosis. Biochem Biophys Res Commun. 2004;320(3):810–815. doi:10.1016/j.bbrc.2004.06.027
  • Elemam NM, Hannawi S, Maghazachi AA. Innate lymphoid cells (ILCs) as mediators of inflammation, release of cytokines and lytic molecules. Toxins. 2017;9(12):398. doi:10.3390/toxins9120398
  • Krabbe K. A new familial, infantile form of diffuse brain sclerosis. Brain. 1916;30:74–114. doi:10.1093/brain/39.1-2.74
  • Svennerholm L, Vanier M-T, Månsson JE. Krabbe disease: a galactosylsphingosine (psychosine) lipidosis. J Lipid Res. 1980;21(1):53–64. doi:10.1016/S0022-2275(20)39839-4
  • Vanier M-T, Svennerholm L. Chemical pathology of Krabbe’s disease. III. Ceramide hexosides and gangliosides of brain. Acta Paediatr Scand. 1975;64(4):641–648. doi:10.1111/j.1651-2227.1975.tb03896.x
  • Baskin GB, Ratterree M, Davison BB, et al. Genetic galactocerebrosidase deficiency (globoid cell leukodystrophy, Krabbe disease) in rhesus monkeys (Macaca mulatta). Lab Anim Sci. 1998;48(5):476–482.
  • Wenger DA. Murine, canine and non-human primate models of Krabbe disease. Mol Med Today. 2000;6(11):449–451. doi:10.1016/S1357-4310(00)01800-1
  • Duchen LW, Eicher EM, Jacobs JM, Scaravilli F, Teixeira F. Hereditary leucodystrophy in the mouse: the new mutant twitcher. Brain. 1980;103(3):695–710. doi:10.1093/brain/103.3.695
  • Wu G, Li Z, Li J, et al. A neglected neurodegenerative disease: adult-onset globoid cell leukodystrophy. Front Neurosci. 2022;16:998275. doi:10.3389/fnins.2022.998275
  • Feltri ML, Weinstock NI, Favret J, Dhimal N, Wrabetz L, Shin D. Mechanisms of demyelination and neurodegeneration in globoid cell leukodystrophy. Glia. 2021;69(10):2309–2331. doi:10.1002/glia.24008
  • Iacono D, Koga S, Peng H, et al. Galactosylceramidase deficiency and pathological abnormalities in cerebral white matter of Krabbe disease. Neurobiol Dis. 2022;174:105862. doi:10.1016/j.nbd.2022.105862
  • Kreher C, Favret J, Weinstock NI, et al. Neuron-specific ablation of the Krabbe disease gene galactosylceramidase in mice results in neurodegeneration. PLoS Biol. 2022;20(7):e3001661. doi:10.1371/journal.pbio.3001661
  • Page KM, Ream MA, Rangarajan HG, et al. Benefits of newborn screening and hematopoietic cell transplant in infantile Krabbe disease. Blood Adv. 2022;6(9):2947–2956. doi:10.1182/bloodadvances.2021006094
  • Wenger DA, Luzi P, Rafi MA. Advances in the diagnosis and treatment of Krabbe disease. Int J Neonatal Screen. 2021;7(3):57. doi:10.3390/ijns7030057
  • Thompson-Stone R, Ream MA, Gelb M, et al. Consensus recommendations for the classification and long-term follow up of infants who screen positive for Krabbe Disease. Mol Genet Metab. 2021;134(1–2):53–59. doi:10.1016/j.ymgme.2021.03.016
  • Ezer S, Zuckerman S, Segel R, Zlotogora J. Carrier screening for Krabbe disease in an isolated inbred community. Am J Med Genet. 2022;188(9):2555–2559. doi:10.1002/ajmg.a.62882
  • Jalal K, Carter RL, Barczykowski A, Tomatsu S, Langan TJ. A Roadmap for potential improvement of newborn screening for inherited metabolic diseases following recent developments and successful applications of bivariate normal limits for pre-symptomatic detection of MPS I, Pompe Disease, and Krabbe disease. Int J Neonatal Screen. 2022;8(4):61. doi:10.3390/ijns8040061
  • Papini N, Giallanza C, Brioschi L, et al. Galactocerebrosidase deficiency induces an increase in lactosylceramide content: a new hallmark of Krabbe disease? Int J Biochem Cell Biol. 2022;145:106184. doi:10.1016/j.biocel.2022.106184
  • Hatton C, Ghanem SS, Koss DJ, Abdi IY, Gibbons E, Guerreiro R. Prion-like α-synuclein pathology in the brain of infants with Krabbe disease. Brain. 2022;145(4):1257–1263. doi:10.1093/brain/awac002
