140
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Identification of CXC Chemokine Receptor 2 (CXCR2) as a Novel Eosinophils-Independent Diagnostic Biomarker of Pediatric Eosinophilic Esophagitis by Integrated Bioinformatic and Machine-Learning Analysis

ORCID Icon, , &
Pages 55-74 | Received 08 Sep 2023, Accepted 17 Jan 2024, Published online: 01 Feb 2024

References

  • Barni S, Arasi S, Mastrorilli C, et al. Pediatric eosinophilic esophagitis: a review for the clinician. Ital J Pediatr. 2021;47(1):230. doi:10.1186/s13052-021-01178-2
  • Dellon ES, Hirano I. Epidemiology and Natural History of Eosinophilic Esophagitis. Gastroenterology. 2018;154(319–332.e3). doi:10.1053/j.gastro.2017.06.067
  • Dellon ES, Jensen ET, Martin CF, et al. Prevalence of eosinophilic esophagitis in the United States. Clin Gastroenterol Hepatol. 2014;12(589–96.e1):589–596.e1. doi:10.1016/j.cgh.2013.09.008
  • Gill R, Durst P, Rewalt M, et al. Eosinophilic esophagitis disease in children from West Virginia: a review of the last decade (1995-2004). Am J Gastroenterol. 2007;102:2281–2285. doi:10.1111/j.1572-0241.2007.01352.x
  • Giriens B, Yan P, Safroneeva E, et al. Escalating incidence of eosinophilic esophagitis in Canton of Vaud, Switzerland, 1993-2013: a population-based study. Allergy. 2015;70:1633–1639. doi:10.1111/all.12733
  • Hruz P, Straumann A, Bussmann C, et al. Escalating incidence of eosinophilic esophagitis: a 20-year prospective, population-based study in Olten County, Switzerland. J Allergy Clin Immunol. 2011;128(1349–1350.e5). doi:10.1016/j.jaci.2011.09.013
  • Cianferoni A, Spergel JM. Eosinophilic Esophagitis and Gastroenteritis. Curr Allergy Asthma Rep. 2015;15(9):58. doi:10.1007/s11882-015-0558-5
  • Schoepfer AM, Safroneeva E, Bussmann C, et al. Delay in diagnosis of eosinophilic esophagitis increases risk for stricture formation in a time-dependent manner. Gastroenterology. 2013;145:1230–6.e1–2. doi:10.1053/j.gastro.2013.08.015
  • Adel-Patient K, Campeotto F, Grauso M, et al. Assessment of local and systemic signature of eosinophilic esophagitis (EoE) in children through multi-omics approaches. Front Immunol. 2023;14:1108895. doi:10.3389/fimmu.2023.1108895
  • Kottyan LC, Rothenberg ME. Genetics of eosinophilic esophagitis. Mucosal Immunol. 2017;10(3):580–588. doi:10.1038/mi.2017.4
  • O’Shea KM, Aceves SS, Dellon ES, et al. Pathophysiology of Eosinophilic Esophagitis. Gastroenterology. 2018;154(2):333–345. doi:10.1053/j.gastro.2017.06.065
  • Krupp NL, Sehra S, Slaven JE, et al. Increased prevalence of airway reactivity in children with eosinophilic esophagitis. Pediatr Pulmonol. 2016;51(5):478–483. doi:10.1002/ppul.23327
  • Ruffner MA, Spergel JM. Eosinophilic Esophagitis in Children. Curr Allergy Asthma Rep. 2017;17(8):54. doi:10.1007/s11882-017-0721-2
  • Aceves SS. Tissue remodeling in patients with eosinophilic esophagitis: what lies beneath the surface? J Allergy Clin Immunol. 2011;128(5):1047–1049. doi:10.1016/j.jaci.2011.09.026
  • Rothenberg ME. Molecular, genetic, and cellular bases for treating eosinophilic esophagitis. Gastroenterology. 2015;148(6):1143–1157. doi:10.1053/j.gastro.2015.02.002
  • Bacchelli C, Williams HJ. Opportunities and technical challenges in next-generation sequencing for diagnosis of rare pediatric diseases. Expert Rev Mol Diagn. 2016;16(10):1073–1082. doi:10.1080/14737159.2016.1222906
  • Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to Machine Learning, Neural Networks, and Deep Learning. Transl Vis Sci Technol. 2020;9:14. doi:10.1167/tvst.9.2.14
  • Fabris F, Palmer D, de Magalhães JP, et al. Comparing enrichment analysis and machine learning for identifying gene properties that discriminate between gene classes. Brief Bioinform. 2020;21(3):803–814. doi:10.1093/bib/bbz028
  • Sajda P. Machine learning for detection and diagnosis of disease. Annu Rev Biomed Eng. 2006;8(1):537–565. doi:10.1146/annurev.bioeng.8.061505.095802
  • Slack FJ, Chinnaiyan AM. The Role of Non-coding RNAs in Oncology. Cell. 2019;179(5):1033–1055. doi:10.1016/j.cell.2019.10.017
