178
Views
5
CrossRef citations to date
0
Altmetric
Review

The Role of Mast Cells in Aspirin-Exacerbated Respiratory Disease (AERD) Pathogenesis: Implications for Future Therapeutics

ORCID Icon, & ORCID Icon
Pages 463-470 | Published online: 12 Oct 2020

References

  • Rajan JP, Wineinger NE, Stevenson DD, et al. Prevalence of aspirin-exacerbated respiratory disease among asthmatic patients: a meta-analysis of the literature. J Allergy Clin Immunol. 2015;135(3):676–81 e1. doi:10.1016/j.jaci.2014.08.02025282015
  • Ta V, White AA. Survey-defined patient experiences with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol Pract. 2015;3(5):711–718. doi:10.1016/j.jaip.2015.03.00125858054
  • Steinke JW, Payne SC, Borish L. Eosinophils and mast cells in aspirin-exacerbated respiratory disease. Immunol Allergy Clin North Am. 2016;36(4):719–734. doi:10.1016/j.iac.2016.06.00827712766
  • Kirshenbaum AS, Goff JP, Kessler SW, et al. Effect of IL-3 and stem cell factor on the appearance of human basophils and mast cells from CD34+ pluripotent progenitor cells. J Immunol. 1992;148(3):772–777.1370517
  • Siebenhaar F, Redegeld FA, Bischoff SC, et al. Mast cells as drivers of disease and therapeutic targets. Trends Immunol. 2018;39(2):151–162. doi:10.1016/j.it.2017.10.00529196147
  • Buchheit KM, Cahill KN, Katz HR, et al. Thymic stromal lymphopoietin controls prostaglandin D2 generation in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2016;137(5):1566–1576 e5. doi:10.1016/j.jaci.2015.10.02026691435
  • Bochenek G, Stachura T, Szafraniec K, et al. Diagnostic accuracy of urinary LTE4 measurement to predict aspirin-exacerbated respiratory disease in patients with asthma. J Allergy Clin Immunol Pract. 2018;6(2):528–535.28888846
  • Cahill KN, Murphy K, Singer J, et al. Plasma tryptase elevation during aspirin-induced reactions in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2019;143(2):799–803 e2. doi:10.1016/j.jaci.2018.10.00730339852
  • Nasser SM, Pfister R, Christie PE, et al. Inflammatory cell populations in bronchial biopsies from aspirin-sensitive asthmatic subjects. Am J Respir Crit Care Med. 1996;153(1):90–96. doi:10.1164/ajrccm.153.1.85421688542168
  • Johns CB, Laidlaw TM. Elevated total serum IgE in nonatopic patients with aspirin-exacerbated respiratory disease. Am J Rhinol Allergy. 2014;28(4):287–289. doi:10.2500/ajra.2014.28.405425197914
  • Buchheit KM, Dwyer DF, Ordovas-Montanes J, et al. IL-5Rα marks nasal polyp IgG4- and IgE-expressing cells in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2020;145(6):1574–1584. doi:10.1016/j.jaci.2020.02.03532199912
  • Van Zele T, Gevaert P, Watelet JB, et al. Staphylococcus aureus colonization and IgE antibody formation to enterotoxins is increased in nasal polyposis. J Allergy Clin Immunol. 2004;114(4):981–3. doi:10.1016/j.jaci.2004.07.01315480349
  • Perez-Novo CA, Kowalski ML, Kuna P, et al. Aspirin sensitivity and IgE antibodies to Staphylococcus aureus enterotoxins in nasal polyposis: studies on the relationship. Int Arch Allergy Immunol. 2004;133(3):255–60. doi:10.1159/00007683214976394
  • Shamji MH, Thomsen I, Layhadi JA, et al. Broad IgG repertoire in patients with chronic rhinosinusitis with nasal polyps regulates proinflammatory IgE responses. J Allergy Clin Immunol. 2019;143(6):2086–2094 e2. doi:10.1016/j.jaci.2019.02.00130763592
  • Harrington LS, Lucas R, McMaster SK, et al. COX-1, and not COX-2 activity, regulates airway function: relevance to aspirin-sensitive asthma. FASEB J. 2008;22(11):4005–10. doi:10.1096/fj.08-10797918753249
  • Li L, Laidlaw T. Cross-reactivity and tolerability of celecoxib in adult patients with NSAID hypersensitivity. J Allergy Clin Immunol Pract. 2019;7(8):2891–2893 e4. doi:10.1016/j.jaip.2019.04.04231100553
