140
Views
5
CrossRef citations to date
0
Altmetric
Original Research

IgE-Mediated Systemic Anaphylaxis And Its Association With Gene Polymorphisms Of ACE, Angiotensinogen And Chymase

ORCID Icon, , &
Pages 343-361 | Published online: 08 Oct 2019

References

  • Terr AI. Anaphylaxis. Clin Rev Allergy. 1985;3:3–23.3884127
  • Mullins RJ, Wainstein BK, Barnes EH, Liew WK, Campbell DE. Increases in anaphylaxis fatalities in Australia from 1997–2013. Clin Exp Allergy. 2016;46:1099–1110. doi:10.1111/cea.1274827144664
  • Tejeclor A, Lonson MA, Moromoro M, Mugica Garcia MV. Epidemiology of anaphylaxis. Clin Exp Allergy. 2014;45:1027–1039.
  • Sheikh A, Alves B. Age, sex, geographical and socio-economic variations in admissions for anaphylaxis: analysis of four years of English hospital data. Clin Exp All. 2001;31:1571–1576. doi:10.1046/j.1365-2222.2001.01203.x
  • Bjornsson I, Graffeo LS. Improving diagnostic accuracy of anaphylaxis in acute care setting. West J Emerg Med. 2010;11(5):456–461.21293765
  • Lee J, Vadas P. Anaphylaxis: mechanisms and management. Clin Exp Allergy. 2011;41:923–938. doi:10.1111/j.1365-2222.2011.03779.x21668816
  • Pumphrey R, Stanworth SJ. The clinical spectrum of anaphylaxis in north-west England. Clin Exp All. 1996;26(12):1364–1370. doi:10.1111/j.1365-2222.1996.tb00537.x
  • Pumphrey RS. Lessons for management of anaphylaxis from a study of fatal reactions. Clin Exp Allergy. 2000;30:1144–1150. doi:10.1046/j.1365-2222.2000.00864.x10931122
  • Kajiwara N, Sasaki T, Bradding P. Activation of human mast cells through the platelet-activating factor receptor. J Allergy Clin Immunol. 2010;125:1136–1137. doi:10.1016/j.jaci.2010.01.056
  • Finkleman FD, Rothenburg ME, Brandt EB, Morris SC, Strait RT. Molecular mechanisms of anaphylaxis; lessons from studies with murine models. J Allergy Clin Immunol. 2005;115:449–457. doi:10.1016/j.jaci.2004.12.112515753886
  • Umsasunthar T, Leonardi-Bel J, Hodes M, et al. Incidence of fatal food anaphylaxis in people with food allergy: a systematic review and meta-analysis. Clin Exp Allergy. 2013;43:1333–1341. doi:10.1111/cea.1221124118190
  • Lieberman P, Simons FER. Anaphylaxis and cardiovascular disease: therapeutic dilemmas. Clin Exp Allergy. 2015;45:1288–1295. doi:10.1111/cea.1252025711241
  • Rutkowski K, Dua S, Nasser S. Anaphylaxis: current state of knowledge for the modern physician. Postgrad Med J. 2012;88:458–464. doi:10.1136/postgradmedj-2011-13063422467837
  • Berlin MC. Pathogenesis of IgE mediated food allergy. Clin Exp Allergy. 2015;45:1483–1496. doi:10.1111/cea.1259826215729
  • Braganza SC, Acworth JP, McKinnon DRL, Peake JE, Brown AFT. Paediatric emergency department anaphylaxis: different patterns from Adults. Arch Dis Child. 2006;91:159–163. doi:10.1136/adc.2004.06991416308410
  • Macdougall CF, Cart AJ, Clover AF. How dangerous is food allergy in childhood? The incidence of severe and fatal allergic reactions across UK and Ireland. Arch Dis Child. 2002;86:236–237. doi:10.1136/adc.86.4.23611919093
  • Smith PK, Hourihane JO, Lieberman P. Risk multipliers for severe food anaphylaxis. World Allergy Organ J. 2005;8:30. doi:10.1186/s40413-015-0081-0
