356
Views
22
CrossRef citations to date
0
Altmetric
Review

Pathobiology of Airway Remodeling in Asthma: The Emerging Role of Integrins

ORCID Icon &
Pages 595-610 | Published online: 11 May 2022

References

  • Vos T, Lim SS, Abbafati C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1204–1222. doi:10.1016/S0140-6736(20)30925-9
  • Hough KP, Curtiss ML, Blain TJ, et al. Airway remodeling in asthma. Front Med. 2020;7:191. doi:10.3389/fmed.2020.00191
  • O’Byrne PM, Pedersen S, Lamm CJ, et al. Severe exacerbations and decline in lung function in asthma. Am J Respir Crit Care Med. 2009;179:19–24. doi:10.1164/rccm.200807-1126OC
  • Sorkness RL, Bleecker ER, Busse WW, et al. Lung function in adults with stable but severe asthma: air trapping and incomplete reversal of obstruction with bronchodilation. J Appl Physiol. 2008;104:394–403. doi:10.1152/japplphysiol.00329.2007
  • Ortega H, Yancey SW, Keene ON, et al. Asthma exacerbations associated with lung function decline in patients with severe eosinophilic asthma. J Allergy Clin Immunol Pract. 2018;6:980–986 e981. doi:10.1016/j.jaip.2017.12.019
  • Krings JG, Goss CW, Lew D, et al. Quantitative CT metrics are associated with longitudinal lung function decline and future asthma exacerbations: results from SARP-3. J Allergy Clin Immunol. 2021;148:752–762. doi:10.1016/j.jaci.2021.01.029
  • Kasahara K, Shiba K, Ozawa T, Okuda K, Adachi M. Correlation between the bronchial subepithelial layer and whole airway wall thickness in patients with asthma. Thorax. 2002;57:242–246. doi:10.1136/thorax.57.3.242
  • Kozlik P, Zuk J, Bartyzel S, et al. The relationship of airway structural changes to blood and bronchoalveolar lavage biomarkers, and lung function abnormalities in asthma. Clin Exp Allergy. 2020;50:15–28. doi:10.1111/cea.13501
  • Niimi A, Matsumoto H, Amitani R, et al. Airway wall thickness in asthma assessed by computed tomography. Relation to clinical indices. Am J Respir Crit Care Med. 2000;162:1518–1523. doi:10.1164/ajrccm.162.4.9909044
  • Aysola RS, Hoffman EA, Gierada D, et al. Airway remodeling measured by multidetector CT is increased in severe asthma and correlates with pathology. Chest. 2008;134:1183–1191. doi:10.1378/chest.07-2779
  • Lezmi G, Gosset P, Deschildre A, et al. Airway remodeling in preschool children with severe recurrent wheeze. Am J Respir Crit Care Med. 2015;192:164–171. doi:10.1164/rccm.201411-1958OC
  • Saglani S, Payne DN, Zhu J, et al. Early detection of airway wall remodeling and eosinophilic inflammation in preschool wheezers. Am J Respir Crit Care Med. 2007;176:858–864. doi:10.1164/rccm.200702-212OC
  • O’Reilly R, Ullmann N, Irving S, et al. Increased airway smooth muscle in preschool wheezers who have asthma at school age. J Allergy Clin Immunol. 2013;131:1024–1032, 1032 e1021-1016. doi:10.1016/j.jaci.2012.08.044
  • Ye WJ, Xu W-G, Guo X-J, et al. Differences in airway remodeling and airway inflammation among moderate-severe asthma clinical phenotypes. J Thorac Dis. 2017;9:2904–2914. doi:10.21037/jtd.2017.08.01
  • Hill MR, Philp CJ, Billington CK, et al. A theoretical model of inflammation- and mechanotransduction-driven asthmatic airway remodelling. Biomech Model Mechanobiol. 2018;17:1451–1470. doi:10.1007/s10237-018-1037-4
  • Sjoberg LC, Nilsson AZ, Lei Y, et al. Interleukin 33 exacerbates antigen driven airway hyperresponsiveness, inflammation and remodeling in a mouse model of asthma. Sci Rep. 2017;7:4219. doi:10.1038/s41598-017-03674-0
  • John AE, Wilson MR, Habgood A, et al. Loss of epithelial G q and G 11 signaling inhibits TGFβ production but promotes IL-33–mediated macrophage polarization and emphysema. Sci Signal. 2016;9:ra104. doi:10.1126/scisignal.aad5568
  • Kurowska-Stolarska M, Stolarski B, Kewin P, et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol. 2009;183:6469–6477. doi:10.4049/jimmunol.0901575
  • Wang Q, Hong L, Chen M, et al. Targeting M2 macrophages alleviates airway inflammation and remodeling in asthmatic mice via miR-378a-3p/GRB2 pathway. Front Mol Biosci. 2021;8:717969. doi:10.3389/fmolb.2021.717969
  • Grainge CL, Lau LCK, Ward JA, et al. Effect of bronchoconstriction on airway remodeling in asthma. N Engl J Med. 2011;364:2006–2015. doi:10.1056/NEJMoa1014350
  • Oenema TA, Smit M, Smedinga L, et al. Muscarinic receptor stimulation augments TGF-beta1-induced contractile protein expression by airway smooth muscle cells. Am J Physiol. 2012;303:L589–597. doi:10.1152/ajplung.00400.2011
