532
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

CD69 is a Promising Immunotherapy and Prognosis Prediction Target in Cancer

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1-14 | Received 12 Sep 2023, Accepted 22 Dec 2023, Published online: 08 Jan 2024

References

  • Testi R, D’Ambrosio D, De Maria R, Santoni A. The CD69 receptor: a multipurpose cell-surface trigger for hematopoietic cells. Immunol Today. 1994;15(10):479–483.
  • González-Amaro R, Cortés JR, Sánchez-Madrid F, Martín P. Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med. 2013;19(10):625–632.
  • Cebrián M, Yagüe E, Rincón M, López-Botet M, de Landázuri MO, Sánchez-Madrid F. Triggering of T cell proliferation through AIM, an activation inducer molecule expressed on activated human lymphocytes. J Exp Med. 1988;168(5):1621–1637. doi:10.1084/jem.168.5.1621
  • Hara T, Jung LK, Bjorndahl JM, Fu SM. Human T cell activation. III. Rapid induction of a phosphorylated 28 kD/32 kD disulfide-linked early activation antigen (EA 1) by 12-o-tetradecanoyl phorbol-13-acetate, mitogens, and antigens. J Exp Med. 1986;164(6):1988–2005. doi:10.1084/jem.164.6.1988
  • Lanier LL, Buck DW, Rhodes L, et al. Interleukin 2 activation of natural killer cells rapidly induces the expression and phosphorylation of the Leu-23 activation antigen. J Exp Med. 1988;167(5):1572–1585. doi:10.1084/jem.167.5.1572
  • Cosulich ME, Rubartelli A, Risso A, Cozzolino F, Bargellesi A. Functional characterization of an antigen involved in an early step of T-cell activation. Proc Natl Acad Sci U S A. 1987;84(12):4205–4209. doi:10.1073/pnas.84.12.4205
  • Qinghua L, Li W, Keqiang W. Advances in the application of CD69 molecules in γδ τT cells. Chin J Biomed Eng. 2016;22:337–339.
  • Marzio R, Mauël J, Betz-Corradin S. CD69 and regulation of the immune function. Immunopharmacol Immunotoxicol. 1999;21(3):565–582. doi:10.3109/08923979909007126
  • Bieber T, Rieger A, Stingl G, Sander E, Wanek P, Strobel I. CD69, an early activation antigen on lymphocytes, is constitutively expressed by human epidermal Langerhans cells. J Invest Dermatol. 1992;98(5):771–776. doi:10.1111/1523-1747.ep12499948
  • Cibrián D, Sánchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol. 2017;47(6):946–953. doi:10.1002/eji.201646837
  • Mackay LK, Kallies A. Transcriptional Regulation of Tissue-Resident Lymphocytes. Trends Immunol. 2017;38(2):94–103.
  • Koyama-Nasu R, Wang Y, Hasegawa I, Endo Y, Nakayama T, Kimura MY. The cellular and molecular basis of CD69 function in anti-tumor immunity. Int Immunol. 2022;34(11):555–561. doi:10.1093/intimm/dxac024
  • Vazquez BN, Laguna T, Carabana J, Krangel MS, Lauzurica P. CD69 gene is differentially regulated in T and B cells by evolutionarily conserved promoter-distal elements. J Immunol. 2009;183(10):6513–6521.
  • López-Cabrera M, Muñoz E, Blázquez MV, Ursa MA, Santis AG, Sánchez-Madrid F. Transcriptional regulation of the gene encoding the human C-type lectin leukocyte receptor AIM/CD69 and functional characterization of its tumor necrosis factor-alpha-responsive elements. J Biol Chem. 1995;270(37):21545–21551. doi:10.1074/jbc.270.37.21545
  • Santis AG, López-Cabrera M, Hamann J, Strauss M, Sánchez-Madrid F. Structure of the gene coding for the human early lymphocyte activation antigen CD69: a C-type lectin receptor evolutionarily related with the gene families of natural killer cell-specific receptors. Eur J Immunol. 1994;24(7):1692–1697. doi:10.1002/eji.1830240735
  • Redondo-Antón J, Fontela MG, Notario L, et al. Functional characterization of a dual enhancer/promoter regulatory element leading human CD69 expression. Front Genet. 2020;11:552949. doi:10.3389/fgene.2020.552949
  • Castellanos Mdel C, López-Giral S, López-Cabrera M, de Landázuri MO. Multiple cis-acting elements regulate the expression of the early T cell activation antigen CD69. Eur J Immunol. 2002;32(11):3108–3117.