  • Gupta R, Sheikh A, Strachan DP. Time trends in allergic disorders in the UK. Thorax. 2007;62:91–96. doi:10.1136/thx.2004.03884416950836
  • Vetander M, Protudjer JLP, Liija G, et al. Anaphylaxis to foods in a population of adolescents: incidence, characteristics and associated risks. Clin Exp Allergy. 2016;46:1575–1587. doi:10.1111/cea.1284227790764
  • Delage C, Irey NS. Anaphylactic deaths: a Clinicopathologic study of 43 cases. J Forensic Sci. 1972;17:525–540. doi:10.1520/JFS10141J4618279
  • Greenberger PA, Rotskoff BD, Lifschultz B. Fatal anaphylaxis: post-mortem findings and associated comorbid diseases. Ann Allergy Asthma Immunol. 2007;98:252–257. doi:10.1016/S1081-1206(10)60714-417378256
  • Stumpf JL, Shehab N, Patel AC. Safety of ACE-inhibitors in patients with insect venom allergies. Am Pharmacother. 2006;40:699–703. doi:10.1345/aph.1G295
  • Slade CA, Douglass JA. Changing practice: no need to stop ACE inhibitors for venom immunotherapy. Clin Exp Allergy. 2014;44:617–619. doi:10.1111/cea.1229524734926
  • Londe S. Blood pressure in children under office conditions. Clin Paediatr. 1966;5(2):71–78. doi:10.1177/000992286600500204
  • Strufald MW, Silva EMK, France MC, Puccini RF. Blood pressure levels in childhood:-probing the relative importance of birthweight and current size. Eur J Pediatr. 2009;168:619–625. doi:10.1007/s00431-008-0813-z18830709
  • Strufaldi MW, Silva EM, Franco MC, Puccini RF. Blood pressure in childhood: probing the relative importance of birth weight and current size. Eur J Pediatr. 2009;168:619–625. doi:10.1007/s00431-008-0813-z18830709
  • Pipkin FB, Smales OR, O’Callaghan MJ. Renin and angiotensin levels in children. Arch Dis Child. 1981;56:298–302. doi:10.1136/adc.56.4.2987018406
  • Vlajinac H, Miljus D, Adanja B, Marinkovic J, Sipetic S, Kovec N. Blood pressure levels in 7 to 14 year old Belgrade children. J Human Hypertens. 2003;17:761–765. doi:10.1038/sj.jhh.100161814578915
  • VanAcker KJ, Scharpe SL, Depreltere JR, Neels HM. Renin-angiotensin-aldosterone system in the healthy infant and child. Kidney Int. 1979;16:196–203. doi:10.1038/ki.1979.121513506
  • Silva AC, Diniz JS, Filho AR, Santos RAS. The renin angiotensin system in childhood hypertension: selective increase of angiotensin (1-7) in essential hypertension. J Pediatr. 2004;145:93–98. doi:10.1016/j.jpeds.2004.03.05515238914
  • Fiselier TJW, Lunen P, Monnens L, Van Munster JM, Peer P. Levels of renin, angiotensin-I and 2, ACE and aldosterone in infancy and childhood. Eur J Pediat. 1983;141:3–7. doi:10.1007/BF00445660
  • Sassard A, Incent M, Francois R, Cier JF. Plasma renin activity in normal subjects from infancy to puberty. J Clin Endocrinol Metab. 1975;40:524–525. doi:10.1210/jcem-40-3-5241117060
  • Dillon MJ, Ryness JM. Plasma renin activity and aldosterone concentration in children. Bmj. 1975;4:316–319. doi:10.1136/bmj.4.5992.3161192047
  • Slalker HP, Holland NH, Kotchen JM, Kotchen TA. Plasma renin activity in healthy children.The. J Pediatr. 1976;89:256–258. doi:10.1016/S0022-3476(76)80460-X940018
  • Kruger C, Rauh M, Dorr HG. Immunoreactive renin concentrations in healthy children from birth to adolescence. Clin Chimica Acta. 1998;274:15–27. doi:10.1016/S0009-8981(98)00044-8