  • Tatler AL, John AE, Jolly L, et al. Integrin alphavbeta5-mediated TGF-beta activation by airway smooth muscle cells in asthma. J Immunol. 2011;187:6094–6107. doi:10.4049/jimmunol.1003507
  • Oenema TA, Maarsingh H, Smit M, et al. Bronchoconstriction induces TGF-beta release and airway remodelling in guinea pig lung slices. PLoS One. 2013;8:e65580. doi:10.1371/journal.pone.0065580
  • Yocum GT, Chen J, Choi CH, et al. Role of transient receptor potential vanilloid 1 in the modulation of airway smooth muscle tone and calcium handling. Am J Physiol. 2017;312:L812–L821. doi:10.1152/ajplung.00064.2017
  • Choi JY, Lee HY, Hur J, et al. TRPV1 blocking alleviates airway inflammation and remodeling in a chronic asthma murine model. Allergy Asthma Immunol Res. 2018;10:216–224. doi:10.4168/aair.2018.10.3.216
  • Noble PB, Pascoe CD, Lan B, et al. Airway smooth muscle in asthma: linking contraction and mechanotransduction to disease pathogenesis and remodelling. Pulm Pharmacol Ther. 2014;29:96–107. doi:10.1016/j.pupt.2014.07.005
  • Johnson PR, Burgess JK, Underwood PA, et al. Extracellular matrix proteins modulate asthmatic airway smooth muscle cell proliferation via an autocrine mechanism. J Allergy Clin Immunol. 2004;113:690–696. doi:10.1016/j.jaci.2003.12.312
  • Zhang C, Wang W, Liu C, Lu J, Sun K. Role of NF-kappaB/GATA3 in the inhibition of lysyl oxidase by IL-1beta in human amnion fibroblasts. Immunol Cell Biol. 2017;95:943–952. doi:10.1038/icb.2017.73
  • Brown AC, Fiore VF, Sulchek TA, Barker TH. Physical and chemical microenvironmental cues orthogonally control the degree and duration of fibrosis-associated epithelial-to-mesenchymal transitions. J Pathol. 2013;229:25–35. doi:10.1002/path.4114
  • Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15:802–812. doi:10.1038/nrm3896
  • Shkumatov A, Thompson M, Choi KM, et al. Matrix stiffness-modulated proliferation and secretory function of the airway smooth muscle cells. Am J Physiol. 2015;308:L1125–1135. doi:10.1152/ajplung.00154.2014
  • Jopeth Ramis RM, Pappalardo F, Cairns J, et al. LOXL2 mediates airway smooth muscle cell matrix stiffness and drives asthmatic airway remodelling. BioRxivs. 2020. doi:10.1101/2020.11.16.384792
  • Cox D, Brennan M, Moran N. Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov. 2010;9:804–820. doi:10.1038/nrd3266
  • Green HJ, Brown NH. Integrin intracellular machinery in action. Exp Cell Res. 2019;378:226–231. doi:10.1016/j.yexcr.2019.03.011
  • Coraux C, Delplanque A, Hinnrasky J, et al. Distribution of integrins during human fetal lung development. J Histochem Cytochem. 1998;46:803–810. doi:10.1177/002215549804600703
  • Wu JE, Santoro SA. Differential expression of integrin alpha subunits supports distinct roles during lung branching morphogenesis. Dev Dyn. 1996;206:169–181. doi:10.1002/(SICI)1097-0177(199606)206:2<169::AID-AJA6>3.0.CO;2-G
  • Pilewski JM, Latoche JD, Arcasoy SM, Albelda SM. Expression of integrin cell adhesion receptors during human airway epithelial repair in vivo. Am J Physiol. 1997;273:L256–263. doi:10.1152/ajplung.1997.273.1.L256
  • Mette SA, Pilewski J, Buck CA, Albelda SM. Distribution of integrin cell adhesion receptors on normal bronchial epithelial cells and lung cancer cells in vitro and in vivo. Am J Respir Cell Mol Biol. 1993;8:562–572. doi:10.1165/ajrcmb/8.5.562
  • Tatler AL, Habgood A, Porte J, et al. Reduced Ets domain-containing protein Elk1 promotes pulmonary fibrosis via increased integrin alphavbeta6 expression. J Biol Chem. 2016;291:9540–9553. doi:10.1074/jbc.M115.692368
  • Tatler AL, Goodwin AT, Gbolahan O, et al. Amplification of TGFbeta induced ITGB6 gene transcription may promote pulmonary fibrosis. PLoS One. 2016;11:e0158047. doi:10.1371/journal.pone.0158047
  • Sheppard D, Cohen DS, Wang A, Busk M. Transforming growth factor beta differentially regulates expression of integrin subunits in Guinea pig airway epithelial cells. J Biol Chem. 1992;267:17409–17414. doi:10.1016/S0021-9258(18)41941-2
  • Teoh CM, Tan S, Tran T, et al. Integrins as therapeutic targets for respiratory diseases. Curr Mol Med. 2016;15:714–734. doi:10.2174/1566524015666150921105339
  • Roman J, Little CW, McDonald JA. Potential role of RGD-binding integrins in mammalian lung branching morphogenesis. Development. 1991;112:551–558. doi:10.1242/dev.112.2.551
  • Albert RK, Embree LJ, McFeely JE, Hickstein DD. Expression and function of beta 2 integrins on alveolar macrophages from human and nonhuman primates. Am J Respir Cell Mol Biol. 1992;7:182–189. doi:10.1165/ajrcmb/7.2.182