  • Laguna T, Notario L, Pippa R, et al. New insights on the transcriptional regulation of CD69 gene through a potent enhancer located in the conserved non-coding sequence 2. Mol Immunol. 2015;66(2):171–179. doi:10.1016/j.molimm.2015.02.031
  • Fontela MG, Notario L, Alari-Pahissa E, Lorente E, Lauzurica P. The Conserved Non-Coding Sequence 2 (CNS2) Enhances CD69 Transcription through Cooperation between the Transcription Factors Oct1 and RUNX1. Genes. 2019;10(9):651. doi:10.3390/genes10090651
  • Cedeno-Laurent F, Opperman M, Barthel SR, Kuchroo VK, Dimitroff CJ. Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression. J Immunol. 2012;188(7):3127–3137. doi:10.4049/jimmunol.1103433
  • Adamson AS, Collins K, Laurence A, O’Shea JJ. The Current STATus of lymphocyte signaling: new roles for old players. Curr Opin Immunol. 2009;21(2):161–166. doi:10.1016/j.coi.2009.03.013
  • de la Fuente H, Cruz-Adalia A, Martinez Del Hoyo G, et al. The leukocyte activation receptor CD69 controls T cell differentiation through its interaction with galectin-1. Mol Cell Biol. 2014;34(13):2479–2487. doi:10.1128/MCB.00348-14
  • Lin CR, Wei TY, Tsai HY, Wu YT, Wu PY, Chen ST. Glycosylation-dependent interaction between CD69 and S100A8/S100A9 complex is required for regulatory T-cell differentiation. FASEB j. 2015;29(12):5006–5017. doi:10.1096/fj.15-273987
  • Kimura MY, Koyama-Nasu R, Yagi R, Nakayama T. A new therapeutic target: the CD69-Myl9 system in immune responses. Semin Immunopathol. 2019;41(3):349–358. doi:10.1007/s00281-019-00734-7
  • Jiménez-Fernández M, de la Fuente H, Martín P, Cibrián D, Sánchez-Madrid F. Unraveling CD69 signaling pathways, ligands and laterally associated molecules. Excli j. 2023;22:334–351. doi:10.17179/excli2022-5751
  • Tsilingiri K, de la Fuente H, Relaño M, et al. Oxidized low-density lipoprotein receptor in lymphocytes prevents atherosclerosis and predicts subclinical disease. Circulation. 2019;139(2):243–255. doi:10.1161/CIRCULATIONAHA.118.034326
  • Jiménez-Fernández M, Rodríguez-Sinovas C, Cañes L, et al. CD69-oxLDL ligand engagement induces Programmed Cell Death 1 (PD-1) expression in human CD4 + T lymphocytes. Cell Mol Life Sci. 2022;79(8):468. doi:10.1007/s00018-022-04481-1
  • Barbi J, Pardoll D, Pan F. Metabolic control of the Treg/Th17 axis. Immunol Rev. 2013;252(1):52–77. doi:10.1111/imr.12029
  • Martín P, Gómez M, Lamana A, et al. CD69 association with Jak3/Stat5 proteins regulates Th17 cell differentiation. Mol Cell Biol. 2010;30(20):4877–4889. doi:10.1128/MCB.00456-10
  • Martín P, Gómez M, Lamana A, et al. The leukocyte activation antigen CD69 limits allergic asthma and skin contact hypersensitivity. J Allergy Clin Immunol. 2010;126(2):355–365.e351–353. doi:10.1016/j.jaci.2010.05.010
  • Yu L, Zhou B, Zhu Y, et al. HSF1 promotes CD69(+) Treg differentiation to inhibit colitis progression. Theranostics. 2023;13(6):1892–1905. doi:10.7150/thno.78078
  • Pollizzi KN, Powell JD. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat Rev Immunol. 2014;14(7):435–446. doi:10.1038/nri3701
  • Liu G, Yang K, Burns S, Shrestha S, Chi H. The S1P(1)-mTOR axis directs the reciprocal differentiation of T(H)1 and T(reg) cells. Nat Immunol. 2010;11(11):1047–1056. doi:10.1038/ni.1939