  • Beneteau-Burnat B, Baudin B, Morgant G, Baumann FCH, Gilboudeau J. Serum angiotensin-converting enzyme in healthy and sarcoidotic children: comparison with the reference intervals for adults. Clin Chem. 1990;36:344–348.2154343
  • Gallagher PE, Li P, Lenhart MC, Brosnihan KB. Estrogen regulation of angiotensin-converting enzyme mRNA. Hypertension. 1999;33:323–328. doi:10.1161/01.hyp.33.1.3239931124
  • Fogo A, Yoshido Y, Yared A, Ichikawa I. Important of angiogenic action of angiotensin II in the glomerular growth of maturing kidneys. Kidney Int. 1990;38:1068–1074. doi:10.1038/ki.1990.3142074650
  • Franco MC, Casarini DE, Carneiro-Ramos MS, Sawaya AL, Barreto-Chaves MLM, Sesso R. Circulating renin-angiotensin system and catecholamine’s in childhood: is there a role for birthweight? Clin Sci. 2008;114:375–380. doi:10.1042/CS2007028417953515
  • Sippell WG, Dorr HG, Bidlingmaier F, Knorr D. Plasma levels of aldosterone, cortisone, 11-deoxycorticosterone, progesterone, 17-hydroxyprogerone, cortisol during infancy and childhood. Pediatr Res. 1980;14:39–46. doi:10.1203/00006450-198001000-000107360520
  • Howard PJ, Ambrosuis WT, Tewksbury DA, Wagner MA, Zhou L, Hanna MP. Serum Angiotensinogen concentration in relation to gonadal hormones, body size and genotype in growing young people. Hypertension. 1998;32:875–879. doi:10.1161/01.hyp.32.5.8759822447
  • Giacchetti G, Faloia E, Mariniello B, et al. Over expression of the renin angiotensin system in human visceral adipose tissue in normal and overweight subjects. Am J Hypertension. 2002;15(5):381–388. doi:10.1016/S0895-7061(02)02257-4
  • Staessen JA, Ginocchio B, Wang JG, et al. Genetic variability in the renin-angiotensin system: prevalence of alleles and genotypes. J Cardiovasc Risk. 1997;4:401–422.9865673
  • Herman K, Ring J. The renin angiotensin system and hymenoptera venom anaphylaxis. Clin Exp Allergy. 1993;23(9):762–769. doi:10.1111/j.1365-2222.1993.tb00364.x10779307
  • Herman K, Ring J. Hymenoptera venom anaphylaxis: may decrease levels of angiotensin peptides play a role? Clin Exp All. 1990;20(5):569–570. doi:10.1111/j.1365-2222.1990.tb03151.x
  • Summers CW, Pumphrey RS, Woods CN, Mcdowell G, Pemberton PW, Arkwright PD. Factors predicting anaphylaxis to peanuts and tree nuts in patients referred to a specialist centre. J Allergy Clin Immunol. 2008;121(3):632–638. doi:10.1016/j.jaci.2007.12.00318207562
  • Niedoszytko M, Ratajska M, Jassem E. AGT(M235T), ACE(I/D,I/I,D/D) polymorphism in patients with insect venom allergy preliminary results. Allergy. 2007;62(suppl 83):111. doi:10.1111/j.1398-9995.2007.01456.x
  • Mueller UR. Clinical Presentation and Pathogenesis in Venom Allergy. Stuggart: Gustav Fischer; 1990:35–60.
  • Varney VA, Warner A, Ghosh A, Nicholas A, Sumar N. IgE-mediated anaphylaxis to foods, venom, and drugs; influence of serum angiotensin converting enzyme levels and genotype. 2012 J Allergy. 9 article ID 258145.
  • Dimitropoulou C, Chatterjee A, McCloud L, Yetik-Anacak G, Catravas JD. Angiotensin, Bradykinin and the Endothelium. Hypertension. 2006;176:255–294.