  • Lv YF, Wang J, Cao CY, Zhang Y, Wang W. Production and characterization of human induced pluripotent stem cell line (PUMCi002-A) from a Krabbe patient related control to study disease mechanisms associated with GALC mutation. Stem Cell Res. 2022;65:102945. doi:10.1016/j.scr.2022.102945
  • Tanaka K, Nagara H, Kobayashi T, Goto I. The twitcher mouse: accumulation of galactosylsphingosine and pathology of sciatic nerve. Brain Res. 1988;454(1–2):340–346. doi:10.1016/0006-8993(88)90835-9
  • Rebiai R, Rue E, Zaldua S, et al. CRISPR-Cas9 Knock-In of T513M and G41S Mutations in the murine β-Galactosyl-Ceramidase gene re-capitulates early-onset and adult-onset forms of Krabbe disease. Front Mol Neurosci. 2022;15:896314. doi:10.3389/fnmol.2022.896314
  • Vantaggiato L, Shaba E, Carleo A, et al. Neurodegenerative disorder risk in Krabbe disease carriers. Int J Mol Sci. 2022;23(21):13537. doi:10.3390/ijms232113537
  • Choi JW, Lee SY, Choi Y. Identification of a putative G protein-coupled receptor induced during activation-induced apoptosis of T cells. Cell Immunol. 1996;168(1):78–84. doi:10.1006/cimm.1996.0051
  • Kyaw H, Zeng Z, Su K, et al. Cloning, characterization, and mapping of human homolog of mouse T-cell death-associated gene. DNA Cell Biol. 1998;17(6):493–500. doi:10.1089/dna.1998.17.493
  • Al-Falahi Y, Sand KL, Knudsen E, Damaj BB, Rolin J, Maghazachi AA. Splenic natural killer cell activity in two models of experimental neurodegenerative diseases. J Cell Mol Med. 2009;13:2693–2703. doi:10.1111/j.1582-4934.2008.00640.x
  • Tonazzini I, Cerri C, Del Grosso A, et al. Visual system impairment in a mouse model of Krabbe disease: the twitcher mouse. Biomolecules. 2020;23(1):7. doi:10.3390/biom11010007
  • Carpi S, Del Grosso A, De Sarlo M, et al. Reliable and fast genotyping protocol for Galactosylceramidase (Galc) in the twitcher (Twi) mouse. Biomedicines. 2022;10(12):3146. doi:10.3390/biomedicines10123146
  • Mezzena R, Del Grosso A, Pellegrino RM, et al. Mechanotransduction impairment in primary fibroblast model of Krabbe disease. Biomedicines. 2023;11(3):927. doi:10.3390/biomedicines11030927
  • He Z, Pang X, Bai J, et al. A novel GALC gene mutation associated with adult-onset Krabbe disease: a case report. Neurocase. 2022;28(3):314–319. doi:10.1080/13554794.2022.2083518
  • Lv Y, Qin Y, Wang J, et al. Identifying altered developmental pathways in human globoid cell leukodystrophy iPSCs-derived NSCs using transcriptome profiling. BMC Genomics. 2023;24(1):210. doi:10.1186/s12864-023-09285-6
  • Lieberman R, Cortes LK, Gao G, et al. Human iPSC-derived astrocytes generated from donors with globoid cell leukodystrophy display phenotypes associated with disease. PLoS One. 2022;17(8):e0271360. doi:10.1371/journal.pone.0271360
  • Cachón-González MB, Wang S, Cox TM. Expression of Ripk1 and DAM genes correlates with severity and progression of Krabbe disease. Hum Mol Genet. 2021;30(22):2082–2099. doi:10.1093/hmg/ddab159
  • Modesti NB, Evans SH, Jaffe N, Vanderver A, Gavazzi F. Early recognition of patients with leukodystrophies. Current Problems in Pediatric and Adolescent Health Care. 2022;52(12):101311. doi:10.1016/j.cppeds.2022.101311
  • Perrier S, Guerrero K, Tran LT, et al. Solving inherited white matter disorder etiologies in the neurology clinic: challenges and lessons learned using next-generation sequencing. Front Neurol. 2023;14:1148377. doi:10.3389/fneur.2023.1148377
  • Wu L, Liao X, Yang S, Gan S. Krabbe disease associated with mitochondrial dysfunction in a Chinese family. Front Neurol. 2021;12:750095. doi:10.3389/fneur.2021.750095