  • Zhang X, Wang W, Zhu W, et al. Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int J Mol Sci;2019. 20. doi:10.3390/ijms21010020
  • Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344–352. doi:10.1038/nature12986
  • Erwin EA, Jaramillo LM, Smith B, et al. Sex Differences in Blood Transcriptional Profiles and Clinical Phenotypes in Pediatric Patients with Eosinophilic Esophagitis. J Allergy Clin Immunol Pract. 2021;9(3350–3358.e8). doi:10.1016/j.jaip.2021.06.043
  • Sleiman PM, Wang ML, Cianferoni A, et al. GWAS identifies four novel eosinophilic esophagitis loci. Nat Commun. 2014;5:5593. doi:10.1038/ncomms6593
  • Kottyan LC, Trimarchi MP, Lu X, et al. Replication and meta-analyses nominate numerous eosinophilic esophagitis risk genes. J Allergy Clin Immunol. 2021;147(1):255–266. doi:10.1016/j.jaci.2020.10.018
  • Chang X, March M, Mentch F, et al. A genome-wide association meta-analysis identifies new eosinophilic esophagitis loci. J Allergy Clin Immunol. 2022;149(3):988–998. doi:10.1016/j.jaci.2021.08.018
  • Yang K, Dinasarapu AR, Reis ES, et al. CMAP: complement Map Database. Bioinformatics. 2013;29(14):1832–1833. doi:10.1093/bioinformatics/btt269
  • Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res. 2013;41:D991–5. doi:10.1093/nar/gks1193
  • Menard-Katcher C, Liu C, Galbraith MD, et al. Fibrostenotic eosinophilic esophagitis phenotype is defined by a proliferative gene signature. Allergy. 2023;78:579–583. doi:10.1111/all.15557
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007
  • Yu G, Wang LG, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16:284–287. doi:10.1089/omi.2011.0118
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–15550. doi:10.1073/pnas.0506580102
  • Liberzon A, Subramanian A, Pinchback R, et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739–1740. doi:10.1093/bioinformatics/btr260
  • Gustavsson EK, Zhang D, Reynolds RH, et al. ggtranscript: an R package for the visualization and interpretation of transcript isoforms using ggplot2. Bioinformatics. 2022;38:3844–3846. doi:10.1093/bioinformatics/btac409
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 2008;9(1):559. doi:10.1186/1471-2105-9-559
  • Morris JH. Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43(D1):D1049–56. doi:10.1093/nar/gku1179
  • Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52. doi:10.1093/nar/gku1003
  • Moni MA, Xu H, Liò P. CytoCom: a Cytoscape app to visualize, query and analyse disease comorbidity networks. Bioinformatics. 2015;31(6):969–971. doi:10.1093/bioinformatics/btu731
  • Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–d368. doi:10.1093/nar/gkw937
  • Rigatti SJ. Random Forest. J Insur Med. 2017;47:31–39. doi:10.17849/insm-47-01-31-39.1
  • Wang H, Yang F, Luo Z. An experimental study of the intrinsic stability of random forest variable importance measures. BMC Bioinf. 2016;17(1):60. doi:10.1186/s12859-016-0900-5
  • Li Z, Sillanpää MJ. Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection. Theor Appl Genet. 2012;125(3):419–435. doi:10.1007/s00122-012-1892-9
  • Kursa MB. Robustness of Random Forest-based gene selection methods. BMC Bioinf. 2014;15(1):8. doi:10.1186/1471-2105-15-8
  • Byeon H. Can the Random Forests Model Improve the Power to Predict the Intention of the Elderly in a Community to Participate in a Cognitive Health Promotion Program? Iran J Public Health. 2021;50(2):315–324. doi:10.18502/ijph.v50i2.5346
  • Engebretsen S, Bohlin J. Statistical predictions with glmnet. Clin Clin Epigenet. 2019;11(1):123. doi:10.1186/s13148-019-0730-1
  • Tolles J, Meurer WJ. Logistic Regression: relating Patient Characteristics to Outcomes. JAMA. 2016;316(5):533–534. doi:10.1001/jama.2016.7653
  • Wang R, Zhang J, Shan B, et al. XGBoost Machine Learning Algorithm for Prediction of Outcome in Aneurysmal Subarachnoid Hemorrhage. Neuropsychiatr Dis Treat. 2022;18:659–667. doi:10.2147/NDT.S349956
  • Le T, Aronow RA, Kirshtein A, et al. A review of digital cytometry methods: estimating the relative abundance of cell types in a bulk of cells. Brief Bioinform. 2021;22.