  • Dang EV, Barbi J, Yang HY, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell. 2011;146(5):772–784. doi:10.1016/j.cell.2011.07.033
  • Cheuk S, Schlums H, Gallais Sérézal I, et al. CD49a expression defines tissue-resident CD8(+) T Cells poised for cytotoxic function in human skin. Immunity. 2017;46(2):287–300. doi:10.1016/j.immuni.2017.01.009
  • Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defence. Nat Rev Immunol. 2016;16(2):79–89. doi:10.1038/nri.2015.3
  • Kumar BV, Ma W, Miron M, et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 2017;20(12):2921–2934. doi:10.1016/j.celrep.2017.08.078
  • Okła K, Farber DL, Zou W. Tissue-resident memory T cells in tumor immunity and immunotherapy. J Exp Med. 2021;218(4). doi:10.1084/jem.20201605
  • Connors TJ, Matsumoto R, Verma S, et al. Site-specific development and progressive maturation of human tissue-resident memory T cells over infancy and childhood. Immunity. 2023;56(8):1894–1909.e5. doi:10.1016/j.immuni.2023.06.008
  • Obinata H, Hla T. Sphingosine 1-phosphate and inflammation. Int Immunol. 2019;31(9):617–625. doi:10.1093/intimm/dxz037
  • Skon CN, Lee JY, Anderson KG, Masopust D, Hogquist KA, Jameson SC. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat Immunol. 2013;14(12):1285–1293. doi:10.1038/ni.2745
  • Shiow LR, Rosen DB, Brdicková N, et al. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature. 2006;440(7083):540–544. doi:10.1038/nature04606
  • Bankovich AJ, Shiow LR, Cyster JG. CD69 suppresses sphingosine 1-phosophate receptor-1 (S1P1) function through interaction with membrane helix 4. J Biol Chem. 2010;285(29):22328–22337. doi:10.1074/jbc.M110.123299
  • Mackay LK, Braun A, Macleod BL, et al. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. J Immunol. 2015;194(5):2059–2063. doi:10.4049/jimmunol.1402256
  • Walsh DA, Borges da Silva H, Beura LK, et al. The functional requirement for CD69 in establishment of resident memory CD8(+) T cells varies with tissue location. J Immunol. 2019;203(4):946–955. doi:10.4049/jimmunol.1900052
  • Cowman SJ, Koh MY. Revisiting the HIF switch in the tumor and its immune microenvironment. Trends Cancer. 2022;8(1):28–42. doi:10.1016/j.trecan.2021.10.004
  • Hasan F, Chiu Y, Shaw RM, Wang J, Yee C. Hypoxia acts as an environmental cue for the human tissue-resident memory T cell differentiation program. JCI Insight. 2021;6(10). doi:10.1172/jci.insight.138970
  • Thommen DS, Schumacher TN. T cell dysfunction in cancer. Cancer Cell. 2018;33(4):547–562. doi:10.1016/j.ccell.2018.03.012
  • Day CL, Kaufmann DE, Kiepiela P, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006;443(7109):350–354. doi:10.1038/nature05115
  • Ahmadzadeh M, Johnson LA, Heemskerk B, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood. 2009;114(8):1537–1544. doi:10.1182/blood-2008-12-195792
  • Bai Y, Hu M, Chen Z, Wei J, Du H. Single-Cell transcriptome analysis reveals RGS1 as a new marker and promoting factor for T-cell exhaustion in multiple cancers. Front Immunol. 2021;12:767070. doi:10.3389/fimmu.2021.767070