  • Nicita F, Stregapede F, Deodato F, et al. “Atypical” Krabbe disease in two siblings harboring biallelic GALC mutations including a deep intronic variant. Eur J Hum Genet. 2022;30(8):984–988. doi:10.1038/s41431-022-01111-z
  • Zhang X, Niu G, Song P, et al. Compound heterozygous pathogenic variants in the GALC gene cause infant-onset Krabbe disease. Transl Pediatr. 2021;10(10):2552–2562. doi:10.21037/tp-21-403
  • Wang Y, Wang SY, Li K, et al. Adult-onset Krabbe disease presenting with progressive myoclonic epilepsy and asymmetric occipital lesions: a case report. Front Neurol. 2022;13:1010150. doi:10.3389/fneur.2022.1010150
  • Corre CS, Matern D, Pellegrino JE, Saavedra-Matiz CA, Orsini JJ, Thompson-Stone R. Low psychosine in Krabbe disease with onset in late infancy: a case report. Int J Neonatal Screen. 2021;7(2):28. doi:10.3390/ijns7020028
  • Jaiswani AK, Kulkarni V, Paliwal A. Krabbe’s disease; A rare case report. Leg Med. 2023;60:102155. doi:10.1016/j.legalmed.2022.102155
  • Paiva ARB, Fonseca Neto RE, Afonso CL, Freua F, Nóbrega PR, Kok F. Incidental magnetic resonance imaging findings leading to an unusual diagnosis: adult onset Krabbe disease. Eur J Neurol. 2022;29(6):1859–1862. doi:10.1111/ene.15298
  • Ghabash G, Wilkes J, Barney BJ, Bonkowsky JL. Hospitalization burden and incidence of Krabbe disease. J Child Neurol. 2022;37(1):12–19. doi:10.1177/08830738211027717
  • Rolin J, Maghazachi AA. Effects of lysophospholipids on tumor microenvironment. Cancer Microenviron. 2011;4(3):393–403. doi:10.1007/s12307-011-0088-1
  • Belleri M, Presta M. β-Galactosylceramidase in cancer: more than a psychosine scavenger. Oncoscience. 2022;9:11–12. doi:10.18632/oncoscience
  • Belleri M, Chiodelli P, Corli M, Capra M, Presta M. Oncosuppressive and oncogenic activity of the sphingolipid-metabolizing enzyme β-galactosylceramidase. Biochim Biophys Acta Rev Cancer. 2022;1877(1):188675. doi:10.1016/j.bbcan.2021
  • Reiter CR, Rebiai R, Kwak A, et al. The pathogenic sphingolipid psychosine is secreted in extracellular vesicles in the brain of a mouse model of Krabbe disease. ASN Neuro. 2022;14:17590914221087817. doi:10.1177/17590914221087817
  • Stahl-Meyer K, Bilgin M, Holland LKK, et al. Galactosyl- and glucosylsphingosine induce lysosomal membrane permeabilization and cell death in cancer cells. PLoS One. 2022;17(11):e0277058. doi:10.1371/journal.pone.0277058
  • Abed Rabbo M, Khodour Y, Kaguni LS, Stiban J. Sphingolipid lysosomal storage diseases: from bench to bedside. Lipids Health Dis. 2021;20(1):44. doi:10.1186/s12944-021-01466-0
  • Ichioka T, Kishimoto Y, Brennan S, Santos GW, Yeager AM. Hematopoietic cell transplantation in murine globoid cell leukodystrophy (the twitcher mouse): effects on levels of galactosylceramidase, psychosine, and galactocerebrosides. Proc Natl Acad Sci USA. 1987;84(12):4259–4263. doi:10.1073/pnas.84.12.4259
  • Yeager AM, Brennan S, Tiffany C, Moser HW, Santos GW. Prolonged survival and remyelination after hematopoietic cell transplantation in the twitcher mouse. Science. 1984;225(4666):1052–1054. doi:10.1126/science.6382609
  • Krivit W, Shapiro EG, Peters C, et al. Hematopoietic stem-cell transplantation in globoid-cell leukodystrophy. N Engl J Med. 1998;338(16):1119–1126. doi:10.1056/NEJM199804163381605
  • Ghabash G, Wilkes J, Bonkowsky JL. National U.S. patient and transplant data for Krabbe disease. Front Pediatr. 2021;9:764626. doi:10.3389/fped.2021.76462
  • Mitsutake A, Matsukawa T, Iwata A, et al. Favorable outcome of hematopoietic stem cell transplantation in late-onset Krabbe disease. Brain Dev. 2023;S0:387–7604(23)00066–9. doi:10.1016/j.braindev.2023.04.001