  • Dweep H, Sticht C, Pandey P, et al. miRWalk--database: prediction of possible miRNA binding sites by ”walking” the genes of three genomes. J Biomed Inform. 2011;44:839–847. doi:10.1016/j.jbi.2011.05.002
  • Huang HY, Lin YC, Cui S, et al. miRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2022;50:D222–d230. doi:10.1093/nar/gkab1079
  • Li JH, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–7. doi:10.1093/nar/gkt1248
  • Morris JH. The Gene Ontology (GO) project in 2006. Nucleic Acids Res. 2006;34(90001):D322–6. doi:10.1093/nar/gkj021
  • Ingerski LM, Modi AC, Hood KK, et al. Health-related quality of life across pediatric chronic conditions. J Pediatr. 2010;156(4):639–644. doi:10.1016/j.jpeds.2009.11.008
  • Dellon ES. Diagnostics of eosinophilic esophagitis: clinical, endoscopic, and histologic pitfalls. Dig Dis. 2014;32(1–2):48–53. doi:10.1159/000357009
  • Liacouras CA, Furuta GT, Hirano I, et al. Eosinophilic esophagitis: updated consensus recommendations for children and adults. J Allergy Clin Immunol. 2011;128(1):3–20.e6. doi:10.1016/j.jaci.2011.02.040
  • Zahm AM, Menard-Katcher C, Benitez AJ, et al. Pediatric eosinophilic esophagitis is associated with changes in esophageal microRNAs. Am J Physiol Gastrointest Liver Physiol. 2014;307(8):G803–12. doi:10.1152/ajpgi.00121.2014
  • Sawant DV, Yao W, Wright Z, et al. Serum MicroRNA-21 as a Biomarker for Allergic Inflammatory Disease in Children. Microrna. 2015;4:36–40. doi:10.2174/2211536604666150220232507
  • Hogan SP, Rothenberg ME. Review article: the eosinophil as a therapeutic target in gastrointestinal disease. Aliment Pharmacol Ther. 2004;20(11–12):1231–1240. doi:10.1111/j.1365-2036.2004.02259.x
  • Blanchard C, Stucke EM, Rodriguez-Jimenez B, et al. A striking local esophageal cytokine expression profile in eosinophilic esophagitis. J Allergy Clin Immunol. 2011;127:208–17, 217.e1–7. doi:10.1016/j.jaci.2010.10.039
  • Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol. 2010;5(9):1315–1316. doi:10.1097/JTO.0b013e3181ec173d
  • Wen T, Stucke EM, Grotjan TM, et al. Molecular diagnosis of eosinophilic esophagitis by gene expression profiling. Gastroenterology. 2013;145(6):1289–1299. doi:10.1053/j.gastro.2013.08.046
  • Cañas JA, Tabares A, Barbero C, et al. Proton-pump Inhibitor Response Prediction Using Esophageal microRNAs in Children With Eosinophilic Esophagitis. J Pediatr Gastroenterol Nutr. 2020;71(6):755–763. doi:10.1097/MPG.0000000000002957
  • Dellon ES, Rusin S, Gebhart JH, et al. Utility of a Noninvasive Serum Biomarker Panel for Diagnosis and Monitoring of Eosinophilic Esophagitis: a Prospective Study. Am J Gastroenterol. 2015;110(6):821–827. doi:10.1038/ajg.2015.57
  • Dellon ES, Higgins LL, Beitia R, et al. Prospective assessment of serum periostin as a biomarker for diagnosis and monitoring of eosinophilic oesophagitis. Aliment Pharmacol Ther. 2016;44(2):189–197. doi:10.1111/apt.13672
  • Wright BL, Ochkur SI, Olson NS, et al. Normalized serum eosinophil peroxidase levels are inversely correlated with esophageal eosinophilia in eosinophilic esophagitis. Dis Esophagus. 2018;31.