  • Beltra JC, Manne S, Abdel-Hakeem MS, et al. Developmental relationships of four exhausted CD8(+) T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. Immunity. 2020;52(5):825–841.e828. doi:10.1016/j.immuni.2020.04.014
  • Mita Y, Kimura MY, Hayashizaki K, et al. Crucial role of CD69 in anti-tumor immunity through regulating the exhaustion of tumor-infiltrating T cells. Int Immunol. 2018;30(12):559–567. doi:10.1093/intimm/dxy050
  • Yao D, Lai J, Lu Y, et al. Comprehensive analysis of the immune pattern of T cell subsets in chronic myeloid leukemia before and after TKI treatment. Front Immunol. 2023;14:1078118. doi:10.3389/fimmu.2023.1078118
  • Wei SM, Pan HL, Wang L, et al. Combination therapy with dendritic cell-based vaccine and anti-CD69 antibody enhances antitumor efficacy in renal cell carcinoma-bearing mice. Turk J Med Sci. 2017;47(2):658–667. doi:10.3906/sag-1601-198
  • Schietinger A, Philip M, Krisnawan VE, et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity. 2016;45(2):389–401. doi:10.1016/j.immuni.2016.07.011
  • Freeman CM, Han MK, Martinez FJ, et al. Cytotoxic potential of lung CD8(+) T cells increases with chronic obstructive pulmonary disease severity and with in vitro stimulation by IL-18 or IL-15. J Immunol. 2010;184(11):6504–6513. doi:10.4049/jimmunol.1000006
  • Gamradt P, Laoubi L, Nosbaum A, et al. Inhibitory checkpoint receptors control CD8(+) resident memory T cells to prevent skin allergy. J Allergy Clin Immunol. 2019;143(6):2147–2157.e2149. doi:10.1016/j.jaci.2018.11.048
  • Wang Z, Wang S, Goplen NP, et al. PD-1(hi) CD8(+) resident memory T cells balance immunity and fibrotic sequelae. Sci Immunol. 2019;4(36). doi:10.1126/sciimmunol.aaw1217
  • Gebhardt T, Park SL, Parish IA. Stem-like exhausted and memory CD8(+) T cells in cancer. Nat Rev Cancer. 2023;23(11):780–798. doi:10.1038/s41568-023-00615-0
  • Schenkel JM, Pauken KE. Localization, tissue biology and T cell state - implications for cancer immunotherapy. Nat Rev Immunol. 2023;23(12):807–823. doi:10.1038/s41577-023-00884-8
  • Ida S, Takahashi H, Kawabata-Iwakawa R, Mito I, Tada H, Chikamatsu K. Tissue-resident memory T cells correlate with the inflammatory tumor microenvironment and improved prognosis in head and neck squamous cell carcinoma. Oral Oncol. 2021;122:105508. doi:10.1016/j.oraloncology.2021.105508
  • Bruni E, Cimino MM, Donadon M, et al. Intrahepatic CD69(+)Vδ1 T cells re-circulate in the blood of patients with metastatic colorectal cancer and limit tumor progression. J Immunother Cancer. 2022;10(7). doi:10.1136/jitc-2022-004579
  • Zakeri N, Hall A, Swadling L, et al. Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma. Nat Commun. 2022;13(1):1372. doi:10.1038/s41467-022-29012-1
  • Anadon CM, Yu X, Hänggi K, et al. Ovarian cancer immunogenicity is governed by a narrow subset of progenitor tissue-resident memory T cells. Cancer Cell. 2022;40(5):545–557.e513. doi:10.1016/j.ccell.2022.03.008
  • Edwards J, Wilmott JS, Madore J, et al. CD103(+) tumor-resident CD8(+) T cells are associated with improved survival in immunotherapy-naïve melanoma patients and expand significantly during anti-PD-1 treatment. Clin Cancer Res. 2018;24(13):3036–3045. doi:10.1158/1078-0432.CCR-17-2257