  • McNally AK, Anderson JM. Beta1 and beta2 integrins mediate adhesion during macrophage fusion and multinucleated foreign body giant cell formation. Am J Pathol. 2002;160:621–630. doi:10.1016/s0002-9440(10)64882-1
  • Barthel SR, Johansson MW, McNamee DM, Mosher DF. Roles of integrin activation in eosinophil function and the eosinophilic inflammation of asthma. J Leukoc Biol. 2008;83:1–12. doi:10.1189/jlb.0607344
  • Barthel SR, Annis DS, Mosher DF, Johansson MW. Differential engagement of modules 1 and 4 of vascular cell adhesion molecule-1 (CD106) by integrins alpha4beta1 (CD49d/29) and alphaMbeta2 (CD11b/18) of eosinophils. J Biol Chem. 2006;281:32175–32187. doi:10.1074/jbc.M600943200
  • Jeffery PK, Wardlaw AJ, Nelson FC, Collins JV, Kay AB. Bronchial biopsies in asthma. An ultrastructural, quantitative study and correlation with hyperreactivity. Am Rev Respir Dis. 1989;140:1745–1753. doi:10.1164/ajrccm/140.6.1745
  • Zhou C, Yin G, Liu J, Liu X, Zhao S. Epithelial apoptosis and loss in airways of children with asthma. J Asthma. 2011;48:358–365. doi:10.3109/02770903.2011.565848
  • Laitinen LA, Heino M, Laitinen A, Kava T, Haahtela T. Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am Rev Respir Dis. 1985;131:599–606. doi:10.1164/arrd.1985.131.4.599
  • Faul JL, Tormey VJ, Leonard C, et al. Lung immunopathology in cases of sudden asthma death. Eur Respir J. 1997;10:301–307. doi:10.1183/09031936.97.10020301
  • Heijink IH, Kuchibhotla VN, Roffel MP, et al. Epithelial cell dysfunction, a major driver of asthma development. Allergy. 2020;75:1902–1917. doi:10.1111/all.14421
  • Wu J, Dong F, Wang R-A, et al. Central role of cellular senescence in TSLP-induced airway remodeling in asthma. PLoS One. 2013;8:e77795. doi:10.1371/journal.pone.0077795
  • Hirota N, Risse P-A, Novali M, et al. Histamine may induce airway remodeling through release of epidermal growth factor receptor ligands from bronchial epithelial cells. FASEB J. 2012;26:1704–1716. doi:10.1096/fj.11-197061
  • Puddicombe SM, Polosa R, Richter A, et al. Involvement of the epidermal growth factor receptor in epithelial repair in asthma. FASEB J. 2000;14:1362–1374. doi:10.1096/fasebj.14.10.1362
  • Brown SD, Baxter KM, Stephenson ST, et al. Airway TGF-beta1 and oxidant stress in children with severe asthma: association with airflow limitation. J Allergy Clin Immunol. 2012;129:388–396, 396 e381–388. doi:10.1016/j.jaci.2011.11.037
  • Chakir J, Shannon J, Molet S, et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol. 2003;111:1293–1298. doi:10.1067/mai.2003.1557
  • Trautmann A, Krüger K, Akdis M, et al. Apoptosis and loss of adhesion of bronchial epithelial cells in asthma. Int Arch Allergy Immunol. 2005;138:142–150. doi:10.1159/000088436
  • Cohen L, E X, Tarsi J, et al. Epithelial cell proliferation contributes to airway remodeling in severe asthma. Am J Respir Crit Care Med. 2007;176:138–145. doi:10.1164/rccm.200607-1062OC
  • Yuan L, Du X, Tang S, et al. ITGB 4 deficiency induces senescence of airway epithelial cells through p53 activation. FEBS J. 2019;286:1191–1203. doi:10.1111/febs.14749
  • Liu C, Xiang Y, Liu H, et al. Integrin beta4 was downregulated on the airway epithelia of asthma patients. Acta Biochim Biophys Sin. 2010;42:538–547. doi:10.1093/abbs/gmq058
  • Liu C, Liu H-J, Xiang Y, et al. Wound repair and anti-oxidative capacity is regulated by ITGB4 in airway epithelial cells. Mol Cell Biochem. 2010;341:259–269. doi:10.1007/s11010-010-0457-y
  • Tajiri T, Matsumoto H, Jinnai M, et al. Pathophysiological relevance of sputum MUC5AC and MUC5B levels in patients with mild asthma. Allergol Int. 2021. doi:10.1016/j.alit.2021.09.003
  • Ordonez CL, Khashayar R, Wong H, et al. Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med. 2001;163:517–523. doi:10.1164/ajrccm.163.2.2004039
  • Aikawa T, Shimura S, Sasaki H, Ebina M, Takishima T. Marked goblet cell hyperplasia with mucus accumulation in the airways of patients who died of severe acute asthma attack. Chest. 1992;101:916–921. doi:10.1378/chest.101.4.916
  • Faiz A, Weckmann M, Tasena H, et al. Profiling of healthy and asthmatic airway smooth muscle cells following interleukin-1beta treatment: a novel role for CCL20 in chronic mucus hypersecretion. Eur Respir J. 2018;52:1800310. doi:10.1183/13993003.00310-2018