  • Johansson MW, McKernan EM, Fichtinger PS, et al. α(IIb)-Integrin (CD41) associated with blood eosinophils is a potential biomarker for disease activity in eosinophilic esophagitis. J Allergy Clin Immunol. 2020;145:1699–1701. doi:10.1016/j.jaci.2020.01.022
  • Grueso-Navarro E, Navarro P, Laserna-Mendieta EJ, et al. Blood-Based Biomarkers for Eosinophilic Esophagitis and Concomitant Atopic Diseases: a Look into the Potential of Extracellular Vesicles. Int J Mol Sci;2023. 24. doi:10.3390/ijms25010024
  • Bhattacharya B, Carlsten J, Sabo E, et al. Increased expression of eotaxin-3 distinguishes between eosinophilic esophagitis and gastroesophageal reflux disease. Hum Pathol. 2007;38(12):1744–1753. doi:10.1016/j.humpath.2007.05.008
  • Moye LM, Liu Y, Coarfa C, et al. Plasma Urea Cycle Metabolites May Be Useful Biomarkers in Children With Eosinophilic Esophagitis. Front Pediatr. 2018;6:423. doi:10.3389/fped.2018.00423
  • Johnson K, Iyer V, Katzka D, et al. Poor Relationship Between Fractionated Exhaled Nitric Oxide and Disease Activity in Eosinophilic Esophagitis. Dysphagia. 2019;34(1):138–144. doi:10.1007/s00455-018-9925-4
  • Jhaveri PB, Lambert KA, Bogale K, et al. Salivary microRNAs in pediatric eosinophilic esophagitis. Allergy Asthma Proc. 2023;44(2):145–152. doi:10.2500/aap.2023.44.220102
  • Bhardwaj N, Sena M, Ghaffari G, et al. MiR-4668 as a Novel Potential Biomarker for Eosinophilic Esophagitis. Allergy Rhinol Providence. 2020;11:2152656720953378. doi:10.1177/2152656720953378
  • Hines BT, Rank MA, Wright BL, et al. Minimally invasive biomarker studies in eosinophilic esophagitis: a systematic review. Ann Allergy Asthma Immunol. 2018;121(2):218–228. doi:10.1016/j.anai.2018.05.005
  • Lin M, Zhang Y, Niu Z, et al. Transcriptomic responses of peripheral blood cells to coronary artery disease. Biosci Trends. 2018;12(4):354–359. doi:10.5582/bst.2018.01078
  • Blanchard C, Wang N, Stringer KF, et al. Eotaxin-3 and a uniquely conserved gene-expression profile in eosinophilic esophagitis. J Clin Invest. 2006;116:536–547. doi:10.1172/JCI26679
  • Shoda T, Wen T, Aceves SS, et al. Eosinophilic oesophagitis endotype classification by molecular, clinical, and histopathological analyses: a cross-sectional study. Lancet Gastroenterol Hepatol. 2018;3(7):477–488. doi:10.1016/S2468-1253(18)30096-7
  • Spechler SJ, Genta RM, Souza RF. Thoughts on the complex relationship between gastroesophageal reflux disease and eosinophilic esophagitis. Am J Gastroenterol. 2007;102(6):1301–1306. doi:10.1111/j.1572-0241.2007.01179.x
  • Zhang H, Kong H, Zeng X, et al. Subsets of regulatory T cells and their roles in allergy. J Transl Med. 2014;12(1):125. doi:10.1186/1479-5876-12-125
  • Rothenberg ME, Mishra A, Collins MH, et al. Pathogenesis and clinical features of eosinophilic esophagitis. J Allergy Clin Immunol. 2001;108(6):891–894. doi:10.1067/mai.2001.120095
  • Fuentebella J, Patel A, Nguyen T, et al. Increased number of regulatory T cells in children with eosinophilic esophagitis. J Pediatr Gastroenterol Nutr. 2010;51(3):283–289. doi:10.1097/MPG.0b013e3181e0817b
  • Stuck MC, Straumann A, Simon H-U. Relative lack of T regulatory cells in adult eosinophilic esophagitis - no normalization after corticosteroid therapy. Allergy. 2011;66(5):705–707. doi:10.1111/j.1398-9995.2010.02525.x
  • Mousavinasab F, Babaie D, Nilipour Y, et al. Increased number of regulatory T cells in esophageal tissue of patients with eosinophilic esophagitis in comparison to gastro esophageal reflux disease and control groups. Allergol Immunopathol. 2019;47:431–436. doi:10.1016/j.aller.2019.02.005