  • Persson K, Safholm ACE, Andersson RGG, Ahlner J. GTN-induced angiotensin-converting enzyme (ACE) inhibition in healthy volunteers is dependent on ACE genotype. J Physiol Pharmacol. 2005;83:1117–1122. doi:10.1139/y05-118
  • Reyes-Engel A, Morcillo L, Aranda FJ, et al. Influence of Gender and Genetic Variability on Plasma Angiotensin Peptides. J Renin Aldosterone Angiotensin Sys. 2006;7(2):92–97. doi:10.3317/jraas.2006.015
  • Jan Danser AH, Deinum J, Osterop APRM, Admiral PJJ, Schalekamp M. Angiotensin I to angiotensin II conversion in the human forearm and leg: effects of angiotensin converting enzyme gene insertion/deletion polymorphisms. Hypertension. 1999;17:1867–1872. doi:10.1097/00004872-199917121-00014
  • Van Dijik MA, Kroon K, Kamper AM, Boomsma F, Danser AHJ, Chang PC. The angiotensin-converting enzyme gene polymorphism and responses to angiotensin and bradykinin in the human foreman. J Cardiovascular Pharmacol. 2000;35(30):484–490. doi:10.1097/00005344-200003000-00020
  • Woods D, Sanders J, Jones A, et al. The serum angiotensin-converting enzyme and angiotensin II response to altered posture and acute exercise, and the influence of ACE genotype. Eur J Appl Physiol. 2004;91:342–348. doi:10.1007/s00421-003-0993-114595564
  • Zee RYL, Schrader AP, Morris BJ. Effect of angiotensin-converting enzyme genotype on the renin-angiotensin components in hypertensives. Clin Chimica Acta. 1996;252:33–39. doi:10.1016/0009-8981(96)06310-3
  • Sumino H, Ichikawa S, Kanda T, et al. Hormone replacement therapy in postmenopausal women with essential hypertension increases circulating plasma levels of bradykinin. Ajh. 1999;12:1044–1047. doi:10.1016/s0895-7061(99)00094-110560792
  • Vliagoftis H, Dimitriadou V, Boucher W, et al. Estradiol augments while tamoxifen inhibits rat mast cell secretion. Int Arch Allergy Immunol. 1992;98:398–409. doi:10.1159/0002362171384869
  • Tsuda M, Iwai M, Li J-M, et al. Inhibitory effects of AT1 receptor blocker, olmesartan and estrogen on atherosclerosis via anti-oxidative stress. Hypertension. 2005;45:545–551. doi:10.1161/01.HYP.0000157409.88971.fc15723967
  • Chikhladze NM, Samedova KF, Sudomoina MA, et al. Comparative genetic analysis of different forms of low-renin arterial hypertension. Mol Biol. 2008;42:521–530. doi:10.1134/S0026893308040067
  • Stein U, Grob W. Rapid detection of the hypertension associated Met234 toThr allele of the human angiotensinogen gene. Hum Mol Genet. 1993;2(5):609–610. doi:10.1093/hmg/2.5.6098518804
  • Nalogowska K, Glosnicka BI, Lacka MJ, et al. Angiotensin-2 type-1 receptor A1166c polymorphism is associated with increased risk of pregnancy associated hypertension. Med Sci Monit. 2000;6(3):523–529.11208365
  • Pfeufer A, Osterziel KJ, Urata H, et al. Angiotensin-converting enzyme and heart Chymase gene polymorphisms in hypertrophic cardiomyopathy. Am J Cardiol. 1996;78:362–364. doi:10.1016/S0002-9149(96)00296-28759823
  • Ortlepp JR, Metmkat J, Mevissen V, et al. Relation between the angiotensinogen (AGT) M235T gene polymorphism and blood pressure in a large homogenous study population. J Human Hypertens. 2003;17:555–559. doi:10.1038/sj.jhh.100158712874613
  • Holla L, Vasku A, Znojil V, Siskova L, Vache J. Association of 3 gene polymorphisms with atopic diseases. J Allergy Clin Immunol. 1999;103(4):702–708. doi:10.1016/s0091-6749(99)70246-010200023
  • Joong J, Hyun-ju K, Lee I-K, Chung HT, Lee JH. Association between polymorphisms of the angiotensin-converting enzyme and angiotensinogen genes and allergic rhinitis in a Korean population. Ann Otol Rhinol Laryngol. 2004;113:297–302. doi:10.1177/00034894041130040815112973
  • Li H, Du Z, Zhang L, et al. The relationship between angiotensinogen gene polymorphisms and essential hypertension in a northern Han Chinese population. Hypertension. 2014;65(5):614–619.