  • Perez-Novo CA, Watelet JB, Claeys C, et al. Prostaglandin, leukotriene, and lipoxin balance in chronic rhinosinusitis with and without nasal polyposis. J Allergy Clin Immunol. 2005;115(6):1189–96. doi:10.1016/j.jaci.2005.02.02915940133
  • Kay LJ, Yeo WW, Peachell PT. Prostaglandin E2 activates EP2 receptors to inhibit human lung mast cell degranulation. Br J Pharmacol. 2006;147(7):707–13. doi:10.1038/sj.bjp.070666416432506
  • Rastogi S, Willmes DM, Nassiri M, et al. PGE2 deficiency predisposes to anaphylaxis by causing mast cell hyper-responsiveness. J Allergy Clin Immunol. 2020. doi:10.1016/j.jaci.2020.03.046
  • Liu T, Laidlaw TM, Katz HR, et al. Prostaglandin E2 deficiency causes a phenotype of aspirin sensitivity that depends on platelets and cysteinyl leukotrienes. Proc Natl Acad Sci U S A. 2013;110(42):16987–92. doi:10.1073/pnas.131318511024085850
  • Austen KF, Maekawa A, Kanaoka Y, et al. The leukotriene E4 puzzle: finding the missing pieces and revealing the pathobiologic implications. J Allergy Clin Immunol. 2009;124(3):406–14; quiz 415–6. doi:10.1016/j.jaci.2009.05.046
  • Paruchuri S, Jiang Y, Feng C, et al. Leukotriene E4 activates peroxisome proliferator-activated receptor γ and induces prostaglandin D2 generation by human mast cells. J Biol Chem. 2008;283(24):16477–87. doi:10.1074/jbc.M70582220018411276
  • Weller CL, Collington SJ, Brown JK, et al. Leukotriene B4, an activation product of mast cells, is a chemoattractant for their progenitors. J Exp Med. 2005;201(12):1961–71. doi:10.1084/jem.2004240715955837
  • Lazarinis N, Bood J, Gomez C, et al. Leukotriene E4 induces airflow obstruction and mast cell activation through the cysteinyl leukotriene type 1 receptor. J Allergy Clin Immunol. 2018;142(4):1080–1089. doi:10.1016/j.jaci.2018.02.02429518425
  • Bankova LG, Lai J, Yoshimoto E, et al. Leukotriene E4 elicits respiratory epithelial cell mucin release through the G-protein–coupled receptor, GPR99. Proc Natl Acad Sci U S A. 2016;113(22):6242–7. doi:10.1073/pnas.160595711327185938
  • Stevens WW, Staudacher AG, Hulse KE, et al. Activation of the 15-lipoxygenase pathway in aspirin exacerbated respiratory disease. J Allergy Clin Immunol. 2020. doi:10.1016/j.jaci.2020.04.031
  • Allakhverdi Z, Smith DE, Comeau MR, et al. Cutting edge: the ST2 ligand IL-33 potently activates and drives maturation of human mast cells. J Immunol. 2007;179(4):2051–4. doi:10.4049/jimmunol.179.4.205117675461
  • Pan D, Buchheit KM, Samuchiwal SK, et al. COX-1 mediates IL-33-induced extracellular signal-regulated kinase activation in mast cells: implications for aspirin sensitivity. J Allergy Clin Immunol. 2019;143(3):1047–1057 e8. doi:10.1016/j.jaci.2018.06.03330017554
  • Valera FCP, Ruffin M, Adam D, et al. Staphylococcus aureus impairs sinonasal epithelial repair: effects in patients with chronic rhinosinusitis with nasal polyps and control subjects. J Allergy Clin Immunol. 2019;143(2):591–603 e3. doi:10.1016/j.jaci.2018.05.03529935218
  • Lan F, Zhang N, Holtappels G, et al. Staphylococcus aureus induces a mucosal type 2 immune response via epithelial Cell–derived cytokines. Am J Respir Crit Care Med. 2018;198(4):452–463. doi:10.1164/rccm.201710-2112OC29768034
  • Erjefalt JS. Mast cells in human airways: the culprit? Eur Respir Rev. 2014;23(133):299–307. doi:10.1183/09059180.0000501425176966
  • Allakhverdi Z, Comeau MR, Jessup HK, et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med. 2007;204(2):253–8. doi:10.1084/jem.2006221117242164
  • Iikura M, Suto H, Kajiwara N, et al. IL-33 can promote survival, adhesion and cytokine production in human mast cells. Lab Invest. 2007;87(10):971–8. doi:10.1038/labinvest.370066317700564