  • Yoshida Y, Takaku Y, Nakamoto Y, et al. Changes in airway diameter and mucus plugs in patients with asthma exacerbation. PLoS One. 2020;15:e0229238. doi:10.1371/journal.pone.0229238
  • Iwashita J, Murata J. Integrin beta1 subunit regulates cellular and secreted MUC5AC and MUC5B production in NCI-H292 human lung epithelial cells. Biochem Biophys Rep. 2021;28:101124. doi:10.1016/j.bbrep.2021.101124
  • Iwashita J, Yamamoto T, Sasaki Y, Abe T. MUC5AC production is downregulated in NCI-H292 lung cancer cells cultured on type-IV collagen. Mol Cell Biochem. 2010;337:65–75. doi:10.1007/s11010-009-0286-z
  • Zhi Y, Huang H, Liang L. MFG-E8/integrin beta3 signaling contributes to airway inflammation response and airway remodeling in an ovalbumin-induced murine model of asthma. J Cell Biochem. 2018;119:8887–8896. doi:10.1002/jcb.27142
  • Tatler AL, Porte J, Knox A, Jenkins G, Pang L. Tryptase activates TGFbeta in human airway smooth muscle cells via direct proteolysis. Biochem Biophys Res Commun. 2008;370:239–242. doi:10.1016/j.bbrc.2008.03.064
  • John AE, Zhu YM, Brightling CE, Pang L, Knox AJ. Human airway smooth muscle cells from asthmatic individuals have CXCL8 hypersecretion due to increased NF-kappaB p65, C/ EBPbeta, and RNA polymerase II binding to the CXCL8 promoter. J Immunol. 2009;183:4682–4692. doi:10.4049/jimmunol.0803832
  • Clifford RL, Patel JK, John AE, et al. CXCL8 histone H3 acetylation is dysfunctional in airway smooth muscle in asthma: regulation by BET. Am J Physiol. 2015;308:L962–972. doi:10.1152/ajplung.00021.2015
  • Benayoun L, Druilhe A, Dombret MC, Aubier M, Pretolani M. Airway structural alterations selectively associated with severe asthma. Am J Respir Crit Care Med. 2003;167:1360–1368. doi:10.1164/rccm.200209-1030OC
  • Woodruff PG, Dolganov GM, Ferrando RE, et al. Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. Am J Respir Crit Care Med. 2004;169:1001–1006. doi:10.1164/rccm.200311-1529OC
  • James AL, Elliot JG, Jones RL, et al. Airway smooth muscle hypertrophy and hyperplasia in asthma. Am J Respir Crit Care Med. 2012;185:1058–1064. doi:10.1164/rccm.201110-1849OC
  • O’Sullivan MJ, Jang JH, Panariti A, et al. Airway epithelial cells drive airway smooth muscle cell phenotype switching to the proliferative and pro-inflammatory phenotype. Front Physiol. 2021;12:687654. doi:10.3389/fphys.2021.687654
  • Al Heialy S, Risse P-A, Zeroual MA, et al. T cell-induced airway smooth muscle cell proliferation via the epidermal growth factor receptor. Am J Respir Cell Mol Biol. 2013;49:563–570. doi:10.1165/rcmb.2012-0356OC
  • Hirota JA, Ask K, Farkas L, et al. In vivo role of platelet-derived growth factor–BB in airway smooth muscle proliferation in mouse lung. Am J Respir Cell Mol Biol. 2011;45:566–572. doi:10.1165/rcmb.2010-0277OC
  • Pan Y, Liu L, Li S, et al. Activation of AMPK inhibits TGF-beta1-induced airway smooth muscle cells proliferation and its potential mechanisms. Sci Rep. 2018;8:3624. doi:10.1038/s41598-018-21812-0
  • Wang Q, Li H, Yao Y, et al. HB-EGF-promoted airway smooth muscle cells and their progenitor migration contribute to airway smooth muscle remodeling in asthmatic mouse. J Immunol. 2016;196:2361–2367. doi:10.4049/jimmunol.1402126
  • Kim SH, Pei Q-M, Jiang P, et al. Effect of active vitamin D3 on VEGF-induced ADAM33 expression and proliferation in human airway smooth muscle cells: implications for asthma treatment. Respir Res. 2017;18:7. doi:10.1186/s12931-016-0490-9
  • Parameswaran K, Cox G, Radford K, et al. Cysteinyl leukotrienes promote human airway smooth muscle migration. Am J Respir Crit Care Med. 2002;166:738–742. doi:10.1164/rccm.200204-291OC
  • Ijpma G, Panariti A, Lauzon AM, Martin JG. Directional preference of airway smooth muscle mass increase in human asthmatic airways. Am J Physiol. 2017;312:L845–L854. doi:10.1152/ajplung.00353.2016
  • Sundaram A, Chen C, Khalifeh-Soltani A, et al. Targeting integrin alpha5beta1 ameliorates severe airway hyperresponsiveness in experimental asthma. J Clin Invest. 2017;127:365–374. doi:10.1172/JCI88555
  • Liu S, Ngo U, Tang X-Z, et al. Integrin alpha2beta1 regulates collagen I tethering to modulate hyperresponsiveness in reactive airway disease models. J Clin Invest. 2021;131. doi:10.1172/JCI138140
  • Gunst SJ, Tang DD. The contractile apparatus and mechanical properties of airway smooth muscle. Eur Respir J. 2000;15:600–616. doi:10.1034/j.1399-3003.2000.15.29.x