  • Al-Hazzan A, Daoud MS, Ataya FS, Fouad D, Al-Jafari AA. Renin-angiotensin system gene polymorphisms among Saudi patients with coronary artery disease. J Biol Res. 2014;21(8):1–9.
  • Ortlepp JR, Metrikat J, Mevissen V, et al. Relation between the angiotensinogen (AGT) M235T gene polymorphism and blood pressure in a large, homogenous study population. J Human Hypertens. 2003;17:555–559. doi:10.1038/sj.jhh.100158712874613
  • Glavnik N, Petrovic D. M235T polymorphisms of the angiotensinogen gene and insertion/deletion polymorphisms of the angiotensin-1 converting enzyme gene in essential arterial hypertension in Caucasians. Folia Biol. 2007;53(2):69–73.
  • Buraczynska M, Pijanowski Z, Spasiewicz D, et al. Renin-angiotensin system gene polymorphisms: assessment of the risk of coronary heart disease. Kardiol Pol. 2003;58(1):1–9.14502296
  • Fernandez-Arcas N, Dieguez-lucena JL, Munoz-Moran E, et al. Both alleles of the M235T polymorphism of angiotensinogen gene can be a risk factor for myocardial infarction. Clin Genet. 2001;60:52–57. doi:10.1034/j.1399-0004.2001.600108.x11531970
  • Murugan M, Ramalingam K, Nazzuredin M, Rashed HA, Punamalai G. SNP’s and its correltion with hypertension: a comprehensive review. Dent Med Res. 2013;1:3–6.
  • Sugiyama A, Kishikawa R, Honjo S, et al. Angiotensin-converting enzyme genotype is a risk for wheat-dependant exercise-induced anaphylaxis sensitized with hydrolysed wheat protein. Allergol Int. 2016;65:115–116. doi:10.1016/j.alit.2015.09.00326666484
  • Sethi AA, Nordesgaard BG, Agerholm-larsen B. Angiotensinogen polymorphisms and elevated blood pressure in the general population. The copenhagen city heart study. Hypertension. 2001;37:875–881. doi:10.1161/01.hyp.37.3.87511244011
  • Jimenez PM, Conde C, Casanegra A, Romero C, Tabares AH, Orias M. Association of ACE genotype and predominantly diastolic hypertension: a preliminary study. J RAA Sys. 2007;8(1):42–44.
  • Miyazaki M, Takai S, Jin D, Muramatsu M. Pathological roles of angiotensin II produced by mast cell chymase and the effects of Chymase inhibition in animal models. Pharmacol Ther. 2006;112:668–676. doi:10.1016/j.pharmthera.2006.05.00816837049
  • Raymond WW, Su S, Makarova A, et al. α2-Macroglobulin capture allows detection of mast cell Chymase in serum and creates a reservoir of angiotensin II-generating activity. J Immunol. 2009;182:5770–5777. doi:10.4049/jimmunol.090012719380825
  • Fukani H, Okunishi H, Miyazaki M. Chymase: its pathophysiological roles and inhibitors. Curr Pharm Drugs. 1998;4:439–453.