  • Liu T, Kanaoka Y, Barrett NA, et al. Aspirin-exacerbated respiratory disease involves a cysteinyl leukotriene-driven IL-33-mediated mast cell activation pathway. J Immunol. 2015;195(8):3537–45. doi:10.4049/jimmunol.150090526342029
  • Samuchiwal SK, Balestrieri B, Raff H, et al. Endogenous prostaglandin E2 amplifies IL-33 production by macrophages through an E prostanoid (EP)2/EP4-cAMP-EPAC-dependent pathway. J Biol Chem. 2017;292(20):8195–8206. doi:10.1074/jbc.M116.76942228341741
  • Kaieda S, Shin K, Nigrovic PA, et al. Synovial fibroblasts promote the expression and granule accumulation of tryptase via interleukin-33 and its receptor ST-2 (IL1RL1). J Biol Chem. 2010;285(28):21478–86. doi:10.1074/jbc.M110.11499120427273
  • Yamamoto M, Okano M, Fujiwara T, et al. Expression and characterization of PGD2 receptors in chronic rhinosinusitis: modulation of DP and CRTH2 by PGD2. Int Arch Allergy Immunol. 2009;148(2):127–36. doi:10.1159/00015574318802357
  • Borish L. Aspirin-exacerbated respiratory disease: a syndrome of mast cell-mediated PgD2 overproduction. Am J Respir Crit Care Med. 2019;200(6):651–652. doi:10.1164/rccm.201904-0716ED31026400
  • Feng X, Ramsden MK, Negri J, et al. Eosinophil production of prostaglandin D2 in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2016;138(4):1089–1097 e3. doi:10.1016/j.jaci.2016.04.04227423494
  • Adamjee J, Suh Y-J, Park H-S, et al. Expression of 5-lipoxygenase and cyclooxygenase pathway enzymes in nasal polyps of patients with aspirin-intolerant asthma. J Pathol. 2006;209(3):392–9. doi:10.1002/path.197916583357
  • Szczeklik A, Sladek K, Dworski R, et al. Bronchial aspirin challenge causes specific eicosanoid response in aspirin-sensitive asthmatics. Am J Respir Crit Care Med. 1996;154(6 Pt 1):1608–14.8970343
  • Cahill KN, Bensko JC, Boyce JA, et al. Prostaglandin D(2): a dominant mediator of aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2015;135(1):245–52. doi:10.1016/j.jaci.2014.07.03125218285
  • Sladek K, Szczeklik A. Cysteinyl leukotrienes overproduction and mast cell activation in aspirin-provoked bronchospasm in asthma. Eur Respir J. 1993;6(3):391–9.8386106
  • Eastman JJ, Cavagnero KJ, Deconde AS, et al. Group 2 innate lymphoid cells are recruited to the nasal mucosa in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2017;140(1):101–108 e3. doi:10.1016/j.jaci.2016.11.02328279492
  • Tyrak KE, Kupryś-Lipińska I, Czarnobilska E, et al. Sputum biomarkers during aspirin desensitization in nonsteroidal anti-inflammatory drugs exacerbated respiratory disease. Respir Med. 2019;152:51–59. doi:10.1016/j.rmed.2019.04.02131128610
  • Cahill KN, Cui J, Kothari P, et al. Unique effect of aspirin therapy on biomarkers in aspirin-exacerbated respiratory disease: a prospective trial. Am J Respir Crit Care Med. 2019;200(6):704–711. doi:10.1164/rccm.201809-1755OC30978291
  • Yoshimura T, Yoshikawa M, Otori N, et al. Correlation between the prostaglandin D(2)/E(2) ratio in nasal polyps and the recalcitrant pathophysiology of chronic rhinosinusitis associated with bronchial asthma. Allergol Int. 2008;57(4):429–36. doi:10.2332/allergolint.O-08-54518797183
  • Hayashi H, Fukutomi Y, Mitsui C, et al. Omalizumab for aspirin-hypersensitivity and leukotriene overproduction in aspirin-exacerbated respiratory disease: a randomized trial. Am J Respir Crit Care Med. 2020;201(12):1488–1498. doi:10.1164/rccm.201906-1215OC32142372
  • Larsson AK, Hagfjärd A, Dahlén SE, et al. Prostaglandin D(2) induces contractions through activation of TP receptors in peripheral lung tissue from the guinea pig. Eur J Pharmacol. 2011;669(1–3):136–42. doi:10.1016/j.ejphar.2011.07.04621872585
  • Li KL, Lee AY, Abuzeid WM. Aspirin exacerbated respiratory disease: epidemiology, pathophysiology, and management. Med Sci. 2019;7(3):45.