  • Bryant C, Lau KHA, Vuckovic S, et al. Accumulation of CD69+ Terminal Effector CD8+ T cells occurs in the bone marrow of newly diagnosed Myeloma patients who lack protective clonal Vb expanded cytotoxic T cells. Clin Lymphoma Myeloma Leukemia. 2019;19(10):e29. doi:10.1016/j.clml.2019.09.043
  • Han Y, Yang Y, Chen Z, et al. Human hepatocellular carcinoma-infiltrating CD4+CD69+Foxp3⁻ regulatory T cell suppresses T cell response via membrane-bound TGF-β1. J Mol Med. 2014;92(5):539–550. doi:10.1007/s00109-014-1143-4
  • Koizume S, Kanayama T, Kimura Y, et al. Cancer cell-derived CD69 induced under lipid and oxygen starvation promotes ovarian cancer progression through fibronectin. Cancer Sci. 2023;114(6):2485–2498. doi:10.1111/cas.15774
  • Zhang Y, Jiang S, He F, et al. Single-cell transcriptomics reveals multiple chemoresistant properties in leukemic stem and progenitor cells in pediatric AML. Genome Biol. 2023;24(1):199. doi:10.1186/s13059-023-03031-7
  • Antony ML, Chang D, Noble-Orcutt KE, et al. CD69 marks a subpopulation of acute myeloid leukemia with enhanced colony forming capacity and a unique signaling activation state. Leuk Lymphoma. 2023;64(7):1262–1274. doi:10.1080/10428194.2023.2207698
  • Erlanson M, Grönlund E, Löfvenberg E, Roos G, Lindh J. Expression of activation markers CD23 and CD69 in B-cell non-Hodgkin’s lymphoma. Eur J Haematol. 1998;60(2):125–132. doi:10.1111/j.1600-0609.1998.tb01009.x
  • Del Poeta G, Del Principe MI, Zucchetto A, et al. CD69 is independently prognostic in chronic lymphocytic leukemia: a comprehensive clinical and biological profiling study. Haematologica. 2012;97(2):279–287. doi:10.3324/haematol.2011.052829
  • Montraveta A, Lee-Vergés E, Roldán J, et al. CD69 expression potentially predicts response to bendamustine and its modulation by ibrutinib or idelalisib enhances cytotoxic effect in chronic lymphocytic leukemia. Oncotarget. 2016;7(5):5507–5520. doi:10.18632/oncotarget.6685
  • Radulovic K, Manta C, Rossini V, et al. CD69 regulates type I IFN-induced tolerogenic signals to mucosal CD4 T cells that attenuate their colitogenic potential. J Immunol. 2012;188(4):2001–2013. doi:10.4049/jimmunol.1100765
  • Sancho D, Gómez M, Martinez Del Hoyo G, et al. CD69 targeting differentially affects the course of collagen-induced arthritis. J Leukoc Biol. 2006;80(6):1233–1241. doi:10.1189/jlb.1205749
  • Miki-Hosokawa T, Hasegawa A, Iwamura C, et al. CD69 controls the pathogenesis of allergic airway inflammation. J Immunol. 2009;183(12):8203–8215. doi:10.4049/jimmunol.0900646
  • Wang HY, Dai Y, Wang JL, Yang XY, Jiang XG. Anti-CD69 monoclonal antibody treatment inhibits airway inflammation in a mouse model of asthma. J Zhejiang Univ Sci B. 2015;16(7):622–631. doi:10.1631/jzus.B1400285
  • Zaim E, Ashino S, Osaka T, Yanagisawa N, Yagi J. Effect of cholecalciferol in food allergy mouse model is associated with decrease of CD69(+) CD4(+) T cells. J Nutr Sci Vitaminol. 2019;65(2):113–122. doi:10.3177/jnsv.65.113
  • Esplugues E, Sancho D, Vega-Ramos J, et al. Enhanced antitumor immunity in mice deficient in CD69. J Exp Med. 2003;197(9):1093–1106. doi:10.1084/jem.20021337