  • Wang Y, Liao G, Wang R, Tang DD. Acetylation of Abelson interactor 1 at K416 regulates actin cytoskeleton and smooth muscle contraction. FASEB J. 2021;35:e21811. doi:10.1096/fj.202100415R
  • Wang T, Cleary RA, Wang R, Tang DD. Role of the adapter protein Abi1 in actin-associated signaling and smooth muscle contraction. J Biol Chem. 2013;288:20713–20722. doi:10.1074/jbc.M112.439877
  • Wang R, Cleary RA, Wang T, Li J, Tang DD. The association of cortactin with profilin-1 is critical for smooth muscle contraction. J Biol Chem. 2014;289:14157–14169. doi:10.1074/jbc.M114.548099
  • Jia L, Wang R, Tang DD. Abl regulates smooth muscle cell proliferation by modulating actin dynamics and ERK1/2 activation. Am J Physiol. 2012;302:C1026–1034. doi:10.1152/ajpcell.00373.2011
  • Ojiaku CA, Cao G, Zhu W, et al. TGF-beta1 evokes human airway smooth muscle cell shortening and hyperresponsiveness via Smad3. Am J Respir Cell Mol Biol. 2018;58:575–584. doi:10.1165/rcmb.2017-0247OC
  • Khalifeh-Soltani A, Gupta D, Ha A, Podolsky MJ. The Mfge8-alpha8beta1-PTEN pathway regulates airway smooth muscle contraction in allergic inflammation. FASEB J. 2018;fj201800109R. doi:10.1096/fj.201800109R
  • Chen C, Kudo M, Rutaganira F, et al. Integrin alpha9beta1 in airway smooth muscle suppresses exaggerated airway narrowing. J Clin Invest. 2012;122:2916–2927. doi:10.1172/JCI60387
  • Kaminska M, Foley S, Maghni K, et al. Airway remodeling in subjects with severe asthma with or without chronic persistent airflow obstruction. J Allergy Clin Immunol. 2009;124:45–51 e41–e44. doi:10.1016/j.jaci.2009.03.049
  • Dekkers BG, Bos IS, Gosens R, Halayko AJ, Zaagsma J, Meurs H. The integrin-blocking peptide RGDS inhibits airway smooth muscle remodeling in a Guinea pig model of allergic asthma. Am J Respir Crit Care Med. 2010;181:556–565. doi:10.1164/rccm.200907-1065OC
  • Wang R, Liao G, Wang Y, Tang DD. Distinctive roles of Abi1 in regulating actin-associated proteins during human smooth muscle cell migration. Sci Rep. 2020;10:10667. doi:10.1038/s41598-020-67781-1
  • Nguyen TT, Ward JP, Hirst SJ. beta1-Integrins mediate enhancement of airway smooth muscle proliferation by collagen and fibronectin. Am J Respir Crit Care Med. 2005;171:217–223. doi:10.1164/rccm.200408-1046OC
  • Fu J, Zheng M, Zhang X, et al. Fibulin-5 promotes airway smooth muscle cell proliferation and migration via modulating Hippo-YAP/TAZ pathway. Biochem Biophys Res Commun. 2017;493:985–991. doi:10.1016/j.bbrc.2017.09.105
  • Tran T, Teoh CM, Tam JKC, et al. Laminin drives survival signals to promote a contractile smooth muscle phenotype and airway hyperreactivity. FASEB J. 2013;27:3991–4003. doi:10.1096/fj.12-221341
  • Roche WR, Beasley R, Williams JH, Holgate ST. Subepithelial fibrosis in the bronchi of asthmatics. Lancet. 1989;1:520–524. doi:10.1016/S0140-6736(89)90067-6
  • Hoshino M, Nakamura Y, Sim J, Shimojo J, Isogai S. Bronchial subepithelial fibrosis and expression of matrix metalloproteinase-9 in asthmatic airway inflammation. J Allergy Clin Immunol. 1998;102:783–788. doi:10.1016/s0091-6749(98)70018-1
  • Wang CH, Huang C-D, Lin H-C, et al. Increased circulating fibrocytes in asthma with chronic airflow obstruction. Am J Respir Crit Care Med. 2008;178:583–591. doi:10.1164/rccm.200710-1557OC
  • Moir LM, Burgess JK, Black JL. Transforming growth factor beta 1 increases fibronectin deposition through integrin receptor alpha 5 beta 1 on human airway smooth muscle. J Allergy Clin Immunol. 2008;121:1034–1039 e1034. doi:10.1016/j.jaci.2007.12.1159
  • Hong GH, Park S-Y, Kwon H-S, et al. IL-32gamma attenuates airway fibrosis by modulating the integrin-FAK signaling pathway in fibroblasts. Respir Res. 2018;19:188. doi:10.1186/s12931-018-0863-3
  • Vignola AM, Chanez P, Chiappara G, et al. Transforming growth factor-beta expression in mucosal biopsies in asthma and chronic bronchitis. Am J Respir Crit Care Med. 1997;156:591–599. doi:10.1164/ajrccm.156.2.9609066
  • Redington AE, Madden J, Frew A, et al. Transforming growth factor-beta 1 in asthma. Measurement in bronchoalveolar lavage fluid. Am J Respir Crit Care Med. 1997;156:642–647. doi:10.1164/ajrccm.156.2.9605065
  • Torrego A, Hew M, Oates T, Sukkar M, Fan Chung K. Expression and activation of TGF-beta isoforms in acute allergen-induced remodelling in asthma. Thorax. 2007;62:307–313. doi:10.1136/thx.2006.063487