  • Ayaki M, Manabe N, Nakamura J, et al. A Retrospective Study of the Differences in the Induction of Regulatory T Cells Between Adult Patients with Eosinophilic Esophagitis and Gastroesophageal Reflux Disease. Dig Dis Sci. 2022;67(10):4742–4748. doi:10.1007/s10620-021-07355-x
  • Boppana NB, Devarajan A, Gopal K, et al. Blockade of CXCR2 signalling: a potential therapeutic target for preventing neutrophil-mediated inflammatory diseases. Exp Biol Med (Maywood). 2014;239(5):509–518. doi:10.1177/1535370213520110
  • Petering H, Götze O, Kimmig D, et al. The biologic role of interleukin-8: functional analysis and expression of CXCR1 and CXCR2 on human eosinophils. Blood. 1999;93:694–702. doi:10.1182/blood.V93.2.694
  • Hsieh SC, Wu TH, Tsai CY, et al. Abnormal in vitro CXCR2 modulation and defective cationic ion transporter expression on polymorphonuclear neutrophils responsible for hyporesponsiveness to IL-8 stimulation in patients with active systemic lupus erythematosus. Rheumatology (Oxford). 2008;47:150–157. doi:10.1093/rheumatology/kem320
  • Cianferoni A. Non-IgE-mediated anaphylaxis. J Allergy Clin Immunol. 2021;147:1123–1131. doi:10.1016/j.jaci.2021.02.012
  • Özcan A, Boyman O. Mechanisms regulating neutrophil responses in immunity, allergy, and autoimmunity. Allergy. 2022;77(12):3567–3583. doi:10.1111/all.15505
  • Wang H, Shao Q, Wang J, et al. Decreased CXCR2 expression on circulating monocytes of colorectal cancer impairs recruitment and induces Re-education of tumor-associated macrophages. Cancer Lett. 2022;529:112–125. doi:10.1016/j.canlet.2022.01.004
  • Bartig KA, Lee KE, Mosher DF, et al. Platelet association with leukocytes in active eosinophilic esophagitis. PLoS One. 2021;16(4):e0250521. doi:10.1371/journal.pone.0250521
  • Blanchard C, Mishra A, Saito-Akei H, et al. Inhibition of human interleukin-13-induced respiratory and oesophageal inflammation by anti-human-interleukin-13 antibody (CAT-354). Clin Exp Allergy. 2005;35:1096–1103. doi:10.1111/j.1365-2222.2005.02299.x
  • Haddad EB, Cyr SL, Arima K, et al. Current and Emerging Strategies to Inhibit Type 2 Inflammation in Atopic Dermatitis. Dermatol Ther. 2022;12:1501–1533. doi:10.1007/s13555-022-00737-7
  • Miyata J, Yokokura Y, Moro K, et al. 12/15-Lipoxygenase Regulates IL-33-Induced Eosinophilic Airway Inflammation in Mice. Front Immunol. 2021;12:687192. doi:10.3389/fimmu.2021.687192
  • Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog Lipid Res. 2019;73:28–45. doi:10.1016/j.plipres.2018.11.001
  • Zhu J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine. 2015;75(1):14–24. doi:10.1016/j.cyto.2015.05.010
  • Spergel JM, Rothenberg ME, Collins MH, et al. Reslizumab in children and adolescents with eosinophilic esophagitis: results of a double-blind, randomized, placebo-controlled trial. J Allergy Clin Immunol. 2012;129:456–63, 463.e1–3. doi:10.1016/j.jaci.2011.11.044
  • Assa’ad AH, Gupta SK, Collins MH, et al. An antibody against IL-5 reduces numbers of esophageal intraepithelial eosinophils in children with eosinophilic esophagitis. Gastroenterology. 2011;141(5):1593–1604. doi:10.1053/j.gastro.2011.07.044
  • Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ. 2015;22(1):22–33. doi:10.1038/cdd.2014.112
  • Paladini SV, Pinto GH, Bueno RH, et al. Identification of Candidate Biomarkers for Transplant Rejection from Transcriptome Data: a Systematic Review. Mol Diagn Ther. 2019;23(4):439–458. doi:10.1007/s40291-019-00397-y