  • Zhao Q, Kuang DM, Wu Y, et al. Activated CD69+ T cells foster immune privilege by regulating IDO expression in tumor-associated macrophages. J Immunol. 2012;188(3):1117–1124. doi:10.4049/jimmunol.1100164
  • Koyama-Nasu R, Kimura MY, Kiuchi M, et al. CD69 imposes tumor-specific CD8+ T-cell Fate in tumor-draining lymph nodes. Cancer Immunol Res. 2023;11(8):1085–1099. doi:10.1158/2326-6066.CIR-22-0406
  • Esplugues E, Vega-Ramos J, Cartoixà D, et al. Induction of tumor NK-cell immunity by anti-CD69 antibody therapy. Blood. 2005;105(11):4399–4406. doi:10.1182/blood-2004-10-3854
  • Martín P, Blanco-Domínguez R, Sánchez-Díaz R. Novel human immunomodulatory T cell receptors and their double-edged potential in autoimmunity, cardiovascular disease and cancer. Cell Mol Immunol. 2021;18(4):919–935. doi:10.1038/s41423-020-00586-4
  • Suntharalingam G, Perry MR, Ward S, et al. Cytokine storm in a Phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355(10):1018–1028. doi:10.1056/NEJMoa063842
  • Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov. 2010;9(4):325–338. doi:10.1038/nrd3003
  • Pallardy M. Toxic effects and use of therapeutic monoclonal antibodies. Med Sci. 2009;25(12):1130–1134.
  • Camby I, Le Mercier M, Lefranc F, Kiss R. Galectin-1: a small protein with major functions. Glycobiology. 2006;16(11):137R–157R. doi:10.1093/glycob/cwl025
  • Rubinstein N, Alvarez M, Zwirner NW, et al. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege. Cancer Cell. 2004;5(3):241–251. doi:10.1016/S1535-6108(04)00024-8
  • Chou FC, Chen HY, Kuo CC, Sytwu HK. Role of Galectins in Tumors and in Clinical Immunotherapy. Int J Mol Sci. 2018;19(2):430. doi:10.3390/ijms19020430
  • Pérez Sáez JM, Hockl PF, Cagnoni AJ, et al. Characterization of a neutralizing anti-human galectin-1 monoclonal antibody with angioregulatory and immunomodulatory activities. Angiogenesis. 2021;24(1):1–5. doi:10.1007/s10456-020-09749-3
  • Wagner NB, Weide B, Gries M, et al. Tumor microenvironment-derived S100A8/A9 is a novel prognostic biomarker for advanced melanoma patients and during immunotherapy with anti-PD-1 antibodies. J Immunother Cancer. 2019;7(1):343. doi:10.1186/s40425-019-0828-1
  • Chen Y, Ouyang Y, Li Z, Wang X, Ma J. S100A8 and S100A9 in Cancer. Biochim Biophys Acta Rev Cancer. 2023;1878(3):188891. doi:10.1016/j.bbcan.2023.188891
  • Wu Z, Jiang D, Huang X, Cai M, Yuan K, Huang P. S100A8 as a promising biomarker and oncogenic immune protein in the tumor microenvironment: an integrative pancancer analysis. J Oncol. 2022;2022:6947652.
  • Deng S, Cheng D, Wang J, et al. MYL9 expressed in cancer-associated fibroblasts regulate the immune microenvironment of colorectal cancer and promotes tumor progression in an autocrine manner. J Exp Clin Cancer Res. 2023;42(1):294.
  • Wang JH, Zhang L, Huang ST, et al. Expression and prognostic significance of MYL9 in esophageal squamous cell carcinoma. PLoS One. 2017;12:4.
  • Lv M, Luo L, Chen X. The landscape of prognostic and immunological role of myosin light chain 9 (MYL9) in human tumors. Immun Inflamm Dis. 2022;10(2):241–254.