  • Batra V, Musani AI, Hastie AT, et al. Bronchoalveolar lavage fluid concentrations of transforming growth factor (TGF)-beta1, TGF-beta2, interleukin (IL)-4 and IL-13 after segmental allergen challenge and their effects on alpha-smooth muscle actin and collagen III synthesis by primary human lung fibroblasts. Clin Exp Allergy. 2004;34:437–444. doi:10.1111/j.1365-2222.2004.01885.x
  • Walker EJ, Heydet D, Veldre T, Ghildyal R. Transcriptomic changes during TGF-beta-mediated differentiation of airway fibroblasts to myofibroblasts. Sci Rep. 2019;9:20377. doi:10.1038/s41598-019-56955-1
  • Guo W, Shan B, Klingsberg RC, Qin X, Lasky JA. Abrogation of TGF-beta1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition. Am J Physiol. 2009;297:L864–870. doi:10.1152/ajplung.00128.2009
  • Sidhu SS, Yuan S, Innes AL, et al. Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma. Proc Natl Acad Sci U S A. 2010;107:14170–14175. doi:10.1073/pnas.1009426107
  • Frangogiannis N. Transforming growth factor-beta in tissue fibrosis. J Exp Med. 2020;217:e20190103. doi:10.1084/jem.20190103
  • Bottoms SE, Howell JE, Reinhardt AK, Evans IC, McAnulty RJ. Tgf-Beta isoform specific regulation of airway inflammation and remodelling in a murine model of asthma. PLoS One. 2010;5:e9674. doi:10.1371/journal.pone.0009674
  • Kenyon NJ, Ward RW, McGrew G, Last JA. TGF-beta1 causes airway fibrosis and increased collagen I and III mRNA in mice. Thorax. 2003;58:772–777. doi:10.1136/thorax.58.9.772
  • Wnuk D, Paw M, Ryczek K, et al. Enhanced asthma-related fibroblast to myofibroblast transition is the result of profibrotic TGF-beta/Smad2/3 pathway intensification and antifibrotic TGF-beta/Smad1/5/(8)9 pathway impairment. Sci Rep. 2020;10:16492. doi:10.1038/s41598-020-73473-7
  • Mu D, Cambier S, Fjellbirkeland L, et al. The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol. 2002;157:493–507. doi:10.1083/jcb.200109100
  • Tatler AL, Jenkins G. TGF-beta activation and lung fibrosis. Proc Am Thorac Soc. 2012;9:130–136. doi:10.1513/pats.201201-003AW
  • Ling KM, Sutanto EN, Iosifidis T, et al. Reduced transforming growth factor beta1 (TGF-beta1) in the repair of airway epithelial cells of children with asthma. Respirology. 2016;21:1219–1226. doi:10.1111/resp.12810
  • Prikk K, Maisi P, Pirilä E, et al. Airway obstruction correlates with collagenase-2 (MMP-8) expression and activation in bronchial asthma. Lab Investig. 2002;82:1535–1545. doi:10.1097/01.lab.0000035023.53893.b6
  • Suzuki R, Kato T, Miyazaki Y, et al. Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in sputum from patients with bronchial asthma. J Asthma. 2001;38:477–484. doi:10.1081/jas-100105868
  • Wipff PJ, Rifkin DB, Meister JJ, Hinz B. Myofibroblast contraction activates latent TGF- 1 from the extracellular matrix. J Cell Biol. 2007;179:1311–1323. doi:10.1083/jcb.200704042
  • Xu MY, Porte J, Knox AJ, et al. Lysophosphatidic acid induces {alpha}v{beta}6 integrin-mediated TGF-{beta} activation via the LPA2 receptor and the small G protein G{alpha}q. Am J Pathol. 2009;174:1264–1279. doi:10.2353/ajpath.2009.080160
  • Jenkins RG, Su X, Su G, et al. Ligation of protease-activated receptor 1 enhances alpha(v)beta6 integrin-dependent TGF-beta activation and promotes acute lung injury. J Clin Invest. 2006;116:1606–1614. doi:10.1172/JCI27183
  • Januskevicius A, Gosens R, Sakalauskas R, et al. Suppression of eosinophil integrins prevents remodeling of airway smooth muscle in asthma. Front Physiol. 2016;7:680. doi:10.3389/fphys.2016.00680
  • Janulaityte I, Januskevicius A, Kalinauskaite-Zukauske V, Bajoriuniene I, Malakauskas K. In vivo allergen-activated eosinophils promote collagen I and fibronectin gene expression in airway smooth muscle cells via TGF-beta1 signaling pathway in asthma. Int J Mol Sci. 2020;21:1837. doi:10.3390/ijms21051837
  • Tanaka H, Yamada G, Saikai T, et al. Increased airway vascularity in newly diagnosed asthma using a high-magnification bronchovideoscope. Am J Respir Crit Care Med. 2003;168:1495–1499. doi:10.1164/rccm.200306-727OC
  • Orsida BE, Li X, Hickey B, et al. Vascularity in asthmatic airways: relation to inhaled steroid dose. Thorax. 1999;54:289–295. doi:10.1136/thx.54.4.289
  • Salvato G. Quantitative and morphological analysis of the vascular bed in bronchial biopsy specimens from asthmatic and non-asthmatic subjects. Thorax. 2001;56:902–906. doi:10.1136/thorax.56.12.902
  • Van der Velden J, Harkness LM, Barker DM, et al. The effects of tumstatin on vascularity, airway inflammation and lung function in an experimental sheep model of chronic asthma. Sci Rep. 2016;6:26309. doi:10.1038/srep26309