  • Tian G, Cao C, Li S, Wang W, Zhang Y, Lv Y. rAAV2-mediated restoration of GALC in neural stem cells from Krabbe patient-derived iPSCs. Pharmaceuticals. 2023;16(4):624. doi:10.3390/ph1604062
  • Rafi MA, Luzi P, Wenger DA. Can early treatment of twitcher mice with high dose AAVrh10-GALC eliminate the need for BMT? Bioimpacts. 2021;11(2):135–146. doi:10.34172/bi.2021.21
  • Hordeaux J, Jeffrey BA, Jian J, et al. Efficacy and safety of a Krabbe disease gene therapy. Hum Gene Ther. 2022;33(9–10):499–517. doi:10.1089/hum.2021.245
  • Heller GJ, Marshall MS, Issa Y, et al. Waning efficacy in a long-term AAV-mediated gene therapy study in the murine model of Krabbe disease. Mol Ther. 2021;29(5):1883–1902. doi:10.1016/j.ymthe.2021.01.026
  • Lin DS, Huang YW, Lee TH, et al. Rapamycin alleviates protein aggregates, reduces neuroinflammation, and rescues demyelination in globoid Cell leukodystrophy. Cells. 2023;12(7):993. doi:10.3390/cells12070993
  • Mezzena R, Del Grosso A, Pellegrino RM, et al. Mechanotransduction Impairment in primary fibroblast model of Krabbe disease. Biomedicines. 2023;11(3):927. doi:10.3390/biomedicines11030927
  • Clementino A, Velasco-Estevez M, Buttini F, Sonvico F, Dev KK. Hybrid nanoparticles as a novel tool for regulating psychosine-induced neuroinflammation and demyelination In vitro and ex vivo. Neurotherapeutics. 2021;18(4):2608–2622. doi:10.1007/s13311-021-01109-3
  • Zhou H, Wu Z, Wang Y, et al. Rare diseases in glycosphingolipid metabolism. Adv Exp Med Biol. 2022;1372:189–213. doi:10.1007/978-981-19-0394-6_13
  • Rafi MA, Rao HZ, Luzi P, Curtis MT, Wenger DA. Extended normal life after AAVrh10-mediated gene therapy in the mouse model of Krabbe disease. Mol Ther. 2012;20(11):2031–2042. doi:10.1038/mt.2012.153
  • Babcock MC, Mikulka CR, Wang B, et al. Substrate reduction therapy for Krabbe disease and metachromatic leukodystrophy using a novel ceramide galactosyltransferase inhibitor. Sci Rep. 2021;11(1):14486. doi:10.1038/s41598-021-93601-1
  • Zaccariotto E, Cachón-González MB, Wang B, et al. A novel brain-penetrant oral UGT8 inhibitor decreases in vivo galactosphingolipid biosynthesis in murine Krabbe disease. Biomed Pharmacother. 2022;149:112808. doi:10.1016/j.biopha.2022.112808
  • Fukazawa R, Takeuchi H, Oka N, Shibuya T, Sakai N, Fujii A. Adult Krabbe disease that was successfully treated with intravenous immunoglobulin. Intern Med. 2021;60(8):1283–1286. doi:10.2169/internalmedicine.6094-20
  • Coltrini D, Chandran AMK, Belleri M, et al. β-Galactosylceramidase deficiency causes upregulation of long Pentraxin-3 in the central nervous system of Krabbe patients and twitcher mice. Int J Mol Sci. 2022;23(16):9436. doi:10.3390/ijms23169436
  • Cachón-González MB, Zhao C, Franklin RJ, Cox TM. Upregulation of non-canonical and canonical inflammasome genes associates with pathological features in Krabbe disease and related disorders. Hum Mol Genet. 2023;32(8):1361–1379. doi:10.1093/hmg/ddac299
  • Muhammad JS, Jayakumar MN, Elemam NM, et al. Gasdermin D Hypermethylation Inhibits Pyroptosis And LPS-Induced IL-1β Release From NK92 Cells. Immunotargets Ther. 2019;8:29–41. doi:10.2147/ITT.S219867
  • Hachim MY, Khalil BA, Elemam NM, Maghazachi AA. Pyroptosis: the missing puzzle among innate and adaptive immunity crosstalk. J Leukoc Biol. 2020;108(1):323–338. doi:10.1002/JLB.3MIR0120-625R
  • Demarco B, Danielli S, Fischer FA, Bezbradica JS. How Pyroptosis contributes to inflammation and fibroblast-macrophage cross-talk in rheumatoid arthritis. Cells. 2022;11(8):1307. doi:10.3390/cells11081307
  • Tan Y, Chen Q, Li X, et al. Pyroptosis: a new paradigm of cell death for fighting against cancer. J Exp Clin Cancer Res. 2021;40(1):153. doi:10.1186/s13046-021-01959-x