  • Dell’talia LJ, Husain A. Dissecting the role of Chymase in angiotensin II formation and heart and blood vessels disease. Curr Opin Cardiol. 2002;17:374–379.12151872
  • Dell’italia LJ, Husain A. Dissecting the role of Chymase in angiotensin II formation and heart and blood vessel diseases. Curr Opin Cardiol. 2002;17:374–379.12151872
  • Mao XQ, Shirakawa T, Yoshikawa T, et al. Association between genetic variants of mast-cell chymase and eczema. Lancet. 1996;348:581–583. doi:10.1016/s0140-6736(95)10244-28774571
  • Welle M. Development, significance and heterogeneity of mast cells with particular regard to the mast cell specific proteases Chymase and tryptase. J Leucocyte Biol. 1997;61:233–245. doi:10.1002/jlb.61.3.233
  • Bacani C, Frishman WH. Chymase: a new pharmacological target in cardiovascular disease. Cardiol Rev. 2006;14(4):187–193. doi:10.1097/01.crd.0000195220.62533.c516788331
  • Takai S, Jin D, Miyazaki M. New approaches to blockade of the renin-angiotensin-aldosterone system: chymase as an important target to prevent organ damage. J Pharmacol Sci. 2010;113:301–309. doi:10.1254/jphs.10r05fm20675958
  • Heuston S, Hyland NP. Chymase inhibition as a pharmacological target: a role in inflammatory and functional gastrointestinal disorders. Brit J Pharmacol. 2012;167:732–740. doi:10.1111/j.1476-5381.2012.02055.x22646261
  • Zhou X, Whitworth HS, E-Khedr M, et al. Mast cell chymase: a useful marker in anaphylaxis. J Allergy Clin Immunol. 2011;127(2): abstracts AB143 number 539. doi:10.1016/j.jaci.2011.01.057
  • He S, Walls AF. The induction of a prolonged increase in microvascular permeability by human mast cell chymase. Eur J Pharmacol. 1998;352:91–98. doi:10.1016/S0014-2999(98)00343-49718272
  • Ortlepp JR, Janssens U, Bleckmann F, et al. A chymase gene variant is associated with atherosclerosis in venous coronary bypass grafts. Coron Artery Dis. 2001;12:493–497.11696688
  • Ortlepp JR, Janssens U, Bleckmann F, et al. A chymase gene variant is associated with atherosclerosis in venous coronary artery bypass grafts. J Coronary Artery Dis. 2001;12:493–497. doi:10.1097/00019501-200109000-00008
  • Ahmad S, Varagic J, Groban L, et al. Angiotensin (1-12); A chymase mediated cellular angiotensin II substrate. Curr Hypertens Res. 2014;16:429–437. doi:10.1007/s11906-014-0429-9
  • Schwartz LB, Yunginger JW, Miller J, Bokhari R, Dull D. Time course of appearance and disappearance of human mast cell tryptase in the circulation after anaphylaxis. J Clin Invest. 1989;83:1551–1555. doi:10.1172/JCI1140512468689
  • Rubinstein I, Nadel JA, Graf PD, Caughey GH. Mast cell chymase potentiates histamine-induced wheal formation in the skin of ragweed-allergic dogs. J Clin Invest. 1990;86:555–559. doi:10.1172/JCI1147442384602
  • Saarinen JV, Harvima RJ, Naukkarinen A, Horsmanheimo M, Harvima IT. The release of histamine is associated with the inactivation of mast cell chymase during immediate allergic wheal reactions in the skin. Clin Exp Allergy. 2001;31:593–601. doi:10.1046/j.1365-2222.2001.01030.x11359428
  • Nisho H, Takai S, Miyazaki M, et al. Usefulness of serum mast cell-specific chymase levels for postmortem diagnosis of anaphylaxis. Int J Legal Med. 2005;119:331–334. doi:10.1007/s00414-005-0524-115735956