  • Lee HY, Min KH, Lee SM, Lee JE, Rhee CK. Clinical significance of serum vascular endothelial growth factor in young male asthma patients. Korean J Intern Med. 2017;32:295–301. doi:10.3904/kjim.2014.242
  • Lee SY, Kwon S, Kim KH, et al. Expression of vascular endothelial growth factor and hypoxia-inducible factor in the airway of asthmatic patients. Ann Allergy Asthma Immunol. 2006;97:794–799. doi:10.1016/S1081-1206(10)60971-4
  • Feltis BN, Wignarajah D, Zheng L, et al. Increased vascular endothelial growth factor and receptors: relationship to angiogenesis in asthma. Am J Respir Crit Care Med. 2006;173:1201–1207. doi:10.1164/rccm.200507-1105OC
  • Chetta A, Zanini A, Foresi A, et al. Vascular endothelial growth factor up-regulation and bronchial wall remodelling in asthma. Clin Exp Allergy. 2005;35:1437–1442. doi:10.1111/j.1365-2222.2005.02360.x
  • Simcock DE, Kanabar V, Clarke GW, et al. Induction of angiogenesis by airway smooth muscle from patients with asthma. Am J Respir Crit Care Med. 2008;178:460–468. doi:10.1164/rccm.200707-1046OC
  • Zhang R, Dong H, Zhao H, et al. 1,25-Dihydroxyvitamin D3 targeting VEGF pathway alleviates house dust mite (HDM)-induced airway epithelial barrier dysfunction. Cell Immunol. 2017;312:15–24. doi:10.1016/j.cellimm.2016.11.004
  • Turkeli A, Yilmaz Ö, Karaman M, et al. Anti-VEGF treatment suppresses remodeling factors and restores epithelial barrier function through the E-cadherin/beta-catenin signaling axis in experimental asthma models. Exp Ther Med. 2021;22:689. doi:10.3892/etm.2021.10121
  • Yuksel H, Yilmaz O, Karaman M, et al. Role of vascular endothelial growth factor antagonism on airway remodeling in asthma. Ann Allergy Asthma Immunol. 2013;110:150–155. doi:10.1016/j.anai.2012.12.015
  • Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994;264:569–571. doi:10.1126/science.7512751
  • Friedlander M, Brooks PC, Shaffer RW, et al. Definition of two angiogenic pathways by distinct α v integrins. Science. 1995;270:1500–1502. doi:10.1126/science.270.5241.1500
  • Thompson EE, Pan L, Ostrovnaya I, et al. Integrin beta 3 genotype influences asthma and allergy phenotypes in the first 6 years of life. J Allergy Clin Immunol. 2007;119:1423–1429. doi:10.1016/j.jaci.2007.03.029
  • Drake CJ, Cheresh DA, Little CD. An antagonist of integrin alpha v beta 3 prevents maturation of blood vessels during embryonic neovascularization. J Cell Sci. 1995;108(Pt 7):2655–2661. doi:10.1242/jcs.108.7.2655
  • Hodivala-Dilke KM, McHugh KP, Tsakiris DA, et al. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J Clin Invest. 1999;103:229–238. doi:10.1172/JCI5487
  • Huang X, Griffiths M, Wu J, Farese RV, Sheppard D. Normal development, wound healing, and adenovirus susceptibility in beta5-deficient mice. Mol Cell Biol. 2000;20:755–759. doi:10.1128/MCB.20.3.755-759.2000
  • Yang JT, Rayburn H, Hynes RO. Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development. 1993;119:1093–1105. doi:10.1242/dev.119.4.1093
  • Okazaki T, Ni A, Ayeni OA, et al. alpha5beta1 Integrin blockade inhibits lymphangiogenesis in airway inflammation. Am J Pathol. 2009;174:2378–2387. doi:10.2353/ajpath.2009.080942
  • Davis GE, Camarillo CW. An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp Cell Res. 1996;224:39–51. doi:10.1006/excr.1996.0109
  • Peng Q, Lai D, Nguyen TT-B, et al. Multiple β 1 integrins mediate enhancement of human airway smooth muscle cytokine secretion by fibronectin and type I collagen. J Immunol. 2005;174:2258–2264. doi:10.4049/jimmunol.174.4.2258
  • Weller PF, Rand TH, Goelz SE, Chi-Rosso G, Lobb RR. Human eosinophil adherence to vascular endothelium mediated by binding to vascular cell adhesion molecule 1 and endothelial leukocyte adhesion molecule 1. Proc Natl Acad Sci USA. 1991;88:7430–7433. doi:10.1073/pnas.88.16.7430
  • Nagata M, Sedgwick JB, Kita H, Busse WW. Granulocyte macrophage colony-stimulating factor augments ICAM-1 and VCAM-1 activation of eosinophil function. Am J Respir Cell Mol Biol. 1998;19:158–166. doi:10.1165/ajrcmb.19.1.3001
  • Kato M, Kita H, Tokuyama K, Morikawa A. Cross-linking of the beta2 integrin, CD11b/CD18, on human eosinophils induces protein tyrosine phosphorylation and cellular degranulation. Int Arch Allergy Immunol. 1998;117(Suppl 1):68–71. doi:10.1159/000053576
  • Nagata M, Sedgwick JB, Bates ME, Kita H, Busse WW. Eosinophil adhesion to vascular cell adhesion molecule-1 activates superoxide anion generation. J Immunol. 1995;155:2194–2202.