  • Wong CK, Ng SSM, Lun SWM, Cao J, Lam CWK. Signaling mechanisms regulating the activation of human eosinophils by mast-cell-derived Chymase; implications for mast-cell-eosinophil interaction in allergic inflammation. Immunology. 2009;126:579–587. doi:10.1111/j.1365-2567.2008.02916.x18771439
  • Caughey GH. Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev. 2007;217:141–154. doi:10.1111/j.1600-065X.2007.00509.x17498057
  • Guilarte M, Sala-Cunill A, Luengo O, Labrador-Horrillo M, Cardona V. The mast cell contact and coagulation system connection in anaphylaxis. Front Immunol.2017;8:846.28798744
  • Proud D, Togias A, Nacleiro RM, Crush SA, Norman PS, Lichtenstein LM. Kinins are generated in vivo following airway challenge of allergic individuals with allergen. J Clin Invest. 1983;72(5):1678–1685. doi:10.1172/JCI1111276355183
  • Stone SF, Brown SG. Mediators released during human anaphylaxis. Curr Allergy Asthma Rev. 2012;12(1):33–41. doi:10.1007/s11882-011-0231-6
  • Caughey GH. Mast cell proteases as pharmacological targets. Eur J Pharmacol. 2016;778:44–55. doi:10.1016/j.ejphar.2015.04.04525958181
  • Imamura T, Dubin A, Moore W, Tanaka R, Travis J. Induction of vascular permeability enhancement by human tryptase : dependence on activation of prekallikrein and direct release of bradykinin from kininogens. Lab Invest. 1996;74(5):861–870.8642782
  • Weidinger S, Rummier L, Klopp N, et al. Association study of mast cell Chymase polymorphisms with atopy. Allergy. 2005;60(10):1256–1261. doi:10.1111/j.1398-9995.2005.00879.x16134991
  • Sharma S, Rajan UM, Kumar A, Soni A, Ghosh B. A novel (TG) n (GA) m repeat polymorphism 254bp downstream of the mast cell Chymase (CMA1) gene is associated with atopic asthma and total serum IgE levels. J Hum Genet. 2005;50(6):276–282. doi:10.1007/s10038-005-0252-x15924217
  • Hossny EM, Amr NH, Elsayed SB, Nasr RA, Ibraheim EM. Association of polymorphisms in the mast cell chymase gene promoter region (−1903 G/A) and (TG) n (GA) m repeat downstream of the gene with bronchial asthma in children. J Investing Allergol Clin Immunol. 2008;18(5):376–381.
  • Iwanaga T, McEuen A, Walls AF, et al. Polymorphisms of the mast cell Chymase(CMA1) promotor region: lack of association with asthma but association with serum total Immunoglobulin E levels in aduld atopic dermatitis. Clin Exp Allergy. 2004;34(7):1037–1042. doi:10.1111/j.1365-2222.2004.02000.x15248847
  • He S, Walls AF. The prolonged increase in microvascular permeability by human mast cells Chymase. Eur J Pharmacol. 1998;352:91–98. doi:10.1016/S0014-2999(98)00343-49718272
  • Orlowska-Baranowska E, Gora J, Baranowski R, et al. Association of the commeon genetic polymorphisms and haplotypes of the Chymase gene with left ventricular mass in male patients with symptomatic aortic stenosis. PLoS ONE. 2014;9(5):1–10.
  • Veerappan A, Reid AC, Estephan R, et al. Mast cell renin and a local renin-angiotensin system in the airway: role in bronchoconstriction. PNAS. 2008;105(4):1315–1320. doi:10.1073/pnas.070973910518202178
  • Renne T. The vascular side of plasma kallikrein. Blood. 2015;125(4):589–590. doi:10.1182/blood-2014-11-60901625614637
  • European Marketing Authorization website Date 24/8/2012 EU/1/07/405/001-010.