  • Higashimoto I, Chihara J, Kakazu T, et al. Regulation of eosinophil cell death by adhesion to fibronectin. Int Arch Allergy Immunol. 1996;111(Suppl 1):66–69. doi:10.1159/000237420
  • Ray A, Kolls JK. Neutrophilic inflammation in asthma and association with disease severity. Trends Immunol. 2017;38:942–954. doi:10.1016/j.it.2017.07.003
  • Sekheri M, Othman A, Filep JG. beta2 integrin regulation of neutrophil functional plasticity and fate in the resolution of inflammation. Front Immunol. 2021;12:660760. doi:10.3389/fimmu.2021.660760
  • Fan Z, McArdle S, Marki A, et al. Neutrophil recruitment limited by high-affinity bent beta2 integrin binding ligand in cis. Nat Commun. 2016;7:12658. doi:10.1038/ncomms12658
  • Khawaja AA, Chong DLW, Sahota J, et al. Identification of a novel HIF-1alpha-alphaMbeta2 integrin-NET axis in fibrotic interstitial lung disease. Front Immunol. 2020;11:2190. doi:10.3389/fimmu.2020.02190
  • Habgood AN, Tatler AL, Porte J, et al. Secretory leukocyte protease inhibitor gene deletion alters bleomycin-induced lung injury, but not development of pulmonary fibrosis. Lab Investig. 2016;96:623–631. doi:10.1038/labinvest.2016.40
  • Maestrelli P, De Fina O, Bertin T, et al. Integrin expression on neutrophils and mononuclear cells in blood and induced sputum in stable asthma. Allergy. 1999;54:1303–1308. doi:10.1034/j.1398-9995.1999.00337.x
  • Holgate ST, Davies DE. Rethinking the pathogenesis of asthma. Immunity. 2009;31:362–367. doi:10.1016/j.immuni.2009.08.013
  • Liu C, Qin X, Liu H, Xiang Y. Downregulation of integrin beta4 decreases the ability of airway epithelial cells to present antigens. PLoS One. 2012;7:e32060. doi:10.1371/journal.pone.0032060
  • Fernandes D, Guida E, Koutsoubos V, et al. Glucocorticoids inhibit proliferation, cyclin D1 expression, and retinoblastoma protein phosphorylation, but not activity of the extracellular-regulated kinases in human cultured airway smooth muscle. Am J Respir Cell Mol Biol. 1999;21:77–88. doi:10.1165/ajrcmb.21.1.3396
  • Shull S, Meisler N, Absher M, Phan S, Cutroneo K. Glucocorticoid-induced down regulation of transforming growth factor-beta 1 in adult rat lung fibroblasts. Lung. 1995;173:71–78. doi:10.1007/BF02981467
  • Bandi N, Kompella UB. Budesonide reduces vascular endothelial growth factor secretion and expression in airway (Calu-1) and alveolar (A549) epithelial cells. Eur J Pharmacol. 2001;425:109–116. doi:10.1016/s0014-2999(01)01192-x
  • Laitinen LA, Laitinen A, Haahtela T. A comparative study of the effects of an inhaled corticosteroid, budesonide, and a beta 2-agonist, terbutaline, on airway inflammation in newly diagnosed asthma: a randomized, double-blind, parallel-group controlled trial. J Allergy Clin Immunol. 1992;90:32–42. doi:10.1016/s0091-6749(06)80008-4
  • Haldar P, Brightling CE, Hargadon B, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360:973–984. doi:10.1056/NEJMoa0808991
  • Flood-Page P, Menzies-Gow A, Phipps S, et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest. 2003;112:1029–1036. doi:10.1172/JCI17974
  • Chachi L, Diver S, Kaul H, et al. Computational modelling prediction and clinical validation of impact of benralizumab on airway smooth muscle mass in asthma. Eur Respir J. 2019;54:1900930. doi:10.1183/13993003.00930-2019
  • Tajiri T, Niimi A, Matsumoto H, et al. Comprehensive efficacy of omalizumab for severe refractory asthma: a time-series observational study. Ann Allergy Asthma Immunol. 2014;113:470–475 e472. doi:10.1016/j.anai.2014.06.004
  • Prakash YS, Halayko AJ, Gosens R, et al. An Official American Thoracic Society Research Statement: current challenges facing research and therapeutic advances in airway remodeling. Am J Respir Crit Care Med. 2017;195:e4–e19. doi:10.1164/rccm.201611-2248ST
  • Kianmeher M, Ghorani V, Boskabady MH. Animal model of asthma, various methods and measured parameters: a methodological review. Iran J Allergy Asthma Immunol. 2016;15:445–465.
  • Tatler AL, Philp CJ, Hill MR, et al. Differential remodelling in small and large murine airways revealed by novel whole lung airway analysis. BioRxivs. 2022. doi:10.1101/2022.01.15.476324
  • Kotaru C, Schoonover KJ, Trudeau JB, et al. Regional fibroblast heterogeneity in the lung: implications for remodeling. Am J Respir Crit Care Med. 2006;173:1208–1215. doi:10.1164/rccm.200508-1218OC
  • Clifford RL, Yang CX, Fishbane N, et al. TWIST1 DNA methylation is a cell marker of airway and parenchymal lung fibroblasts that are differentially methylated in asthma. Clin Epigenetics. 2020;12:145. doi:10.1186/s13148-020-00931-4
  • Gupta S, Siddiqui S, Haldar P, et al. Qualitative analysis of high-resolution CT scans in severe asthma. Chest. 2009;136:1521–1528. doi:10.1378/chest.09-0174
  • Cianchetti S, Cardini C, Puxeddu I, et al. Distinct profile of inflammatory and remodelling biomarkers in sputum of severe asthmatic patients with or without persistent airway obstruction. World Allergy Organ J. 2019;12:100078. doi:10.1016/j.waojou.2019.100078
  • Riccio AM, Mauri P, De Ferrari L, et al. Galectin-3: an early predictive biomarker of modulation of airway remodeling in patients with severe asthma treated with omalizumab for 36 months. Clin Transl Allergy. 2017;7:6. doi:10.1186/s13601-017-0143-1
  • Ayars AG, Altman LC, Potter-Perigo S, et al. Sputum hyaluronan and versican in severe eosinophilic asthma. Int Arch Allergy Immunol. 2013;161:65–73. doi:10.1159/000343031
  • Kitamura H, Cambier S, Somanath S, et al. Mouse and human lung fibroblasts regulate dendritic cell trafficking, airway inflammation, and fibrosis through integrin alphavbeta8-mediated activation of TGF-beta. J Clin Invest. 2011;121:2863–2875. doi:10.1172/JCI45589
  • Macias-Perez I, Borza C, Chen X, et al. Loss of integrin alpha1beta1 ameliorates Kras-induced lung cancer. Cancer Res. 2008;68:6127–6135. doi:10.1158/0008-5472.CAN-08-1395