  • Przybilla RF, Bilo B, Muller U, Aberer W. Predictors of severe systemic anaphylaxic reactions in patients with hymenoptera venom allergy. J Allergy Clin Immunol. 2009;124:1047–1054. doi:10.1016/j.jaci.2009.08.02719895993
  • Reber LL, Hernandez JD, Galli SJ. The pathophysiology of anaphylaxis. J Allergy Clin Immunol. 2007;140:335–348. doi:10.1016/j.jaci.2017.06.003
  • Fukuda Y, Kawashima H, Saito K, Inomata N, Matsui M, Nakanishi T. Effect of human plasma-type plateletactivating factor acetylhydrolase in two anaphylactic shock models. Eur J Pharmacol. 2000;390(1–2):203–207. doi:10.1016/S0014-2999(99)00920-610708725
  • Arimura A, Harada M. Differential effect of a PAF antagonist CV-3988 on active and passive anaphylactic shock in various mouse strains. Lipids. 1991;26(12):1386–1390. doi:10.1007/BF025365721819738
  • Vadas P, Gold M, Perelman B, et al. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N Engl J Med. 2008;358(1):28–35. doi:10.1056/NEJMoa07003018172172
  • Campbell DJ, Alexiou T, Xiao HD, et al. Effect of reduced angiotensin-converting enzyme gene expression and angiotensin-converting enzyme inhibition on angiotensin and bradykinin peptide levels in mice. Hypertension. 2004;43(4):854–859. doi:10.1161/01.HYP.0000119190.06968.f114769811
  • Gill P, Jindal NL, Jagdis A, Vadas P. Platelets in the immune response; Revisiting platelet activating factor in anaphylaxis. J Allergy Clin Immunol. 2015;135(6):1424–1432. doi:10.1016/j.jaci.2015.04.01926051949
  • Kajiwara N, Sasaki T, Braddind P, et al. 2010 Activation of human mast cells through the platelet-activating factor receptor. J Allergy Clin Immunology. 125(5):1137–1145.20392487
  • Pretorius M, Luther JM, Murphey LJ, Vaughan DE, Brown NJ. Angiotensin-converting enzyme inhibition increases basal vascular tissue plasminogen activator release in women but not in men. Arterioscler Thromb Vasc Biol. 2005;25(11):2435–2440. doi:10.1161/01.ATV.0000186185.13977.9416166566
  • Ortega T, Paul M, Ackermann A, Fern´andez-Alfonso MS, De Rojas RS, Gonz´alez C. Modulation of angiotensinconverting enzyme by nitric oxide. Br J Pharmacol. 1998;124(2):291–298. doi:10.1038/sj.bjp.07018369641545
  • Finkelman FD, Rothenberg ME, Brandt EB, Morris SC, Strait RT. Molecular mechanisms of anaphylaxis: lessons from studies with murine models. J Allergy Clin Imunol. 2005;115(3):449–457. doi:10.1016/j.jaci.2004.10.029
  • Hox V, Desai A, Bandara G, Gilfillan AM, Metcalfe DD, Olivera A. Estrogen increases the severity of anaphylaxis in female mice through enhanced endothelial nitric oxide synthase expression and nitric oxide production.J. Allergy Clin Immunol. 2015;135(3):729–736. doi:10.1016/j.jaci.2014.11.003
  • Dimitropoulou C, Chatterjee A, McCloud L, Yetik-Anacak G, Catravas JD. Angiotensin, bradykinin and the endothelium. Handb Exp Pharmacol. 2006;(176):255–294.16999222
  • Mombouli JV, Vanhoutte PM. Heterogeneity of endothelium-dependent vasodilator effects of angiotensinconverting enzyme inhibitors: role of bradykinin generation during ACE inhibition. J Cardiovasc Pharmacol. 1992;20(9):S74–S82. doi:10.1097/00005344-199200209-00014
  • Lowenstein CJ, Michel T. What’s in a name? eNOS and anaphylactic shock. Jci. 2006. doi:10.1172/JCI29406
  • Castells M. Diagnosis and management of anaphylaxis in precision medicine. J Allergy Clin Immunol. 2017;140(2):321–333. doi:10.1016/j.jaci.2017.06.01228780940
  • Rajj L. Hypertension and cardiovascular risk factors: role of the angiotensin II-nitric oxide interaction. Hypertension. 2001;37(2):767–773. doi:10.1161/01.hyp.37.2.76711230371
  • Husain K, Hernandez W, Ansari RA, Ferder L. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World J Boil Chem. 2015;6(3):209–217. doi:10.4331/wjbc.v6.i3.209
  • Schmermund A, Lerman LO, Ritman EL, Rumberger JA. Cardiac production of Angiotensin II and its pharmacologic inhibition: effects on the coronary circulation. Mayo Clin Proc. 1999;74:503–513. doi:10.4065/74.5.50310319084